Imbalance Aware Lithography Hotspot Detection: A Deep Learning Approach

Haoyu Yang¹, Luyang Luo¹, Jing Su², Chenxi Lin², **Bei Yu**¹

¹The Chinese University of Hong Kong ²ASML Brion Inc.

Mar. 1, 2017

Outline

Introduction

Network Architecture

Imbalance Aware Learning

Experimental Results

Outline

Introduction

Network Architecture

Imbalance Aware Learning

Experimental Results

Moore's Law to Extreme Scaling

Lithography Hotspot Detection

- What you see \neq what you get
- Even w. RET: OPC, SRAF, MPL
- Still hotspot: low fidelity patterns
- Simulations: extremely CPU intensive

Layout Verification Hierarchy

(Relative) CPU runtime at each level

Sampling:

scan and rule check each region

Hotspot Detection:

verify the sampled regions and report potential hotspots

Lithography Simulation:

final verification on the reported hotspots

イロト イポト イヨト イヨト

Pattern Matching based Hotspot Detection

Pattern Matching based Hotspot Detection

Fast and accurate

- [Yu+,ICCAD'14] [Nosato+,JM3'14] [Su+,TCAD'15]
- Fuzzy pattern matching [Wen+,TCAD'14]
- Hard to detect non-seen pattern

イロト イポト イヨト イヨト

Machine Learning based Hotspot Detection

Machine Learning based Hotspot Detection

- Predict new patterns
- Decision-tree, ANN, SVM, Boosting ...
- [Drmanac+,DAC'09] [Ding+,TCAD'12] [Yu+,JM3'15] [Matsunawa+,SPIE'15]
 [Yu+,TCAD'15][Zhang+,ICCAD'16]
- Crafted features are not satisfactory
- Hard to handle ultra-large datasets.

イロト イポト イヨト イヨト

Why Deep Learning?

Feature Crafting v.s. Feature Learning

Although prior knowledge is considered during manually feature design, information loss is inevitable. Feature learned from mass dataset is more reliable.

Scalability

With shrinking down circuit feature size, mask layout becomes more complicated. Deep learning has the potential to handle ultra-large-scale instances while traditional machine learning may suffer from performance degradation.

Mature Libraries

Caffe [Jia+,ACMMM'14] and Tensorflow [Martin+,TR'15]

Hotspot-Oriented Deep Learning

Deep Learning has been widely appied in object recognition tasks. Nature of mask layout impedes the availability of existing frameworks.

Imbalanced Dataset

Lithographic hotspots are always the minority.

Larger Image Size

Effective clip region (> 1000×1000 pixels) is much larger than the image size in traditional computer vision problems.

Sensitive to Scaling

Scaling of mask layout patterns modifies its attributes.

イロト 不得 トイヨト イヨト

Deep Learning based Hostpot Detection Flow

イロト イポト イヨト イヨト

Outline

Introduction

Network Architecture

Imbalance Aware Learning

Experimental Results

CNN Architecture Overview

- Convolution Layer
- Rectified Linear Unit (ReLU)
- Pooling Layer
- Fully Connected Layer

Convolution Layer

Convolution Operation:

$$\mathbf{I} \otimes \mathbf{K}(x, y) = \sum_{i=1}^{c} \sum_{j=1}^{m} \sum_{k=1}^{m} \mathbf{I}(i, x - j, y - k) \mathbf{K}(j, k)$$

Convolution Layer (cont.)

Effect of different convolution kernel sizes:

Kernel Size	Padding	Test Accuracy*
7×7	3	87.50%
5×5	2	93.75%
3×3	1	96.25%

*Stop after 5000 iterations.

Rectified Linear Unit

- Alleviate overfitting with sparse feature map
- Avoid gradient vanishing problem

Activation Function	Expression	Validation Loss
ReLU	$\max\{x, 0\}$	0.16
Sigmoid	$\frac{1}{1+\exp(-x)}$	87.0
TanH	$\frac{\exp(2x)-1}{\exp(2x)+1}$	0.32
BNLL	$\log(1 + \exp(x))$	87.0
WOAF	NULL	87.0

Pooling Layer

Extracts the local region statistical attributes in the feature map

Pooling Layer (cont.)

- Translation invarient (X)
- Dimension reduction

Effect of pooling methods:

Pooling Method	Kernel	Test Accuracy
Max	2×2	96.25%
Ave	2×2	96.25%
Stochastic	2×2	90.00%

э

<ロト <回 > < 三 > < 三 > :

Fully Connected Layer

 Fully connected layer transforms high dimension feature maps into flattened vector.

イロト イポト イヨト イヨト

Fully Connected Layer (cont.)

- A percentage of nodes are dropped out (i.e. set to zero)
- avoid overfitting

Fully Connected Layer (cont.)

- A percentage of nodes are dropped out (i.e. set to zero)
- avoid overfitting

Architecture Summary

- Total 21 layers with 13 convolution layers and 5 pooling layers.
- A ReLU is applied after each convolution layer.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Architecture Summary

Layer	Kernel Size	Stride	Padding	Output Vertexes
Conv1-1	$2 \times 2 \times 4$	2	0	$512 \times 512 \times 4$
Pool1	2 imes 2	2	0	$256\times 256\times 4$
Conv2-1	$3 \times 3 \times 8$	1	1	$256\times 256\times 8$
Conv2-2	$3 \times 3 \times 8$	1	1	$256\times 256\times 8$
Conv2-3	$3 \times 3 \times 8$	1	1	$256\times 256\times 8$
Pool2	2 imes 2	2	0	$128\times 128\times 8$
Conv3-1	$3 \times 3 \times 16$	1	1	$128\times 128\times 16$
Conv3-2	$3 \times 3 \times 16$	1	1	$128\times 128\times 16$
Conv3-3	$3 \times 3 \times 16$	1	1	$128\times 128\times 16$
Pool3	2 imes 2	2	0	64 imes 64 imes 16
Conv4-1	$3 \times 3 \times 32$	1	1	$64 \times 64 \times 32$
Conv4-2	$3 \times 3 \times 32$	1	1	$64 \times 64 \times 32$
Conv4-3	$3 \times 3 \times 32$	1	1	$64 \times 64 \times 32$
Pool4	2 imes 2	2	0	$32 \times 32 \times 32$
Conv5-1	$3 \times 3 \times 32$	1	1	$32 \times 32 \times 32$
Conv5-2	$3 \times 3 \times 32$	1	1	$32 \times 32 \times 32$
Conv5-3	$3 \times 3 \times 32$	1	1	$32 \times 32 \times 32$
Pool5	2×2	2	0	$16\times16\times32$
FC1	-	-	-	2048
FC2	-	-	-	512
FC3	-	-	-	2

Outline

Introduction

Network Architecture

Imbalance Aware Learning

Experimental Results

Minority Upsampling

Layout datasets are highly imbalanced as after resolution enhancement techniques (RETs) the lithographic hotspots are always the minority.

くぼう くほう くほう

Minority Upsampling

Layout datasets are highly imbalanced as after resolution enhancement techniques (RETs) the lithographic hotspots are always the minority.

- Multi-label learning
 [Zhang+,IJCAl'15]
- Majority downsampling [Ng+,TCYB'15]
- Pseudo instance generation [He+,IJCNN'08]
 Artifically generated instances might not be available because of mask layout nature.

イロト イポト イヨト イヨト

Minority Upsampling

Layout datasets are highly imbalanced as after resolution enhancement techniques (RETs) the lithographic hotspots are always the minority.

- Multi-label learning [Zhang+,IJCAl'15]
- Majority downsampling [Ng+,TCYB'15]
- Pseudo instance generation [He+,IJCNN'08]

Artifically generated instances might not be available because of mask layout nature.

- ► Naïve upsampling (√)
 - 1. Gradient descent
 - 2. Insufficient training samples

Random Mirror Flipping

- Before fed into neural network
- Each instance is taking one of 4 orientations
- Resolve insufficient data

Effectiveness of Upsampling

Validation performance does not show further improvement when the upsampling factor increases beyond a certain value.

4 D N 4 🖓 N 4 🖹 N 4

Learning Rate

γ : defines how fast the neuron weights are updated

$$w_i = w_i - \gamma \frac{\partial l}{\partial w_i}.$$

Momentum and Weight Decay

Momentum

Physical meaning is involved into gradient descent.

$$v = \mu v - \gamma \frac{\partial l}{\partial w_i},$$

$$w_i = w_i + v.$$

Weight Decay

An alternative to achieve L_2 regularization on neuron weights.

$$v = \mu v - \gamma \frac{\partial l}{\partial w_i} - \gamma \lambda w_i,$$
$$w_i = w_i + v.$$

Momentum and Weight Decay (cont.)

Momentum Effects:

μ	Learning Rate	Validation Loss
0.5	0.001	0.21
0.9	0.001	0.22
0.95	0.001	0.21
0.99	0.001	0.16

Weight Decay Effects:

λ	Learning Rate	Momentum	Validation Loss
10^{-3}	0.001	0.99	0.95
10^{-4}	0.001	0.99	1.19
10^{-5}	0.001	0.99	0.37
10^{-6}	0.001	0.99	0.2

Weight Initialization

The weight initialization procedure determines what initial values assigned to each neuron before the gradient descent update starts.

► Random Gaussian (¥)

Cannot guarantee input & output have similar variance.

Weight Initialization

The weight initialization procedure determines what initial values assigned to each neuron before the gradient descent update starts.

Random Gaussian (X)

Cannot guarantee input & output have similar variance.

 Xavier [Xavier+,AISTATS'10] Initialized weights are determined by input node number.

$$\hat{V}(w_i) = \frac{1}{N}.$$

• • • • • • • • • • • • •

- E - N

Outline

Introduction

Network Architecture

Imbalance Aware Learning

Experimental Results

Experimental Setup

- Based on Caffe [Jia+,ACMMM'14]
- Evaluated on ICCAD-2012 CAD contest benchmark

Evaluation metrics:

Accuracy

The ratio between the number of correctly detected hotspot clips and the number of all hotspot clips.

ODST

The sum of all lithographic simulation time for false alarm † and the deep learning model testing time.

```
\mathsf{ODST} = \mathsf{Test}\;\mathsf{Time} + 10\mathsf{s} \times \#\;\mathsf{of}\;\mathsf{False}\;\mathsf{Alarm}
```

 \dagger False alarm: the number of non-hotspot clips that are reported as hotspots by detector.

Layer Visualization

Origin

Pool2

Compare Accuracy with State-of-the-Art‡

‡JM3'16: CNN based; TCAD'15: SVM based; ICCAD'16: Boosting based. 重 🛌 🚊

Compare ODST with State-of-the-Art

Improve the performance of ODST by at least 24.80% on average.

JM3'16: CNN based; TCAD'15: SVM based; ICCAD'16: Boosting based.

Conclusion

We explore the feasibility of deep learning as an alternative approach for hotspot detection.

- Hotspot-detection-oriented hyper-parameter tuning
- Imbalance Issue: Upsampling & Random mirror flipping
- Outperform state-of-the-art solutions

< ロ > < 同 > < 三 > < 三 >

Conclusion

We explore the feasibility of deep learning as an alternative approach for hotspot detection.

- Hotspot-detection-oriented hyper-parameter tuning
- Imbalance Issue: Upsampling & Random mirror flipping
- Outperform state-of-the-art solutions

Future Works

- Test on larger scale test cases
- Further simplify architecture to speedup
- Seek other VLSI layout applications (e.g., OPC, SRAF)

Thank You

Haoyu Yang (hyyang@cse.cuhk.edu.hk)
Luyang Luo (lyluo4@cse.cuhk.edu.hk)
Jing Su (jing.su@asml.com)
Chenxi Lin (chenxi.lin@asml.com)
Bei Yu (byu@cse.cuhk.edu.hk)

ASML