LRR-DPUF: Learning Resilient and Reliable Digital Physical Unclonable Function

Jin Miao¹ Meng Li^2 Subhendu Roy¹ Bei Yu³

¹Cadence Design Systems ²University of Texas at Austin ³The Chinese University of Hong Kong

[Introduction](#page-2-0)

[Lithography variation](#page-5-0)

[Unit Cell](#page-9-0)

[LRR-DPUF architecture](#page-13-0)

[Evaluation](#page-18-0)

[Conclusion](#page-23-0)

KO K K @ K K 할 K X 할 X 및 할 X 이익만

[Introduction](#page-2-0)

[Lithography variation](#page-5-0)

[Unit Cell](#page-9-0)

[LRR-DPUF architecture](#page-13-0)

[Evaluation](#page-18-0)

Introduction

Conventional analog silicon PUFs

- **Figure 1** Transistor analog intrinsic randomness
- \triangleright Vulnerable to environmental and operational variations
- \blacktriangleright Need error correction

Expected digital silicon PUF

- **Boolean** type randomness source
- \blacktriangleright Immune to environmental and operational variations
- \blacktriangleright Less to no error correction
- \triangleright Strong resilience to attacks

Introduction

Related work

- \blacktriangleright Hybrid FPGA digital PUF however need analog PUF to start up [FPL'14]
- \triangleright First digital PUF by interconnection uncertainty yet only conceptual and less feasible for practice [ISQED'15]

Contributions in our work

- Quantitative justifications of the use of interconnect randomness
- Strongly skewed latches to ensure deterministic transistor behaviors
- Novel highly non-linear logic network to ensure strong security

[Introduction](#page-2-0)

[Lithography variation](#page-5-0)

[Unit Cell](#page-9-0)

[LRR-DPUF architecture](#page-13-0)

[Evaluation](#page-18-0)

Lithography variations

Identify a feasible source of Boolean randomness is half the battle to make a digital PUF.

Two slightly differed mask stripe-pairs are eventually mapped to have different connectivities on silicon.

Interconnect under lithography variation. Left: mask split of 20*nm* for top, 28*nm* for bottom. Right: shapes on wafer.

Lithography variations

Lithography variation categories

- **> Systematic:** dose, focus, etc.
- ► Local: mask, line edge roughness (LER), etc.

Mask error for interconnect randomness

- \triangleright Position two interconnect layout line-ends close to each other
- An electron beam system can easily lead to large mask variations

Mask variation further maps to different connectivity in wafer

Lithography variations

Quantitative justifications of lithography variations

- \blacktriangleright The existence and control of the configurations to
	- \blacktriangleright Augment the local variation
	- \blacktriangleright Suppress the systematic variation

Interconnect connectivity rate under lithography variations:

Left: layout split distance under mask error stdv. of 4*nm*; Center: mask error stdv. under split of 46*nm*; Right: dose values.

Conclusion

Lithography variations can be utilized by careful configurations of layout split and E-beam accuracy.

4 ロト 4 何 ト 4 ヨ ト 4 ヨ ト

 QQ

[Introduction](#page-2-0)

[Lithography variation](#page-5-0)

[Unit Cell](#page-9-0)

[LRR-DPUF architecture](#page-13-0)

[Evaluation](#page-18-0)

KOKK@KKEKKEK E 1990

Unit Cell

Naïve random interconnection is incompatible to digital CMOS.

- **Short-circuit:** direct current from Vdd to Gnd, uncertain region, etc.
- **Open-circuit:** floating gate, etc.

Goal: Pure logical circuit compatible for normal and open circuits

Strongly skewed latch!

Handling dangled poly-gate by strongly skewed latch.

Left: inverter pair based skewed latch: Right: the VTC relation of a strongly skewed latch.

Unit Cell

Exclusive-OR (XOR) cell property

Exercise Linear non-separable

Linear non-separable nature for XOR logic.

Equal output probability

If $Pr[a = 1] = Pr[a = 0] = 0.5, \forall b \in B$, then $Pr[y = 1] = Pr[y = 0] = 0.5$.

Unit Cell

A unit cell may or may not invert its **key** depending on **virtual connection**.

[Introduction](#page-2-0)

[Lithography variation](#page-5-0)

[Unit Cell](#page-9-0)

[LRR-DPUF architecture](#page-13-0)

[Evaluation](#page-18-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q ·

A N-row by M-col LRR-DPUF architecture. Some boundary virtual connections are marked by "*Z*" indicating dangling status.

Each row is a *signal tunnel* where the 1-bit input signal may be inverted depending on the virtual connections associated to this row.

イロトス 御 トス きょくきょうき

 QQ

LRR-DPUF formula

$$
k_{i,j} = \begin{cases} k_{i,j-1} \oplus (v \cdot k_{i+1,j-1} + \overline{v}), & i \text{ even}, j \text{ even}; \\ k_{i,j-1} \oplus (v \cdot k_{i-1,j-1} + \overline{v}), & i \text{ even}, j \text{ odd}; \\ k_{i,j-1} \oplus (v \cdot k_{i-1,j} + \overline{v}), & i \text{ odd}, j \text{ even}; \\ k_{i,j-1} \oplus (v \cdot k_{i+1,j} + \overline{v}), & i \text{ odd}, j \text{ odd}. \end{cases}
$$

Here *ki*,*^j* refers to *i*-*row j*-*column* output, and *v* refers to virtual connection status.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q ·

Logic cone of out_2 is highlighted in red color.

LRR-DPUF properties

- \blacktriangleright The non-linearity of LRR-DPUF increases along with a higher connectivity rate.
- \triangleright There is a sufficiently large space of unique LRR-DPUFs even if the connectivity rate is high.
- Increasing the number of columns strengthens the resilience to learning attacks.

 \blacktriangleright Any subtle change on virtual connections will be reflected to multiple outputs.

[Introduction](#page-2-0)

[Lithography variation](#page-5-0)

[Unit Cell](#page-9-0)

[LRR-DPUF architecture](#page-13-0)

[Evaluation](#page-18-0)

KOKK@KKEKKEK E 1990

Statistical evaluation

Table: Statistical evaluation on 8×8 LRR-DPUF with 256 exhaustive CRPs

Table: Statistical evaluation on 64×64 LRR-DPUF with 100K CRPs

Under high connectivity rate, the adversary prediction via one bit change at a time is **no better** than a simple random guess.

Adversary attacks: 8-row by various number of columns

SVM attack for 8-row LRR-DPUFs over different configurations: Left: connectivity rate of 0.2 over different column sizes and training sizes; Right: connectivity rate of 0.9 over different column sizes and training sizes;

K ロ ト K 母 ト K ヨ ト K ヨ ト

G.

 QQ

Adversary attacks: 64-row by 64-colum

Left: SVM attacks over different connectivity rate and training size. Right: additional learning model attacks including i) Artificial neural network (ANN) with 10 hidden layers using Sigmoid function, and ii) Random Forest (RF) with 15 trees in the forest.

[Introduction](#page-2-0)

[Lithography variation](#page-5-0)

[Unit Cell](#page-9-0)

[LRR-DPUF architecture](#page-13-0)

[Evaluation](#page-18-0)

[Conclusion](#page-23-0)

Conclusion

- \triangleright A novel learning resilient and reliable digital PUF
- \blacktriangleright Justification for the use of interconnect randomness

K ロ X x @ X x 할 X x 할 X = 할 X 9 Q @

- \triangleright Strongly skewed latches for CMOS compatibility
- \triangleright A highly non-linear logic architecture

Thank You

Jin Miao [\(jmiao@cadence.com\)](mailto:jmiao@cadence.com) Meng Li [\(meng_li@utexas.edu\)](mailto:meng_li@utexas.edu) Subhendu Roy [\(subhroy@cadence.com\)](mailto:subhroy@cadence.com) Bei Yu [\(byu@cse.cuhk.edu.hk\)](mailto:byu@cse.cuhk.edu.hk)

cadence TEXAS

