A Learning Bridge from Architectural Synthesis to Physical Design for Exploring Power Efficient High-Performance Adders

Subhendu Roy¹ Yuzhe Ma² Jin Miao¹ **Bei Yu**²

¹Cadence Design Systems ²The Chinese University of Hong Kong

ISLPED'17

Optimality across EDA stages

No 1-1 mapping between metrics across various EDA stages.

- Optimality at one stage doesn't guarantee the same in another stage
- Data-driven methodology, such as machine learning, becomes imminent

ISLPED'17

Binary Adder Design

 \blacktriangleright Primary building blocks in the datapath logic of a microprocessor

 \triangleright A fundamental problem in VLSI industry for last several decades

What is still unsolved?

ISLPED'17

4 ロ > 4 何 > 4 ミ > 4 ミ > 三 ミ - 9 Q Q

Closing the gap across adder design stages

Parallel Prefix Adders

ISLPED'17

 Ω G.

イロトス部 トスミドスミドー

Parallel Prefix Adders

ISLPED'17

 \equiv 990

イロト イ部 トイミト イヨト

Architectural Level: Mapped to Prefix Structures

Prefix Graph Problem

Carry-computation can be mapped to prefix graph problem

$$
\mathbf{y}_i = \mathbf{x}_i - 1 \ o \ \mathbf{x}_{i-1} \ o \ \mathbf{x}_{i-2} \ o \dots \mathbf{x}_1 \ o \ \mathbf{x}_0
$$

Size (s) = No. of prefix nodes = 7 Level (L) = maximum logic level = 3 Max-Fanout $(mfo) = 2$

ISLPED'17

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ 三重 → 約 Q @

Classifying Prefix Graph Synthesis

Can be classified based on the solution#

Category 1: Limited number of solutions

- ► Example: [Matsunaga+,GLSVLSI'07], [Liu+,ICCAD'03], [Zhu+,ASPDAC'05], [Roy+,ASPDAC'15]
- Not suitable for exploring data-driven methodologies
- No analytical model to physical design stage

Category 2: Innumerable solutions

- \blacktriangleright Example: $[Roy+, TCAD'14]$
- Not scalable for bounded fan-out
- Computationally expensive to run all solutions through full physical design flow

ISLPED'17

4 ロ > 4 何 > 4 ミ > 4 ミ > 三 ミ - 9 Q Q

Gap between Prefix Structure and Physical Design

(a) Architectural solution space; (b) Physical design space.

- \triangleright G1 (less fan-out and high size); G2 (high fan-out and low size)
- \blacktriangleright When mapped to physical solution space
	- Correlation between size and area
	- Not completely reliable, G1 and G2 get mixed up in physical solution space

ISLPED'17

 QQQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Gap between Prefix Structure and Physical Design

(a) Architectural solution space; (b) Physical design space.

- \triangleright G1 (less fan-out and high size); G2 (high fan-out and low size)
- \triangleright When mapped to physical solution space
	- Correlation between size and area
	- Not completely reliable, G1 and G2 get mixed up in physical solution space

ISLPED'17

 QQQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

What We Want to Search For:

All Pareto Frontier points with low area, low power, and low critical delay.

Task 1: Prefix Adder Solution Exploration

ISLPED'17 イロト イ押 トイヨ トイヨト $2Q$

[Roy+,TCAD'14]– Summary

- G_n = set of prefix graphs of bit-width n
- \blacktriangleright Prefix graphs of higher order generated in bottom-up fashion
- Several pruning strategies during $G_n \to G_{n+1}$ for scaling
- For bounded fan-out, these strategies compromises in size-optimality

ISLPED'17

Enhancement 1: Imposing Semi-regularity

- \blacktriangleright The concept is derived from regular adders such as Brent-Kung, Sklansky.
- \triangleright x_i and x_{i+1} combined to form prefix nodes, where i is even.
- \blacktriangleright This regularity for only $L = 1$
- For $L > 1$, regularity compromises size optimality (Forbidden).
- \triangleright Observation: this semi-regularity doesn't degrade size-optimality.

ISLPED'17

Enhancement 2: Level restriction in Non-trivial Fan-in

- \blacktriangleright Trivial fan-in having same MSB
- \triangleright *x*₄ and *i*₁ are trivial and non-trivial fan-in of *i*₂
- ► Level (non-trivial fan-in) $>$ level (trivial fan-in)
- \blacktriangleright Reduces search space without degrading size-optimality

ISLPED'17

 \equiv 990

Comparison at Prefix Graph Stage

ISLPED'17

KO K K @ K K 할 K X 할 X 및 할 X 이익만

- \blacktriangleright Table is for 64 bit adders
- \blacktriangleright [Roy+,TCAD'14] cannot get solutions for all fanouts.
- \triangleright Our solutions are always more size-optimal.
- \blacktriangleright Runtimes are comparable, adder synthesis is one-time.

Physical Solution Space Comparison

Our solutions cover wider space in physical domain

- \triangleright 7000 random samples from $[{\rm Roy+,TCAD'}14]$ vs. 3000 samples from us
- Reason: TCAD'14 misses solutions for bounded fanout in a few cases

ISLPED'17

 QQQ

 $A \equiv \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \math$

Physical Solution Space Comparison

Our solutions cover wider space in physical domain

- \triangleright 7000 random samples from $[{\rm Roy+,TCAD'}14]$ vs. 3000 samples from us
- Reason: TCAD'14 misses solutions for bounded fanout in a few cases

ISLPED'17

 QQQ

 $A \equiv \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \math$

Task 2: Pareto Frontier Driven Learning

ISLPED'17 イロト イ押 トイヨ トイヨト $2Q$

Quasi-Random Data Sampling

- \blacktriangleright Hundreds of thousands of solutions
- \blacktriangleright How to choose training data?
	- Cannot run too many architectures as physical design flow costly.
	- Too few will degrade model accuracy.

Quasi-Random Sampling

Create architectural bins based on *mfo* and *s*.

- \triangleright Capture all architectural bins
- \blacktriangleright Select solutions from each bin randomly

Feature Selection and Learning Model

- ^I Architectural attributes: *s*, *mfo*, sum-path-fanout (*spfo*)
- \blacktriangleright Tool settings: Target delay
- \triangleright Best model fitting by support-vector-regression (SVR) with RBF kernel
- ▶ Including *spfo* improves MSE score for delay from 0.232 to 0.164
- \triangleright Note: linear models not sufficient for modeling delay

$$
spfo(y1) = spfo(x0) + spfo(x1) + fo(x0) + fo(x1) =
$$

0 + 0 + 1 + 1 = 2
spfo(i1) = spfo(x3) + spfo(x2) + fo(x3) + fo(x2) =
0 + 0 + 1 + 2 = 3
spfo(y3) = spfo(i1) + spfo(y1) + fo(i1) + fo(y1) =
3 + 2 + 1 + 2 = 8

ISLPED'17

Pareto Frontier Driven Learning

\triangleright Conventional learning focusses on prediction accuracy

- Model accuracy improvement doesn't guarantee Pareto-frontier improvement
- Need for learning integrated Pareto-frontier exploration

\triangleright Scalarization or α -sweep

- Learning output is a linear sum of delay and power $(\alpha \times \text{Power} + \text{Delay})$

ISLPED'17

4 ロ > 4 何 > 4 ミ > 4 ミ > 三 ミ - 9 Q Q

- Model-fitting done with different values of alpha
- Sweeping alpha from 0 to a large positive number

Experimental Setup

Synthesis and placement/routing of adders

- ▶ Tools: Design Compiler/ IC Compiler
- ► Library: Non-linear-delay-model (NLDM) in 32nm SAED cell-library

ISLPED'17

 \blacktriangleright Tool settings: Target delay = 0.1ns, 0.2ns, 0.3 ns

Programming Language

- \triangleright C++ for prefix adder synthesis
- \blacktriangleright Python based machine learning package scikit-learn

Machine Configurations

- \triangleright 72GB RAM UNIX machine
- \triangleright 2.8GHz CPU

Pareto-frontier Comparison

Predicted pareto-frontier almost matches actual pareto-frontier

- \blacktriangleright Training set is randomly selected from 300 samples.
- Rep. adders are quasi-random sampled from other 3000 samples

ISLPED'17

 QQQ

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

 \triangleright Predicted frontier is from best 150 solutions (predicted)

Pareto-frontier Comparison

Predicted pareto-frontier almost matches actual pareto-frontier

- \blacktriangleright Training set is randomly selected from 300 samples.
- \blacktriangleright Rep. adders are quasi-random sampled from other 3000 samples

ISLPED'17

 QQQ

 $A \equiv \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \math$

Predicted frontier is from best 150 solutions (predicted)

Comparison with Other Adders

Pareto-points derived from our approach beats other solutions in all metrics (delay, area, power)

4 0 2 4 d 2 4 d 2 4 d 2 3 4 d 2 4 d 2 4 d 2 4 d 2 4 d 2 4 d 2 4 d 2 4 d 2 4 d 2 4 d 2 4 d 2 4 d 2 4 d 2 4 d 2

Conclusion

Machine learning guided design space exploration

- \blacktriangleright For power-efficient high-performance adders
- \triangleright Bridge the gap between architectural and physical solution space
- \blacktriangleright Provide near-optimal power vs. delay trade-off

Our methodology excels

 \triangleright State-of-the-art adder synthesis algorithms in power/delay/area metrics

ISLPED'17

4 ロ > 4 何 > 4 ミ > 4 ミ > 三 ミ - 9 Q Q

 \blacktriangleright Readily adoptable for any cell-library

Thank You

Subhendu Roy [\(subhroy@cadence.com\)](mailto:subhroy@cadence.com) Yuzhe Ma [\(yzma@cse.cuhk.edu.hk\)](mailto:yzma@cse.cuhk.edu.hk) Jin Miao [\(jmiao@cadence.com\)](mailto:jmiao@cadence.com) Bei Yu [\(byu@cse.cuhk.edu.hk\)](mailto:byu@cse.cuhk.edu.hk)

cadence

4 ロ > 4 何 > 4 ミ > 4 ミ > 三 ミ - 9 Q Q

ISLPED'17