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Moore’s Law to Extreme Scaling
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Lithography Hotspot Detection

I What you see 6= what you get
I Even w. RET: OPC, SRAF, MPL
I Still hotspot: low fidelity patterns
I Simulations: extremely CPU intensive
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Layout Verification Hierarchy

Increasing 
verification
accuracy 

Sampling

Hotspot Detection

Lithography Simulation

(Relative) CPU runtime at each level

I Sampling:
scan and rule check each region

I Hotspot Detection:
verify the sampled regions and report potential hotspots

I Lithography Simulation:
final verification on the reported hotspots
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Pattern Matching based Hotspot Detection

library'
hotspot&

Pa)ern'
matching'

hotspot&hotspot&

I Fast and accurate
I [Yu+,ICCAD’14] [Nosato+,JM3’14] [Su+,TCAD’15]

I Fuzzy pattern matching [Wen+,TCAD’14]

I Hard to detect non-seen pattern
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Machine Learning based Hotspot Detection

Hotspot&
detec*on&
model&

Classifica*on&

Extract&layout&
features&

I Predict new patterns
I Decision-tree, ANN, SVM, Boosting ...
I [Drmanac+,DAC’09] [Ding+,TCAD’12] [Yu+,JM3’15] [Matsunawa+,SPIE’15]

[Yu+,TCAD’15][Zhang+,ICCAD’16]

I Crafted features are not satisfactory
I Hard to handle ultra-large datasets.
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Machine Learning based Hotspot Detection
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Why Deep Learning?

I Feature Crafting v.s. Feature Learning
Although prior knowledge is considered during manually feature
design, information loss is inevitable.
Feature learned from mass dataset is more reliable.

I Scalability
With shrinking down circuit feature size, mask layout becomes
more complicated. Deep learning has the potential to handle
ultra-large-scale instances while traditional machine learning may
suffer from performance degradation.

I Mature Libraries
Caffe [Jia+,ACMMM’14] and Tensorflow [Martin+,TR’15]
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Hotspot-Oriented Deep Learning

Deep Learning has been widely appied in object recognition tasks.
Nature of mask layout impedes the availability of existing frameworks.

I Imbalanced Dataset
Lithographic hotspots are always the minority.

I Larger Image Size
Effective clip region (> 1000× 1000 pixels) is much larger than
the image size in traditional computer vision problems.

I Sensitive to Scaling
Scaling of mask layout patterns modifies its attributes.
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Deep Learning based Hostpot Detection Flow
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Validation

Testing 
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Upsampling
…

Validation

Trained 
Model

Training

Model Testing

Accuracy

False 
Alarm

Random
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CNN Architecture Overview

I Convolution Layer
I Rectified Linear Unit (ReLU)
I Pooling Layer
I Fully Connected Layer
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Convolution Layer
Convolution Operation:

I⊗K(x, y) =
c∑

i=1

m∑
j=1

m∑
k=1

I(i, x− j, y− k)K(j, k)
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Convolution Layer (cont.)
Effect of different convolution kernel sizes:

(a) 7 × 7 (b) 5 × 5 (c) 3 × 3

Kernel Size Padding Test Accuracy∗
7× 7 3 87.50%
5× 5 2 93.75%
3× 3 1 96.25%

∗Stop after 5000 iterations.
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Rectified Linear Unit

…
CONV

max(0,x)

ReLU POOL

CONV

max(0,x)

ReLU POOL

……

FC

Hotspot

Non-hotspot

I Alleviate overfitting with sparse feature map
I Avoid gradient vanishing problem

Activation Function Expression Validation Loss
ReLU max{x, 0} 0.16

Sigmoid 1
1+exp(−x) 87.0

TanH exp(2x)−1
exp(2x)+1 0.32

BNLL log(1 + exp(x)) 87.0
WOAF NULL 87.0
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Pooling Layer
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I Extracts the local region statistical attributes in the feature map
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Pooling Layer (cont.)

I Translation invarient (8)
I Dimension reduction

Effect of pooling methods:

Pooling Method Kernel Test Accuracy
Max 2× 2 96.25%
Ave 2× 2 96.25%

Stochastic 2× 2 90.00%
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Fully Connected Layer

I Fully connected layer transforms high dimension feature maps
into flattened vector.
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Fully Connected Layer (cont.)
I A percentage of nodes are dropped out (i.e. set to zero)
I avoid overfitting

Effect of dropout ratio:
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Architecture Summary

I Total 21 layers with 13 convolution layers and 5 pooling layers.
I A ReLU is applied after each convolution layer.

…
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Architecture Summary
Layer Kernel Size Stride Padding Output Vertexes

Conv1-1 2× 2× 4 2 0 512× 512× 4
Pool1 2× 2 2 0 256× 256× 4

Conv2-1 3× 3× 8 1 1 256× 256× 8
Conv2-2 3× 3× 8 1 1 256× 256× 8
Conv2-3 3× 3× 8 1 1 256× 256× 8
Pool2 2× 2 2 0 128× 128× 8

Conv3-1 3× 3× 16 1 1 128× 128× 16
Conv3-2 3× 3× 16 1 1 128× 128× 16
Conv3-3 3× 3× 16 1 1 128× 128× 16
Pool3 2× 2 2 0 64× 64× 16

Conv4-1 3× 3× 32 1 1 64× 64× 32
Conv4-2 3× 3× 32 1 1 64× 64× 32
Conv4-3 3× 3× 32 1 1 64× 64× 32
Pool4 2× 2 2 0 32× 32× 32

Conv5-1 3× 3× 32 1 1 32× 32× 32
Conv5-2 3× 3× 32 1 1 32× 32× 32
Conv5-3 3× 3× 32 1 1 32× 32× 32
Pool5 2× 2 2 0 16× 16× 32
FC1 – – – 2048
FC2 – – – 512
FC3 – – – 2
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Minority Upsampling
Layout datasets are highly imbalanced as after resolution
enhancement techniques (RETs) the lithographic hotspots are always
the minority.
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I Multi-label learning
[Zhang+,IJCAI’15]

I Majority downsampling
[Ng+,TCYB’15]

I Pseudo instance generation
[He+,IJCNN’08]
Artifically generated instances might
not be available because of mask
layout nature.

I Naïve upsampling (X)
1. Gradient descent
2. Insufficient training samples
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Random Mirror Flipping
I Before fed into neural network
I Each instance is taking one of 4 orientations
I Resolve insufficient data

Mirror
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Effectiveness of Upsampling
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Validation performance does not show further improvement when the
upsampling factor increases beyond a certain value.
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Learning Rate
γ: defines how fast the neuron weights are updated

wi = wi − γ
∂l
∂wi

.
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Momentum and Weight Decay

I Momentum
Physical meaning is involved into gradient descent.

v = µv− γ ∂l
∂wi

,

wi = wi + v.

I Weight Decay
An alternative to achieve L2 regularization on neuron weights.

v = µv− γ ∂l
∂wi
− γλwi,

wi = wi + v.
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Momentum and Weight Decay (cont.)

I Momentum Effects:
µ Learning Rate Validation Loss
0.5 0.001 0.21
0.9 0.001 0.22
0.95 0.001 0.21
0.99 0.001 0.16

I Weight Decay Effects:

λ Learning Rate Momentum Validation Loss
10−3 0.001 0.99 0.95
10−4 0.001 0.99 1.19
10−5 0.001 0.99 0.37
10−6 0.001 0.99 0.2
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Weight Initialization

The weight initialization procedure determines what initial values
assigned to each neuron before the gradient descent update starts.

I Random Gaussian (8)
Cannot guarantee input &
output have similar variance.

I Xavier [Xavier+,AISTATS’10]
Initialized weights are
determined by input node
number.

V̂(wi) =
1
N
.
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Experimental Setup
I Based on Caffe [Jia+,ACMMM’14]
I Evaluated on ICCAD-2012 CAD contest benchmark

Evaluation metrics:

Accuracy

The ratio between the number of correctly detected hotspot clips and
the number of all hotspot clips.

ODST
The sum of all lithographic simulation time for false alarm† and the
deep learning model testing time.

ODST = Test Time+ 10s×# of False Alarm

†False alarm: the number of non-hotspot clips that are reported as hotspots by
detector.
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Layer Visualization

Origin Pool1 Pool2

Pool3 Pool4 Pool5
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Compare Accuracy with State-of-the-Art‡

ICCAD-1 ICCAD-2 ICCAD-3 ICCAD-4 ICCAD-5 Average
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‡JM3’16: CNN based; TCAD’15: SVM based; ICCAD’16: Boosting based.
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Compare ODST with State-of-the-Art
I Improve the performance of ODST by at least 24.80% on average.

ICCAD-1 ICCAD-2 ICCAD-3 ICCAD-4 ICCAD-5 Average
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JM3’16: CNN based; TCAD’15: SVM based; ICCAD’16: Boosting based.
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Conclusion
We explore the feasibility of deep learning as an alternative approach
for hotspot detection.

I Hotspot-detection-oriented hyper-parameter tuning
I Imbalance Issue: Upsampling & Random mirror flipping
I Outperform state-of-the-art solutions
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Future Works

I Test on larger scale test cases
I Further simplify architecture to speedup
I Seek other VLSI layout applications (e.g., OPC, SRAF)
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Luyang Luo (lyluo4@cse.cuhk.edu.hk)
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Chenxi Lin (chenxi.lin@asml.com)
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