

DSAR: DSA aware Routing with Simultaneous DSA Guiding Pattern and Double Patterning Assignment

Jiaojiao Ou¹, Bei Yu², Xiaoqing Xu¹, Joydeep Mitra³, Yibo Lin¹, David Z. Pan¹ ¹ECE Department, University of Texas at Austin ²CSE Department, CUHK ³Mentor Graphics Inc.

- Introduction
- Problem formulation
- Detailed routing algorithms
- Experimental results
- Conclusion

Introduction: Technology Scaling

Technology Scaling: More Masks

Via density increases

- / Triple/Quadruple patternings are required
 - Placement error problem
 - Cost increases
- More via: 1D design

(a) Original layout

(b) Via layer with quadruple patterning $(\circ \circ$

Metal 2 Metal 3

Mask 1

Mask 2

Mask 3

Mask 4

Via

Motivation of DSA on Via Layer

Reduce mask number by grouping vias in the same guiding pattern

Consider DSA during Routing 1

Initial detailed routing without DSA consideration

✓ 3 masks are required

Consider DSA during Routing 2

Initial detailed routing without DSA consideration

- ✓ 3 masks are required
- Reroute n1 and n3

Consider DSA during Routing 3

Initial detailed routing without DSA consideration

- ✓ 3 masks are required
- Reroute n1 and n3

Reduce 1 more mask ([°])

Previous Works

DSA-aware detailed routing for via layer optimization [Du+, SPIE'14]

- Resolve conflicts and infeasible via patterns during rip-up and reroute with negotiated congestion based scheme
- Incapable to handle DSA with multiple patternings
- More wire length may be introduced
- Redundant Via insertion consideration [Lin+, ASPDAC'17]
 - Simultaneously consideration of redundant via insertion and guiding template feasibility
 - Increase redundant via insertion rate
 - Multiple patterning for via is not considered, not compatible for 1D design

Problem Formulation: DSAR

DSA and double patterning aware detailed routing

Input:

- Netlist with source/target pins
- Feasible DSA patterns
- Design rules

Output:

- Minimize wirelength, unroutable nets
- DSA-DP compatible via layer

Design Rules

Forbidden Via distribution

- Construct conflict graph
 - Vertices: bbox corners
 - Edge weight: DSA friendly? 1: 5

- Construct conflict graph
 - Vertices: bbox corners
 - Edge weight: DSA friendly? 1: 5

- Construct conflict graph
 - Vertices: bbox corners
 - Edge weight: DSA friendly? 1: 5

- Construct conflict graph
 - Vertices: bbox corners
 - Edge weight: DSA friendly? 1: 5

- Construct conflict graph
 - Vertices: bbox corners
 - Edge weight: DSA friendly? 1: 5

- Construct conflict graph
 - Vertices: bbox corners
 - Edge weight: DSA friendly? 1: 5

- Construct conflict graph
 - Vertices: bbox corners
 - Edge weight: DSA friendly? 1: 5

- Construct conflict graph
 - Vertices: bbox corners
 - Edge weight: DSA friendly? 1: 5

- Conflict graph constraints
 - At most 1 corner of each net

Conflict graph constraints

- At most 1 corner of each net
- Corners cross the pins of other nets

Conflict graph constraints

- At most 1 corner of each net
- Corners cross the pins of other nets
- Conflict graph bipartization
 - Pre-determine (estimate) the routing paths for nets

Conflict graph constraints

- At most 1 corner of each net
- Corners cross the pins of other nets
- Conflict graph bipartization
 - Pre-determine (estimate) the routing paths for nets
 - Minimize deleted vertices from conflict graph
 - DSA unfriendly vertices

Routing graph model

Routing box state update

Routing scheme

- Negotiated congestion based
- A* search

 $p_i(s,t) = c(i) + \sigma \times dist_i^t$

$$c(i) = cost_s^{i-1} + c_{i-1}^i + h(i)$$

$$h(i) = h(i)' + A \times usage(i) + B \times h_{dsa}(i)$$

$$\sigma = \begin{cases} 1, & c(i) \leq l_{HPWL}, \\ 1 + \frac{c(i)}{HPWL}, & c(i) > l_{HPWL}. \end{cases}$$

Algorithm 1 DSA+DP aware detailed routing
Input: Netlists from net planning algorithm.
Output: Routed nets with DSA friendly via layer.
1: Route determined nets;
2: Update grids cost;
3: Initial routing iteration;
4: $Q \leftarrow$ nets in violated grids;
5: while !Q.empty() do
6: $g(i) \leftarrow \text{Q.pop}(); Nets \in g(i);$
7: for each net $k \in Nets$ do
8: Pre-route with cost evaluation;
9: end for
10: Rip-up net k that has maximum cost improvement
11: Route net k ;
12: for each grid $g(j)$ of net k do
13: Update grid cost;
14: if $g(j)$ is violated then
15: $Q \leftarrow$ nets in this $g(j)$;
16: end if
17: end for
18: if $g(i)$ is still violated then
19: $\mathbf{Q} \leftarrow g(i);$
20: end if
21: end while

Routing scheme

- Negotiated congestion based
- A* search

$$p_{i}(s,t) = c(i) + \sigma \times dist_{i}^{t}$$

$$c(i) = cost_{s}^{i-1} + c_{i-1}^{i} + h(i)$$

$$h(i) = h(i)' + A \times usage(i) + B \times h_{dsa}(i)$$

$$\sigma = \begin{cases} 1, & c(i) \leq l_{HPWL}, \\ 1 + \frac{c(i)}{HPWL}, & c(i) > l_{HPWL}. \end{cases}$$

Augoritanin i Dorri Di aware detane	arouting
Input: Netlists from net planning a	lgorithm.
Output: Routed nets with DSA fries	ndly via layer.
1: Route determined nets;	
2: Update grids cost;	
3: Initial routing iteration;	
4: $Q \leftarrow$ nets in violated grids;	
5: while !Q.empty() do	
6: $g(i) \leftarrow Q.pop(); Nets \in g(i)$	<i>i</i>);
7: for each net $k \in Nets$ do	
8: Pre-route with cost evalu	ation;
9: end for	
10: Rip-up net k that has maxim	um cost improvement;
11: Route net k ;	•
12: for each grid $g(j)$ of net k d	0
13: Update grid cost;	
14: if $g(j)$ is violated then	
15: $\mathbf{Q} \leftarrow$ nets in this $g(j)$);
16: end if	
17: end for	
18: if $g(i)$ is still violated then	
19: $Q \leftarrow g(i);$	
20: end if	
21. and while	

Algorithm 1 DSA+DP aware detailed routing

Post Routing Optimization

Assign DSA guiding patterns

- Minimize DSA groups and conflicts
- Edge bipartization

Post Routing Optimization

Assign DSA guiding patterns

- Minimize DSA groups and conflicts
- Edge bipartization

$$\min \sum e_{v_i v_j} + M \cdot \sum e_{v_k v_h}$$

$$s.t. \quad t_{v_i} + t_{v_j} + e_{v_i v_j} \ge 1, \qquad \forall \{e_{v_i v_j}\} \in E, \qquad (7b)$$

$$t_{v_i} + t_{v_j} - e_{v_i v_j} \le 1, \qquad \forall \{e_{v_i v_j}\} \in E, \qquad (7c)$$

$$e_{v_i v_j} + e_{v_i v_k} \le 1, \qquad \forall (i, j, k) \text{ infeasible}, \qquad (7d)$$

$$e_{v_i v_j} + e_{v_j v_k} + e_{v_k v_h} \le 2, \quad \forall (i, j, k), (j, k, h) \text{ groupable},$$

$$(7e)$$

$$e_{v_i v_j}, t_{v_i} \in \{0, 1\}. \qquad (7f)$$

Experimental Setup

- Implemented in C++
- 3.4GHz Linux server, 32GB RAM
- ILP solver: GUROBI 6.5
- OpenSparc T1 design:
 - ✓ M2, M3 for routing
 - ✓ [Du+,SPIE'14], 1D router

bench	#net	#pin	Grid size
ecc	1671	3342	436×446
efc	2219	4438	406×421
ctl	2706	5412	496×503
alu	3108	6216	406×408
div	5813	11626	636×646
top	22201	44402	1176×1179

(a) Number of Vias

(a) Number of Vias

(a) Number of Vias

(a) Number of Vias

Comparison between W/ and WO Net Planning

(a) Number of Vias

- 19% less via number
- 8% less wirelength
- 7% more runtime

Conclusion

DSA and double patterning for via layer in detailed routing

- Pre-route net planning
- Routing model with DSA-DP consideration
- Post-routing optimization to improve DSA guiding pattern assignment and decomposition

Future work

- Adaptive to more routing layers
- General to more DSA and multiple patterning considerations

Q&A THANK YOU

뮨