Online Learning and Feature Optimization in Lithography Hotspot Detection

Hang Zhang **Bei Yu** Evangeline F. Y. Young

Department of Computer Science and Engineering, The Chinese University of Hong Kong

Nov. 8, 2016

香港中文大學

The Chinese University of Hong Kong

Outline

[Introduction](#page-2-0)

[Feature Optimization](#page-19-0)

[Learning Model](#page-29-0)

[Experimental Results and Conclusion](#page-34-0)

Outline

[Introduction](#page-2-0)

[Feature Optimization](#page-19-0)

[Learning Model](#page-29-0)

[Experimental Results and Conclusion](#page-34-0)

Moore's Law to Extreme Scaling

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$ E QQ

Lithographic Mechanism

- \blacktriangleright light diffraction when through photomask
- **INEXT May cause performance degradation, or even yield loss**
- \blacktriangleright What you see \neq what you get

Lithography Hotspot Detection

- RET: OPC, SRAF, MPL
- \triangleright Still hotspot: low fidelity patterns
- Simulations: extremely CPU intensive

Layout Verification Hierarchy

(Relative) CPU runtime at each level

Burnally Sampling:

scan and rule check each region

Hotspot Detection:

verify the sampled regions and report potential hotspots

Example 2 Lithography Simulation:

final verification on the reported hotspots

Pattern Matching based Hotspot Detection

Pattern Matching based Hotspot Detection

Pattern Matching based Hotspot Detection

Fast and accurate

- I [Yu+,ICCAD'14] [Nosato+,JM3'14] [Su+,TCAD'15]
- Fuzzy pattern matching [Wen+,TCAD'14]
- \blacktriangleright Hard to detect non-seen pattern

Machine Learning based Hotspot Detection

Machine Learning based Hotspot Detection

Machine Learning based Hotspot Detection

- Predict new patterns
- Decision-tree, ANN, SVM, Boosting ...
- I [Drmanac+,DAC'09] [Ding+,TCAD'12] [Yu+,JM3'15] [Matsunawa+,SPIE'15] [Yu+,TCAD'15]
- \blacktriangleright Hard to balance accuracy and false-alarm

Rethinking Performance Metrics

- **Accuracy:** The rate of correctly predicted hotspots among the set of actual hotspots.
- **False Alarm:** The number of incorrectly predicted non-hotspots.

 $A \cap A \rightarrow A \cap A \rightarrow A \Rightarrow A \rightarrow A \Rightarrow B$

 Ω

• Detection Runtime: CPU runtime of hotspot detection.

Rethinking Performance Metrics

- **Accuracy:** The rate of correctly predicted hotspots among the set of actual hotspots.
- **False Alarm:** The number of incorrectly predicted non-hotspots.

Detection Runtime: CPU runtime of hotspot detection.

Rethinking Performance Metrics

- **EXACCURACY:** The rate of correctly predicted hotspots among the set of actual hotspots.
- **False Alarm:** The number of incorrectly predicted non-hotspots.
- **Detection Runtime: CPU runtime of hotspot detection.**

Overall Detection and Simulation Time (ODST)

Includes: (1) Detection runtime; (2) Lithography simulation time for hotspots in testing.

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \oplus \mathbf{A}$

*Transfer false alarm into equivelent lithography simulation time.

Rethinking Hotspot Detection Framework

 $\mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \oplus \mathbf{A}$

 Ω

- Conventional framework: supervised learning.
- Two stages: training and testing.
- Testing hotspot (HS) is verified by litho simulator.

Rethinking Hotspot Detection Framework

 Ω

 \triangleright Conventional framework: supervised learning.

- Two stages: training and testing.
- Testing hotspot (HS) is verified by litho simulator.

Proposed New Framework:

- \blacktriangleright Feature optimization.
- Online model learning.

Outline

[Introduction](#page-2-0)

[Feature Optimization](#page-19-0)

[Learning Model](#page-29-0)

[Experimental Results and Conclusion](#page-34-0)

Conventional Feature Extraction

- \blacktriangleright Hard to be adaptive to different layout designs
- \blacktriangleright Too many parameters to tune
- Sometimes very complex and may cause [ove](#page-19-0)[r fi](#page-21-0)[t](#page-19-0)[tin](#page-20-0)[g](#page-21-0) \overline{S}

 Ω

Rethinking CCAS

^I Concentric Circle Area Sampling (CCAS) [Matsunawa+,JM3'16].

 Ω

- Capture the affects of light diffraction.
- \triangleright Simple rule to select circles from dense samples.

Rethinking CCAS

- ▶ Concentric Circle Area Sampling (CCAS) [Matsunawa+, JM3'16].
- Capture the affects of light diffraction.
- \triangleright Simple rule to select circles from dense samples.

Question:

Can we find **correlation** between circles and hotspots, and select circles samrtly?

Rethinking CCAS

Measure correlation between circle and the hotspot.

Mutual Information

$$
I(C_i; Y) = \sum_{c_i \in C} \sum_{y \in Y} p(c_i, y) \log \frac{p(c_i, y)}{p(c_i)p(y)}
$$

- \blacktriangleright c_i : one encoded decimal number in circle $\mathcal C$
- \blacktriangleright *p*(c_i): probability of c_i
- \blacktriangleright *y*: each classification label
- \blacktriangleright *p*(*y*): probability of *y*

Decimal number encoding

Smart CCAS Circle Selection

Higer Mutual Information

More correlation between circle and label variable.

- \triangleright Mutual information curve can be drawn based on training data
- \triangleright We donot want to sample circles too dense

 $-10⁻¹⁰$

 $Q \cap$

Smart CCAS Circle Selection

Mathematical Formulation

$\text{max} \ \mathbf{v}^\mathsf{T} \mathbf{w}$

s.t.
$$
v_i = I(C_i; Y)
$$
, $\forall v_i \in \mathbf{v}$,
\n
$$
||w_i||_0 = n_c, \quad \forall i, w_i \in \{0, 1\},
$$
\n
$$
|i - j| \geq d, \quad \forall i \neq j, w_i = w_j = 1
$$

Smart CCAS Circle Selection

Mathematical Formulation $\text{max} \ \mathbf{v}^\mathsf{T} \mathbf{w}$ s.t. $v_i = I(C_i; Y), \quad \forall v_i \in \mathbf{v},$ $||w_i||_0 = n_c, \quad \forall i, w_i \in \{0, 1\},\$ $|i - j| \ge d$, $\forall i \ne j$, $w_i = w_j = 1$

Optimally Solved by Dynamic Programming

$$
D[i,j] = \max\{v[i] + D[i-d,j-1], D[i-1,j]\}\}
$$

Performance of Feature Optimization

▶ Smart Circle Selection v.s. Conventional CCAS.

(a) The impact on accuracy; (b) The impact on false alarm.

E

 Ω

Review of the Feature Optimization Framework

- Firstly, we densely sample the circles from the training data.
- Secondly, we optimally select circles by DP algorithm.
- Thirdly, we use the obtained circle index to extract features.

Outline

[Introduction](#page-2-0)

[Feature Optimization](#page-19-0)

[Learning Model](#page-29-0)

[Experimental Results and Conclusion](#page-34-0)

Motivation of Online Hotspot Detection

- \triangleright In (a), all testing hotspots and non-hotspots can be correctly detected.
- \triangleright But in (b), all testing non-hotspots become false alarms.

Algorithm Flow of Smboost

Smooth Boosting [Servedio, JMLR'03]

Required: {
$$
(x_1, y_1), ..., (x_m, y_m)
$$
}, γ , $\theta = \frac{\gamma}{2+\gamma}$, *T*.
\n1: **for** *i* ← 1 **to** *n* **do**
\n2: *M*₁(*i*) ← 1;
\n3: *N*₀(*i*) ← 0;
\n4: **end for**
\n5: **for** *t* ← 1 **to** *T* **do**
\n6: Run weak classifier to get *h_t* such that
\n $\frac{1}{2} \sum_{j=1}^{n} M_t(j)|h_t(x_j) - y_j| \le \frac{1}{2} - \gamma$;
\n7: **for** *j* ← 1 **to** *n* **do**
\n8: *N_t(j)* ← *N_{t-1}(j)* + *y_jh_t(x_j)* − *θ*;
\n9: **end for**
\n10: **for** *j* ← 1 **to** *n* **do**
\n11: *M_{t+1}(j)* ← min{1.0, $(1 - \gamma)^{\frac{N_t(j)}{2}}$ };
\n12: **end for**
\n13: **end for**
\n14: **return** *f* ← sign($\frac{1}{T} \sum_{t=1}^{T} h_t$);

メロトメ 伊 メスミンス ミン

 Ω

Algorithm Flow of Online Smboost

Extend conventional smboost to the online scenario.

Online Smooth Boosting

Require: Streaming instance (*x*, *y*), batch smboost classifier.

KOLKAR KELKEL E VAN

- 1: $M_1 \leftarrow 1, N_0 \leftarrow 0$; 2: **for** $t \leftarrow 1$ to T **do** 3: online update $h_t(x, y)$; 4: $N_t \leftarrow N_{t-1} + y h_t(x) - \theta;$ 5: $M_{t+1} \leftarrow \min\{1.0, (1-\gamma)^{\frac{N_t}{2}}\};$ 6: **end for**
- 7: **return** *f* ←sign $(\frac{1}{T} \sum_{t=1}^{T} h_t);$

Online Weak Classifier

- \triangleright Use Naive Bayes (NB) as weak classifier [Chen+, ICML'12].
- \triangleright NB is a lossless [Oza, ICSMC'05] online weak classifier.
- \triangleright Modify NB to work better with our proposed feature.

Outline

[Introduction](#page-2-0)

[Feature Optimization](#page-19-0)

[Learning Model](#page-29-0)

[Experimental Results and Conclusion](#page-34-0)

Comparison with [Matsunawa+,SPIE'15]

- \triangleright Verified in ICCAD-2012 contest benchmark
- \triangleright 4x speed-up due to the simple feature.
- Increase detection accuracy from 95.13% to 97.95% .

Comparisons with [Wen+,TCAD'14] [Yu+,TCAD'15]

- ▶ *ODST = Overall Detection and Simulation Time*
- Increase detection accuracy by at least 3.47% on average.
- Improve the performance of ODST by at least 58.80% on average.

Batch Learning v.s. Online Learning

- Further improve the detection accuracy from 97.95% to 98.45% .
- \blacktriangleright Further reduce ODST by 26.1%.

Runtime Breakdown for ICCAD Benchmark

- Online updating is only a small portion of the whole detection flow.
- False alarms of Case 2 and Case 5 are dramatically reduced.

Conclusion

KONKARY KEY EL AGA

A New Hotspot Detection Framework

- \triangleright New performance metric: runtime & performance trade-off
- Feature optimization based on mutual information
- **Online learning**

Conclusion

E.

 Ω

A New Hotspot Detection Framework

- \triangleright New performance metric: runtime & performance trade-off
- Feature optimization based on mutual information
- **Online learning**

Future work

- \blacktriangleright Further improve the accuracy
- \blacktriangleright Hardware or parallel speedup of hotspot detector

Thank You

Hang Zhang [\(byu@cse.cuhk.edu.hk\)](mailto:byu@cse.cuhk.edu.hk)

Bei Yu [\(byu@cse.cuhk.edu.hk\)](mailto:byu@cse.cuhk.edu.hk)

Evangeline F. Y. Young [\(fyyoung@cse.cuhk.edu.hk\)](mailto:fyyoung@cse.cuhk.edu.hk)

香港中文大學 The Chinese University of Hong Kong

 Ω