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Introduction

Conventional analog silicon PUFs

I Transistor analog intrinsic randomness
I Vulnerable to environmental and operational variations
I Need error correction

Expected digital silicon PUF

I Boolean type randomness source
I Immune to environmental and operational variations
I Less to no error correction
I Strong resilience to attacks
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Introduction

Related work

I Hybrid FPGA digital PUF however need analog PUF to start up [FPL’14]
I First digital PUF by interconnection uncertainty yet only conceptual and

less feasible for practice [ISQED’15]

Contributions in our work

I Quantitative justifications of the use of interconnect randomness
I Strongly skewed latches to ensure deterministic transistor behaviors
I Novel highly non-linear logic network to ensure strong security
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Lithography variations

Identify a feasible source of Boolean randomness is half the
battle to make a digital PUF.

Two slightly differed mask stripe-pairs are eventually mapped to have different
connectivities on silicon.

3nm 5nm

Interconnect under lithography variation. Left: mask split of 20nm for top, 28nm for bottom. Right: shapes on
wafer.
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Lithography variations

Lithography variation categories

I Systematic: dose, focus, etc.
I Local: mask, line edge roughness (LER), etc.

Mask error for interconnect randomness

I Position two interconnect layout line-ends close to each other
I An electron beam system can easily lead to large mask variations
I Mask variation further maps to different connectivity in wafer
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Lithography variations

Quantitative justifications of lithography variations
I The existence and control of the configurations to

I Augment the local variation
I Suppress the systematic variation
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Interconnect connectivity rate under lithography variations:
Left: layout split distance under mask error stdv. of 4nm; Center: mask error stdv. under split of 46nm; Right:
dose values.

Conclusion
Lithography variations can be utilized by careful configurations of layout split and
E-beam accuracy.
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Unit Cell
Naïve random interconnection is incompatible to digital CMOS.

I Short-circuit: direct current from Vdd to Gnd, uncertain region, etc.
I Open-circuit: floating gate, etc.

Goal: Pure logical circuit compatible for normal and open circuits

Strongly skewed latch!
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Handling dangled poly-gate by strongly skewed latch.
Left: inverter pair based skewed latch; Right: the VTC relation of a strongly skewed latch.
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Unit Cell

Exclusive-OR (XOR) cell property

I Linear non-separable
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Linear non-separable nature for XOR logic.

I Equal output probability
If Pr[a = 1] = Pr[a = 0] = 0.5, ∀b ∈ B, then Pr[y = 1] = Pr[y = 0] = 0.5.
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Unit Cell

The proposed unit cell

virtual connection

key output

key output

virtual connection

sk
ew

-1

sk
ew

-0

Left: the complete unit cell logic structure; Right: simplified symbolic representation.

A unit cell may or may not invert its key depending on virtual connection.
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LRR-DPUF architecture

The proposed LRR-DPUF architecture
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A N-row by M-col LRR-DPUF architecture. Some boundary virtual connections are marked by “Z” indicating
dangling status.

Each row is a signal tunnel where the 1-bit input signal may be inverted depending on
the virtual connections associated to this row.
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LRR-DPUF architecture

LRR-DPUF formula

ki,j =


ki,j−1 ⊕ (v · ki+1,j−1 + v), i even, j even;
ki,j−1 ⊕ (v · ki−1,j−1 + v), i even, j odd;
ki,j−1 ⊕ (v · ki−1,j + v), i odd, j even;
ki,j−1 ⊕ (v · ki+1,j + v), i odd, j odd.

Here ki,j refers to i-row j-column output, and v refers to virtual connection status.
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LRR-DPUF architecture

Logic cone of an 8×8 LRR-DPUF
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LRR-DPUF architecture

LRR-DPUF properties

I The non-linearity of LRR-DPUF increases along with a higher connectivity rate.

I There is a sufficiently large space of unique LRR-DPUFs even if the connectivity
rate is high.

I Increasing the number of columns strengthens the resilience to learning attacks.

I Any subtle change on virtual connections will be reflected to multiple outputs.
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Evaluation
Statistical evaluation

Table: Statistical evaluation on 8 × 8 LRR-DPUF with 256 exhaustive CRPs

Type (Ideal Value) conn. rate = 0.2 conn. rate = 0.9
Mean Stdv. Mean Stdv.

Inter HD (0.5) 0.4188 0.0302 0.4943 0.0061
Intra HD (0.0) 0 0 0 0
Bit Alias (0.5) 0.5000 0.2067 0.5000 0.0730
Uniformity (0.5) 0.5000 0.1768 0.5000 0.1678

Table: Statistical evaluation on 64 × 64 LRR-DPUF with 100K CRPs

Type (Ideal Value) conn. rate = 0.2 conn. rate = 0.9
Mean Stdv. Mean Stdv.

Inter HD (0.5) 0.4999 0.0009 0.5000 0.0009
Intra HD (0.0) 0 0 0 0
Bit Alias (0.5) 0.5000 0.0504 0.5000 0.0499
Uniformity (0.5) 0.5000 0.0625 0.5000 0.0624
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Evaluation

Avalanche effect
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Avalanche effect of 8×8 LRR-DPUF over each input.

Under high connectivity rate, the adversary prediction via one bit change at a
time is no better than a simple random guess.
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Evaluation

Adversary attacks: 8-row by various number of columns
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SVM attack for 8-row LRR-DPUFs over different configurations: Left: connectivity rate of 0.2 over different
column sizes and training sizes; Right: connectivity rate of 0.9 over different column sizes and training sizes;
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Evaluation

Adversary attacks: 64-row by 64-colum
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Left: SVM attacks over different connectivity rate and training size. Right: additional learning model attacks
including i) Artificial neural network (ANN) with 10 hidden layers using Sigmoid function, and ii) Random Forest
(RF) with 15 trees in the forest.
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Conclusion

I A novel learning resilient and reliable digital PUF

I Justification for the use of interconnect randomness

I Strongly skewed latches for CMOS compatibility

I A highly non-linear logic architecture
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Thank You

Jin Miao (jmiao@cadence.com)
Meng Li (meng_li@utexas.edu)

Subhendu Roy (subhroy@cadence.com)
Bei Yu (byu@cse.cuhk.edu.hk)
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