
Triple Patterning Aware Detailed Placement Toward
Zero Cross-Row Middle-of-Line Conflict

Yibo Lin1, Bei Yu1,2, Biying Xu1, and David Z. Pan1

1ECE Department, University of Texas at Austin, Austin, TX, USA
2CSE Department, Chinese University of Hong Kong, NT, Hong Kong

{yibolin, bei, biying, dpan}@cerc.utexas.edu

Abstract—Triple patterning lithography (TPL) is one of the
most promising lithography technology in sub-14nm technology
nodes, especially for complicated low metal layer manufacturing.
To overcome the intra-cell routability problem and improve
the cell regularity, recently middle-of-line (MOL) layers are
employed in standard cell design. However, MOL layers may
introduce a large amount of cross-row TPL conflicts for row
based design. Motivated by this challenge, in this paper we
propose the first TPL aware detailed placement toward zero
cross-row MOL conflict. In standard cell pre-coloring, boolean
based look-up table is proposed to reduce solution space. In
detailed placement stage, two powerful techniques, i.e., local
reordered single row refinement (LRSR) and min-cost flow based
conflict removal, are proposed to provide zero TPL conflict
solution. The experimental results demonstrate the effectiveness
of our proposed methodologies.

I. INTRODUCTION

With the scaling of the feature size in sub-14nm technology
nodes, semiconductor industry is challenged by the manu-
facturability with conventional 193nm wavelength immersion
(193i) lithography. Although under intensive research and
development, the next generation lithography techniques, such
as extreme ultra-violet lithography, directed self-assembly,
electron beam lithography, and nanoimprint lithography, are
postponed due to yield and throughput issues [1], [2]. Multiple
patterning lithography (MPL), which reuses conventional 193i
lithography, currently has been heavily utilized in industry
[3]. For instance, double patterning lithography (DPL) has
been introduced in 14nm technology node [4]. In emerging
sub-14nm technology nodes, LELELE type triple patterning
lithography (TPL) is a very promising option for complicated
low metal layer manufacturing [5].

As a fundamental and critical problem, layout decomposi-
tion for TPL or even general MPL has been studied extensively
in the literature [6]–[11]. Due to the NP-hardness [12], most
layout decomposers apply heuristic methods to search for near-
optimal solutions, thus there may be a large amount of conflicts
left in decomposed layout. To overcome this limitation, several
studies integrate patterning constraints in early design stages.
For example, how to introduce TPL friendly design in detailed
routing has been discussed in [13]–[16]. Besides, there are
several studies proposing different methodologies to TPL
aware detailed placement [17]–[22]. For ordered single row
problem, Yu et al. [17], [18] proposed a unified graph model
to cell placement and coloring assignment. Kuang et al. [19]
and Chien et al. [20] recently further improved the detailed

Gate

CA

CB

Boundary

M1

VDD

GND

Touching finger

Non-touching finger

Dummy Dummy

(a)

0 1

21

0

2

(b)

Fig. 1. An example of MOL based standard cell structure. (a) MOL consists
of CA and CB layers. (b) If placement is not carefully designed, CA layer
may involve lots of TPL cross-row conflicts.

placement solutions in [17]. A special case of TPL aware
single row placement was considered in [21], [22], where each
type of standard cell has only one final coloring solution.

Since the 20nm technology node and beyond, to overcome
the intra-cell routability problem and improve the cell reg-
ularity, a Tungsten-based middle of line (MOL) structure is
employed for standard cell design [23]. MOL structure is
made up of two different local interconnection layers, namely
CA and CB (also called IM1 and IM2 [24]). An example of
MOL enabled standard cell structure is shown in Figure 1(a),
where CA and CB layer features are labelled as blue and red,
respectively. We can see from Figure 1(b), if placement is
not carefully designed, on CA layer there are several native
TPL conflicts cross different standard cell rows. Therefore, for
advanced technology nodes where MOL layers are employed,
standard cell coloring and placement should take the cross-
row conflicts into account. However, all existing TPL aware
placement works assume there is no conflict between cells in
different rows.

In this paper, motivated by the particular structures of MOL
layers, we propose a comprehensive study to TPL aware
detailed placement to overcome cross-row TPL conflicts. To
the best of our knowledge, this work is the first TPL aware
detailed placement targeting at cross-row conflict removal. The
contributions of our paper can be highlighted as follows:

• We carry out a comprehensive study on standard cell level
coloring strategy and boolean based look-up table (LUT)

978-1-4673-8388-2/15/$31.00 ©2015 IEEE 396

construction for MOL structures.
• We propose single row placement techniques that allow

local reordering for conflict and stitch minimization.
• We develop a concurrent approach for multi-row conflict

removal.
• Experimental results demonstrate the effectiveness of our

proposed framework.
The rest of this paper is organized as follows: Section II

shows the definitions of related concepts and our overall flow.
Section III and Section IV propose the cell level decomposition
and TPL aware detailed placement, respectively. Section V
gives the experimental results, followed by conclusion in
Section VI.

II. PRELIMINARIES AND OVERALL FLOW

A. MOL Structure

As shown in Figure 1(a), MOL layers typically include CA
and CB [24]. In our work, we focus on CA layer colorability
since this layer is more likely to cause TPL conflicts across
different rows. In a row based layout structure, standard cells
are aligned to placement rows with identical height. Horizontal
power and ground (PG) rails are shared by neighboring rows.
Thus neighboring rows have to be aligned in a back-to-back
manner; i.e., a row orientated to N must have neighbors
orientated to FS, shown as Figure 2(b), vice versa. CA features
can touch the PG rails. For simplicity, we define a touching
finger as a CA feature that touches the PG rails, and a non-
touching finger as a CA feature that does not hit any PG rail.
All fingers are aligned to specific grids since they are aligned
between features of gate layer. Due to the existence of touching
fingers, it is very likely to introduce conflicts between cross-
row CA features. Figure 1(b) shows an example of coloring
failure caused by cross-row conflicts if only three masks are
available. We also observed that there is no conflict between
MOL fingers within a standard cell.

B. Colorability Analysis for Advanced Standard Cell

In advanced standard cell design, the standard cell colorabil-
ity is different from conventional one (e.g., 45nm technology
node). On one hand, due to the employment of MOL layers for
local connection near PG rails, there is no cross-row conflict
on Metal-1 layers, as shown in Figure 2(a), and the Metal-1
layer conflict can only happen between two abutting cells in
the same row. On the other hand, if cells are not carefully
placed, there would be a large amount of cross-row conflicts
on MOL layers. Figure 2(b) shows such conflicts.

C. Overview of Proposed Flow

The overall flow of our methodologies is shown in Figure 3.
There are two main phases, standard cell phase and detailed
placement phase. In the standard cell phase, given standard
cell library as the input, we perform pre-coloring for metal
layers in standard cells, generate LUT for Metal-1 layer and
extract MOL features for next phase. In the second phase, TPL
aware detailed placement is performed to optimize wirelength,
assign coloring solution and minimize conflicts. This phase

 N

(a)

 N

 FS

(b)

Fig. 2. Example of conflicts on (a) intra-row Metal-1 layer, (b) cross-row
MOL layer.

Detailed
placement

Standard
cell library

Standard Cell
Pre-coloring

Construct Metal-1 LUT
Extract MOL layer

TPL aware
placement

Output

Ordered single
row placement

Local reordered
single row refinement

Min-cost flow based
conflict removal

Density-driven
global move

MOL Color
Assignment

Fig. 3. Overall flow of the methodologies for TPL detailed placement.

consists of different placement approaches with TPL constraint
consideration and post placement color assignment for MOL
layer. The density-driven global move is very similar to [25],
so we skip it for brevity. The output of the framework is
decomposed layouts with optimized placement solution and
color assignment for both Metal-1 and MOL layer.

III. STANDARD CELL DECOMPOSITION

In triple patterning lithography, features of a certain layer
are decomposed into three masks. Two features that are too
close to each other cannot be assigned to the same mask;
otherwise, it will introduce a conflict. For standard cells, we
consider Metal-1 layer and MOL layer for triple patterning
layout decomposition.

A. Standard Cell Pre-Coloring

For Metal-1 layer, the cell pre-coloring problem in a row
based layout structure is very similar to [17]–[19]. Although
the solution space for a whole standard cell can be very large,
there is no need to enumerate all possible coloring solutions for

397

placement. Due to the fact that conflicts come from boundary
features of cells in the TPL detailed placement problem, only
boundary conditions need to be considered. In our Metal-1
layer decomposition flow, we apply the backtracking algorithm
from [18] and enumerate all color combinations for boundary
features. Features not belong to the boundaries are assigned
with any color combination that carries out a legal coloring
solution. Due to limited number of boundary features, it is
applicable to store the coloring solutions as an input for
detailed placement stage.

For MOL layer pre-coloring, inspired by the Metal-1 layer,
we only consider coloring solutions of features that are close
to cell top or cell bottom. As suggested in [26], we for-
bid stitching for CA layer. At first glance, the pre-coloring
problems of Metal-1 layer and MOL layer are very similar.
However, the difference lies in the problem size. In advanced
technology node, for Metal-1 layer, there are usually fewer
than five boundary features for left or right side of a standard
cell, while the number of fingers for MOL layer is much larger.
Usually large cells have even more fingers; e.g. a D flip-flop
has more than twenty fingers at top boundary.

B. BLUT Construction

According to previous analysis, we generate pre-coloring
solutions of Metal-1 layer for each cell and pre-compute the
minimum colorable distance for every cell pair with different
coloring solutions. The distances are stored in an LUT.

For MOL layer, the LUT is discrepant to that of Metal-1.
Here is an example to explain the difference. Suppose we have
cell Ci at bottom and cell Cj is on top of cell Ci. Conflicts may
occur at discrete values of the position pairs. For simplicity,
let the horizontal position of cell Ci be pi. Possible situation
is that conflicts occur if cell Cj is placed to position pi + 1,
pi + 2, pi + 5, pi + 6, while position pi + 3 and pi + 4 are
safe for cell Cj . Therefore, the LUT for MOL should contain
a set of conflict ranges instead of a single required distance
like Metal-1.

Nevertheless, as mentioned in Section II-A, such kind of
approach may suffer from large problem sizes. Figure 4 gives
an example of solution spaces of four particular cells. The
maximum amount of candidate coloring solutions for Metal-1
comes from XOR2 X2, which is 12, but its MOL layer has
more than 100000 coloring solutions. It is no longer feasible
to store all the solutions in the LUT. One way is to select
partial solutions, but it will increase the difficulty to resolve
conflicts for fewer coloring options.

Due to the regularity of MOL features, we can solve the
problem more efficiently. All possible topological patterns of
four abutting fingers can be represented by the patterns listed
in Figure 5 with proper flipping and rotation. Most of these
patterns are TPL friendly except pattern F which results in a 4-
clique structure (K4). It is impossible to resolve a K4 with only
three colors. As the topological patterns depend on cross-row
cell positions, it has to be avoided during placement stage. If
we can produce a K4-free placement solution for MOL layer,
it should not be difficult to find a legal coloring solution by
post placement color assignment due to the regularity. Hence,

Fig. 4. Example of LUT sizes for Metal-1 and MOL layer.

 AA BB CC DD EE FF GG

Fig. 5. Possible patterns of four abutting MOL fingers.

0 1 0 0 1 0
1 0 1 1 0 1

 BN2BN2

 BT2BT2

 BN1BN1

 BT1BT1

0 1 1 0 1 0
1 0 0 1 0 1

Fig. 6. Example of boolean representation for MOL fingers.

there is no need to explore the coloring solutions for MOL
layer before placement.

The checking for K4 can be dynamically performed in
placement instead of keeping an LUT. To further simplify the
problem, we classify MOL fingers according to the vertical
distances to cell boundary. Without loss of generality, we
assume all touching fingers have the same distance to cell
boundary, so do non-touching fingers. A boolean based LUT
(BLUT) is applied to represent the existence of different finger
types. For each standard cell, four bitsets are required to store
the fingers, shown as Figure 6. Bottom fingers are represented
by BT1 and BN1 which denote touching fingers and non-
touching fingers, respectively. If no finger exists at a certain
grid j, both BT1(j) and BN1(j) are set to 0. Top fingers are
represented by BT2 and BN2. The bottom and top concept
here are determined when a cell is orientated to N. Similar to
cells, each row needs four bitsets RT1, RN1, RT2 and RN2.

The checking for K4 between two neighboring row i and
row i + 1 is summarized in Alg. 1. As the orientation of a
placement row is fixed, we assume row i is orientated to N

398

and row i+ 1 is orientated to FS. So bitset RT2
i and RN2

i of
row i interact with bitset RT2

i+1 and RN2
i+1 of row i + 1. The

basic idea is to perform bitwise and operations for bitsets and
check consecutive 1s. Same approach can be applied to check
K4 between a cell and its neighboring rows. Considering that
the size of bitsets for a cell is smaller than that for a row, we
can truncate the row bitsets by shifting before performing the
checking.

Algorithm 1 Row K4 Checking
Require: Bitsets RT2

i , RN2
i , RT2

i+1, RN2
i+1

Ensure: Whether there exists K4 between row i and row i+1
1: A1 = RT2

i &RN2
i+1;

2: A2 = RN2
i &RT2

i+1;
3: n = length of A1;
4: for j = 1 to n do
5: if A1(j − 1)A1(j) or A2(j − 1)A2(j) then
6: Return true;
7: end if
8: end for
9: Return false;

IV. TPL AWARE DETAILED PLACEMENT

In this section, we present our scheme of TPL aware detailed
placement to remove conflicts and minimize wirelength. To
maintain the properties of input placement solutions such
as wirelength and routability, the maximum displacement
constraint is introduced to limit the amount of movement for
each cell in manhattan distance.

A. Single Row Placement Problem

Previous studies have shown that single row placement
has impressive performance in simultaneous color assignment,
conflict removal, and wirelength minimization for Metal-1
layer [17], [19], [21], [22]. In our scheme, the cost of single
row placement problem comes from both horizontally and
vertically abutting cells. Hence the information of neighboring
rows should also be considered.

Problem 1. (Single Row Placement Problem) Given a row
of standard cells and its neighboring rows, determine the
position, orientation, and coloring for cells to minimize cost
in Eqn. (1).

cost = ∆WL+ α ·NST + β ·NCF (1)

where NST denotes the number of stitches and NCF stands
for the number of conflicts. Both Metal-1 conflicts and MOL
K4 structures are generalized to NCF . Parameter α is set to 1
and β is set to a very large value. The cells in the neighboring
rows are fixed when optimizing current row. An example
for our single row placement problem is shown in Figure 7.
Blue rectangles stand for MOL fingers and orange rectangles
represent boundary Metal-1 features. Note that orientations of
cells should correspond to their rows; i.e. if the row orientation
is N, then cell orientation must be N or FN; if the row

2 3 4 51

 Row i + 1i + 1

 Row ii

Fig. 7. A simplified example of single row placement problem.

orientation is FS, then cell orientation must be S or FS.
Although conflicts can be resolved by inserting whitespaces
between abutting cells, horizontal flipping is also very effective
due to the asymmetry of boundary features. For example, by
flipping cell 1, both its vertical and horizontal conflicts are
removed. Flipping is even more important when whitespaces
are very limited in highly congested regions.

1) Ordered Single Row Placement (OSR): Single row
placement problem with arbitrary order is well known NP-
hard. However, optimal solutions can be found in polynomial
time if the order of the cells is fixed [27]–[30]. Previous studies
on TPL aware placement have already explored different algo-
rithms for the application of intra-row conflicts [17]–[19], [21].
Here we adopt the linear dynamic programming algorithm
in [18] as it is more compatible to maximum displacement
constraints. The cost function for the algorithm is extended to
check cross-row K4 which will be counted into conflicts.

2) Local Reordered Single Row Refinement (LRSR): With
only OSR, the performance is limited in terms of conflict
removal owing to the high demands for whitespaces. If local
reordering is available, larger solution space will contribute
to fewer conflicts and stitches. In spite of the NP-hardness
of the arbitrary order single row placement, polynomial time
algorithm is available for the problem with local reordering.

Inspired by [31], we construct a graph model to handle
horizontal flipping, local reordering, local shifting, and Metal-
1 color assignment simultaneously. The difference of our
method is that 3 vertices are introduced for each cell during
local reordering to reduce number of edges. For simplicity, we
explain the graph model for different techniques separately and
then show the unified model. In the LRSR problem, the input
has been optimized by OSR for wirelength, the main target is
to further refine conflicts and stitches with small wirelength
degradation. Therefore, displacement cost is applied instead of
wirelength. The cost function can be re-written as follows,

cost = D + α ·NST + β ·NCF (2)

where D denotes the total movement of cells.
Consider the placement row shown in Figure 7, whose the

orientation is N. As only horizontal flipping is allowed within
a row, a cell can be orientated to N or FN. Then for each
cell, two vertices are introduced to represent its orientation,
as Figure 8 shows. For instance, vertex N1 represents that
cell 1 has an orientation of N, while vertex FN1 denotes it
is flipped to FN. If a flipping solution for two abutting cells
results in Metal-1 conflicts, the edge is assigned to a very
large cost, such as the edge between N1 and N2. If a flipping
solution of one cell leads to cross-row K4, all its input edges
are assigned to a large cost like the edge connects s to N1.
These edges are marked in red. The problem of computing the
best flipping solution is equavalent to finding the shortest path

399

 ss

 N1N1

FN1FN1

 N2N2

FN2FN2

 N3N3

FN3FN3

 N4N4

FN4FN4

 N5N5

FN5FN5

 tt

Fig. 8. Example of cell flipping graph.

 Cl
2Cl
2

 Cm
1Cm
1

 Cr
1Cr
1

 Cm
2Cm
2 Cm

3Cm
3 Cm

4Cm
4 Cm

5Cm
5

 Cr
2Cr
2

 Cl
3Cl
3

 Cr
3Cr
3

 Cl
4Cl
4

 Cr
4Cr
4

 Cl
5Cl
5

 ss tt

Fig. 9. Example of local cell reordering graph.

from s to t in the graph. In Figure 8, we can find a legal path
s→ FN1 → N2 → N3 → FN4 → FN5 → t.

The local reordering technique enables local swap of neigh-
boring cells within a row. It can be stated by the following
definition.

Definition 1 (P-reordering). Given a row of standard cells,
select p consecutive cells to switch positions between them,
such that the cost defined in Eqn.(2) is minimized.

Figure 9 gives an example of the reordering graph when p
is equal to 2. Each cell i corresponds to three vertices Cl

i , C
m
i

and Cr
i , as it can swap with its preceding cell or its succeeding

cell. In Figure 9, the edge from Cm
1 to Cm

2 stands for the
condition that cell 1 and cell 2 are kepted in original order.
The edge from Cl

2 to Cr
1 represents the swap of cell 1 and

cell 2. In this problem, if cell i has swapped with cell i + 1,
it is not allowed to further swap with cell i+ 2.

We can summarize the graph construction of 2-reordering
problem for a row with N cells as follows.

1) For each cell i (2 ≤ i ≤ N), vertex Cl
i has an output

edge to vertex Cr
i−1.

2) For each cell i (1 ≤ i ≤ N − 1), vertex Cm
i has an

output edge to vertex Cm
i+1.

3) For each cell i (1 ≤ i ≤ N − 2), vertex Cm
i has an

output edge to vertex Cl
i+2.

4) For each cell i (1 ≤ i ≤ N−2), vertex Cr
i has an output

edge to vertex Cm
i+2.

5) For each cell i (1 ≤ i ≤ N−3), vertex Cr
i has an output

edge to vertex Cl
i+3.

As additional source vertex s and target vertex t are intro-
duced, extra edges s→ Cm

1 , s→ Cl
2, Cr

N−1 → t and Cm
N → t

are inserted.
For further flexibility, small movement at the original po-

sition and swapped positions for a cell is allowed. Let pmi
be the original position of cell i, pli denote the position if
cell i is swapped with cell i − 1, and pri denote the position
swapped with cell i + 1. Additional vertices are inserted to
enable positions such as [pli− d, pli + d], [pmi − d, pmi + d] and
[pri −d, pri +d], where d is the maximum shifting value for this

step. At the same time, the graph model can also determine
the coloring solutions for Metal-1 layer.

The full algorithm uses a unified graph model that combines
all the techniques mentioned above. In the unified graph
model, each vertex has four attributes. Swapping attribute
contains the swapping status (Cl

i , C
m
i or Cr

i) of current
cell. Shifting attribute di represents the shifting amount from
current or swapped position. Color attribute ki represents the
Metal-1 coloring solution and flipping attribute fi represents
the flipping status of a cell. The interconnection of the unified
graph can be derived from previous cell flipping graph and
local reordering graph. Edge cost is determined by all the
attributes of two vertices. Unified graph model is used in the
implementation to solve the LRSR problem optimally.

Let N be the total number of cells, d be the maximum
shifting value for LRSR and K be the maximum number of
coloring solutions. Since three types of vertices are introduced
for local reordering and there are 2d + 1 candidate positions
in local shifting for each vertex, the total number of vertices
in the graph is 3N · (2d + 1) · K · 2. As the graph model
turns out to be a directed acyclic graph, the shortest path
problem can be solved with O(d2K2N) time complexity. In
the experiment, we set d to 1 placement site, so the time
complexity is O(K2N).

The local cell reordering algorithm can be extended from
2-reordering to p-reordering (p ≥ 3), though the number of
vertices in the graph will increase significantly. In the case of
p = 3, each cell needs 8 vertices to represent all the swapping
conditions. Then the total number of vertices for the whole
graph will increase to 8N · (2d+ 1) ·K · 2.

B. Min-Cost Flow Based Conflict Removal

While it is true that single row placement can remove most
conflicts, it tends to fail in very dense regions. Movement
between multiple rows is necessary to resolve all the conflicts.
Conventional approaches such as global move are able to
iteratively move cells out of congested regions. But due to
the greedy nature, the solution may not be good from a
global view. When cells compete for whitespaces, greedy
based method may process the less “urgent” cells before the
most “urgent” one. For example, cell i and cell j share one
candidate whitespace; cell i has another candidate whitespace,
while cell j does not. The desired procedure is to place cell j to
its only whitespace and move cell i to the remained candidate
position. It is very difficult for greedy approaches to handle
such kind of situations.

Problem 2. (Conflict Removal Problem) Given a set of cells
with conflicts, move these cells to eliminate conflicts with
minimum degradation of the solution quality from previous
stage.

This step aims at eliminating the Metal-1 conflicts and
MOL K4 during post single row placement stage. We need to
move the conflict cells to whitespaces with minimum conflicts
and displacement. To solve this problem, a min-cost flow
based algorithm is proposed to add concurrent characteristics
by assigning conflict cells to whitespaces simultaneously.

400

 ss

 C1C1

 C2C2

 C3C3

 W1W1

 W2W2

 W3W3

 W4W4

 W5W5

 W6W6

 tt

 0, 10, 1

 c11, 1c11, 1

 c12, 1c12, 1

 c13, 1c13, 1

 c22, 1c22, 1
 c23, 1c23, 1

 c24, 1c24, 1

 c33, 1c33, 1

 c35, 1c35, 1

 c36, 1c36, 1

 0, 10, 1

 0, 10, 1

 0, 10, 1
 0, 10, 1

 0, 10, 1

 0, 10, 1

 0, 10, 1

 0, 10, 1

Fig. 10. Example of min-cost flow based whitespace assignment.

Figure 10 shows an example of the constructed graph for min-
cost flow algorithm. Vertex Ci indicates cells and Wj denotes
whitespaces. Edges are marked with (cost, capacity) pairs. The
basic procedure of this algorithm is summarized as Alg. 2.

Algorithm 2 Min-cost Flow Based Conflict Removal
Require: A set of cells C1, C2, ..., Cn and a set of whites-

paces W1,W2, ...,Wm

Ensure: Assign cells to whitespaces with minimum costs
1: Detect conflicts and select candidate cells;
2: Collect whitespaces near candidate cells;
3: Construct graph G and candidate solution map S:
4: Add source vertex s and target vertex t to G;
5: Add edge s→ Ci and edge Wj → t with cost 0 and

capacity 1 for all i and j;
6: Add edge Ci →Wj iff Ci can be placed to Wj legally:
7: Calculate the best cost b with Eqn.(2) when Ci is

placed to Wj by enumerating all combinations of
flipping and coloring solutions;

8: Assign b to the edge cost and 1 to edge capacity;
9: Add the corresponding solution of b to S;

10: Solve min-cost flow for G;
11: Assign cell Ci to whitespace Wj if the edge Ci → Wj

has non-zero flow and apply corresponding flipping and
coloring solutions stored in S.

When selecting candidate cells, we detect conflict chains
and group related cells; A conflict chain is a set of cells
that form a connected component if we connect them with
conflict edges. e.g. if there is conflict between cell 1 and cell
2, and also conflict between cell 2 and cell 3, then these cells
are grouped together, called a conflict chain. For a conflict
chain with n cells, only smallest n− 1 cells will be selected
for movement, because it is easier for small cells to fit into
whitespaces. During whitespace collection, we guarantee each
whitespace pair has a distance larger than coloring distance to
avoid potential conflicts after cell assignment.

C. MOL Layer Color Assignment

After TPL aware placement, we obtain a placement solution
without Metal-1 conflicts or MOL K4. We still need to assign
color to MOL layer. Due to the regularity of MOL features,
we can decompose the MOL layer in a row-by-row approach.
Layout decomposition for row based layout structure has been

FS

N

1 0

21

0

0

1 0 1

0

2

0

1

01

2 1

1

2

0

1 0

2

Fig. 11. Example of MOL coloring solutions.

TABLE I
BENCHMARK STATISTICS

Benchmark cell# net# dmax KMetal−1

alu-70/80/85/90 2125 2524 5 12
byp-70/80/85/90 9116 10075 5 18
div-70/80/85/90 6050 6390 5 18
ecc-70/80/85/90 1286 1488 5 18
efc-70/80/85/90 1956 1964 5 48
ctl-70/80/85/90 2350 2578 5 48
top-70/80/85/90 21251 21608 5 48

well studied by [8], [11]. The region we need to perform
coloring algorithm is not the placement row, but the interaction
region between two neighboring rows, shown in the dashed
region of Figure 11. According to the analysis for different
types of patterns in Figure 5, we scan the MOL fingers from
left to right, construct a pattern with previous finger pair (left)
and current finger pair, and perform pattern matching to find
the coloring solution. For instance, if a pattern matches pattern
B in Figure 5, the bottom right finger should be assigned with
the same color as the top left finger; then the top right finger
should be assigned to last available color. The MOL finger
color assignment can be solved in linear time without conflicts
as long as no K4 exists.

V. EXPERIMENTAL RESULTS

Our algorithms were implemented in C++ and tested on
an eight-core 3.40 GHz Linux server with 32 GB RAM. The
min-cost flow problem is solved by the successive shortest
path algorithm in Boost library [32]. We use Nangate 15nm
library [33] as our initial standard cell library. Due to different
standard cell libraries, we cannot directly use the benchmark
from [18]. Therefore, we synthesize new placement solutions
for OpenSPARC T1 designs using the Nangate 15nm library
and Cadence Encounter [34]. For each design, we choose four
different utilization rates, 0.7, 0.8, 0.85, and 0.9. Usually, the
higher utilization rate, the harder to find legal placement and
coloring solutions. Table I lists all the statistics of different test
cases. Columns “cell#” and “net#” are the total number of cells
and the total number of nets in each test case, respectively.
Column “dmax” is the maximum displacement constraint for
each placement. Column “KMetal−1” is the maximum number
of cell pre-coloring solutions among all standard cell types for
Metal-1 layer. The value of KMetal−1 is related to the look-up
table size.

During standard cell pre-coloring, the coloring distance for
both Metal-1 and MOL layers is set to 80. For Metal-1 layer

401

the upper bound of coloring solutions is set to 50, while for
MOL layer the upper bound is set to 10. During standard
cell placement, since Nangate 15nm insert dummy poly on
the cell boundaries, there is no Metal-1 conflict in a single
row. Although such design can effectively provide legal single
row coloring solution, the inserted dummy pitch would cause
additional area penalty, as shown in Figure 1(a). To better
compare the performances of different placement techniques,
we increase the coloring distance on Metal-1 for neighboring
cells to 110.

Table II analyzes the performances of the proposed BLUT
construction (see Section III-B) and different detailed place-
ment algorithms (see Section IV). Here we compare three
different design methodologies, as listed in three columns.
Column “LUT+OSR” is based on conventional look-up table
construction and ordered single row placement. Here we
implement the linear dynamic programming algorithm in [18]
to search for optimal single row placement solution. Column
“BLUT+OSR” is extended from “LUT+OSR” that instead
of conventional LUT construction, the BLUT introduced in
Section III-B is applied here. Column “BLUT+All” employs
BLUT and all the TPL aware detailed placement proposed in
Section IV. For each design methodology, we list four dif-
ferent metrics: “∆WL”, “CF”, “ST”, and “Time(s)”. “∆WL”
measures the total wirelength change after optimization. “CF”
gives the total conflict number on Metal-1 and MOL layer.
“ST” gives the stitch number only on Metal-1 layer as stitching
is not allowed on MOL layer. “Time(s)” lists the process
runtime in seconds.

We first compare methodologies “LUT+OSR” and
“BLUT+OSR”, and both of them utilize the ordered single
row placement in [18]. The difference is that the former
one applies the conventional look-up table, while the latter
one uses the BLUT as in Section III-B. We can see that, on
average “LUT+OSR” introduces more than 5000 conflicts,
while “BLUT+OSR” only reports less than 10 conflicts. The
reason is that under MOL based structure, conventional look-
up table may contain too many pre-coloring combinations.
To control the LUT size, some pre-coloring solutions are pre-
deleted in cell library. Therefore, LUT based method is not
able to fix most of the conflicts. Compared with conventional
LUT, the proposed BLUT enables larger solution space, and
thus is more powerful to fix cross-row conflicts.

We further compare “BLUT+OSR” and “BLUT+All”,
where “BLUT+All” integrates all the detailed placement tech-
niques developed in this paper. From Table II we can see that
both of them can improve wirelength by around 1%. Compared
with “BLUT+OSR”, through some powerful techniques, such
as local reordered single row refinement (LRSR) and min-
cost flow based conflict removal, “BLUT+All” can resolve
all the TPL conflicts. It shall be noted that the runtime
penalty of “BLUT+All” is not significant, i.e., “BLUT+All”
only introduces less than 11% of runtime overhead against
“BLUT+OSR”. The reason is that for each single row, OSR
based method is applied first. Only if there exist remaining
conflicts, more expensive LRSR and min-cost flow based
methods are carried out.

VI. CONCLUSION

Motivated by a large amount of cross-row TPL conflicts
from middle-of-line (MOL) layers, in this paper we have pro-
posed a comprehensive study to TPL aware detailed placement
toward zero cross-row conflict. Several effective techniques,
such as BLUT construction, local reordered single row re-
finement (LRSR) and min-cost flow based conflict removal,
are proposed. Our framework is verified through a set of
placement test cases using 15nm standard cell library. With
further scaling of transistor feature size and MOL layers, the
cross-row conflicts would be an emerging problem for TPL
friendly design. We believe this paper will stimulate more
future research on TPL aware standard cell design and physical
design.

ACKNOWLEDGMENT

This work is supported in part by NSF and SRC. The
authors would like to thank Dr. Yong-Chan Ban at LG Elec-
tronics for helpful comments.

REFERENCES

[1] L. Liebmann, A. Chu, and P. Gutwin, “The daunting complexity of
scaling to 7nm without EUV: Pushing DTCO to the extreme,” in
Proceedings of SPIE, vol. 9427, 2015.

[2] B. J. Lin, “Optical lithography with and without NGL for single-digit
nanometer nodes,” in Proceedings of SPIE, vol. 9426, 2015.

[3] D. Z. Pan, B. Yu, and J.-R. Gao, “Design for manufacturing with emerg-
ing nanolithography,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 32, no. 10, pp. 1453–1472,
2013.

[4] L. Liebmann, V. Gerousis, P. Gutwin, M. Zhang, G. Han, and B. Cline,
“Demonstrating production quality multiple exposure patterning aware
routing for the 10nm node,” in Proceedings of SPIE, 2014.

[5] K. Lucas, C. Cork, B. Yu, G. Luk-Pat, B. Painter, and D. Z. Pan,
“Implications of triple patterning for 14 nm node design and patterning,”
in Proceedings of SPIE, vol. 8327, 2012.

[6] B. Yu, K. Yuan, B. Zhang, D. Ding, and D. Z. Pan, “Layout decom-
position for triple patterning lithography,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2011, pp. 1–8.

[7] S.-Y. Fang, Y.-W. Chang, and W.-Y. Chen, “A novel layout decompo-
sition algorithm for triple patterning lithography,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 33, no. 3, pp. 397–408, March 2014.

[8] H. Tian, H. Zhang, Q. Ma, Z. Xiao, and M. D. F. Wong, “A polynomial
time triple patterning algorithm for cell based row-structure layout,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2012, pp. 57–64.

[9] J. Kuang and E. F. Young, “An efficient layout decomposition approach
for triple patterning lithography,” in ACM/IEEE Design Automation
Conference (DAC), 2013, pp. 69:1–69:6.

[10] Y. Zhang, W.-S. Luk, H. Zhou, C. Yan, and X. Zeng, “Layout de-
composition with pairwise coloring for multiple patterning lithography,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2013, pp. 170–177.

[11] H.-A. Chien, S.-Y. Han, Y.-H. Chen, and T.-C. Wang, “A cell-based row-
structure layout decomposer for triple patterning lithography,” in ACM
International Symposium on Physical Design (ISPD), 2015, pp. 67–74.

[12] B. Yu, K. Yuan, D. Ding, and D. Z. Pan, “Layout decomposition for
triple patterning lithography,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 34, no. 3, pp.
433–446, March 2015.

[13] Q. Ma, H. Zhang, and M. D. F. Wong, “Triple patterning aware routing
and its comparison with double patterning aware routing in 14nm
technology,” in ACM/IEEE Design Automation Conference (DAC), 2012,
pp. 591–596.

[14] Y.-H. Lin, B. Yu, D. Z. Pan, and Y.-L. Li, “TRIAD: A triple patterning
lithography aware detailed router,” in IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), 2012, pp. 123–129.

402

TABLE II
PERFORMANCE EVALUATION OF LUT CONSTRUCTION AND DETAILED PLACEMENT ALGORITHMS

Benchmark
LUT+OSR BLUT+OSR BLUT+All

∆WL CF ST Time(s) ∆WL CF ST Time(s) ∆WL CF ST Time(s)
alu-70 -1.53% 1778 75 1007.65 -3.71% 2 72 3.68 -3.66% 0 72 3.96
alu-80 -1.46% 2277 83 895.27 -2.91% 11 86 3.44 -2.36% 0 87 4.48
alu-85 -0.86% 2516 85 828.55 -2.19% 20 83 3.19 -1.65% 0 89 4.32
alu-90 0.13% 2823 87 767.20 -0.69% 30 90 3.10 -0.09% 0 89 4.08
byp-70 -0.78% 6335 806 4453.00 -2.09% 0 791 16.41 -2.09% 0 791 16.62
byp-80 -0.39% 8485 852 4058.07 -1.34% 2 853 15.50 -1.32% 0 854 16.00
byp-85 -0.39% 9736 931 3971.18 -1.39% 10 918 15.45 -1.26% 0 918 16.96
byp-90 -0.14% 10965 1010 3676.96 -0.96% 29 992 14.61 -0.79% 0 1000 18.12
div-70 -1.89% 4857 589 2807.06 -3.47% 7 583 10.40 -3.37% 0 583 11.56
div-80 -1.00% 6237 620 2570.82 -2.52% 12 605 9.98 -2.35% 0 604 11.25
div-85 -1.06% 6879 635 2474.66 -2.34% 24 631 9.85 -1.95% 0 631 12.09
div-90 -0.40% 7638 686 2353.77 -1.66% 22 676 9.38 -1.46% 0 673 11.33
ecc-70 -2.51% 1078 253 626.37 -4.45% 0 248 2.46 -4.45% 0 248 2.46
ecc-80 -1.39% 1382 270 565.63 -3.37% 1 262 2.27 -3.27% 0 262 2.48
ecc-85 -1.35% 1508 278 509.79 -2.82% 2 272 2.09 -2.22% 0 272 2.33
ecc-90 -0.72% 1835 294 384.69 -1.33% 23 295 1.79 -0.27% 0 303 2.25
efc-70 -3.96% 1641 235 1048.91 -6.51% 0 239 3.86 -6.51% 0 239 3.84
efc-80 -3.16% 2119 253 944.11 -4.98% 0 246 3.82 -4.98% 0 246 3.84
efc-85 -1.57% 2349 258 840.85 -3.47% 3 253 3.63 -3.32% 0 253 3.92
efc-90 0.09% 2534 261 832.88 -1.51% 23 264 3.68 -0.79% 0 267 4.64
ctl-70 -3.22% 2158 437 1243.38 -4.57% 1 439 5.04 -4.50% 0 439 5.08
ctl-80 -2.15% 2535 444 1139.64 -3.52% 2 447 4.82 -3.42% 0 447 5.11
ctl-85 -1.83% 2870 452 1046.36 -2.83% 10 458 4.60 -2.67% 0 458 5.32
ctl-90 -0.87% 3196 474 978.42 -1.68% 13 475 4.40 -1.34% 0 478 5.52
top-70 -0.94% 14435 1157 12402.91 -2.26% 8 1126 38.29 -2.23% 0 1125 41.17
top-80 -0.49% 19295 1201 11269.44 -1.63% 6 1181 36.40 -1.58% 0 1185 39.08
top-85 -0.17% 21870 1212 11057.75 -1.33% 21 1213 35.53 -1.08% 0 1213 40.13
top-90 0.20% 24634 1257 10382.27 -0.83% 23 1270 34.40 -0.73% 0 1272 40.86
avg. -1.21% 6284 542 3040.63 -2.58% 10 538 10.79 -2.35% 0 539 12.10
ratio -0.51 - 1.01 251.29 -1.08 - 1.00 0.89 -1.00 - 1.00 1.00

[15] P.-Y. Hsu and Y.-W. Chang, “Non-stitch triple patterning-aware routing
based on conflict graph pre-coloring,” in IEEE/ACM Asia and South
Pacific Design Automation Conference (ASPDAC), 2015, pp. 390–395.

[16] Z. Liu, C. Liu, and E. F. Young, “An effective triple patterning aware
grid-based detailed routing approach,” in IEEE/ACM Proceedings De-
sign, Automation and Test in Eurpoe (DATE), 2015, pp. 1641–1646.

[17] B. Yu, X. Xu, J.-R. Gao, and D. Z. Pan, “Methodology for standard cell
compliance and detailed placement for triple patterning lithography,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2013, pp. 349–356.

[18] B. Yu, X. Xu, J.-R. Gao, Y. Lin, Z. Li, C. Alpert, and D. Z. Pan,
“Methodology for standard cell compliance and detailed placement for
triple patterning lithography,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 34, no. 5, pp.
726–739, May 2015.

[19] J. Kuang, W.-K. Chow, and E. F. Y. Young, “Triple patterning lithogra-
phy aware optimization for standard cell based design,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2014,
pp. 108–115.

[20] H.-A. Chien, Y.-H. Chen, S.-Y. Han, H.-Y. Lai, and T.-C. Wang, “On
refining row-based detailed placement for triple patterning lithography,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 34, no. 5, pp. 778–793, 2015.

[21] H. Tian, Y. Du, H. Zhang, Z. Xiao, and M. D. F. Wong, “Triple pat-
terning aware detailed placement with constrained pattern assignment,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2014, pp. 116–123.

[22] T. Lin and C. Chu, “TPL-aware displacement-driven detailed placement
refinement with coloring constraints,” in ACM International Symposium
on Physical Design (ISPD), 2015, pp. 75–80.

[23] T. Kauerauf, A. Branka, G. Sorrentino, P. Roussel, S. Demuynck,
K. Croes, K. Mercha, J. Bommels, Z. Tokei, and G. Groeseneken, “Re-
liability of MOL local interconnects,” in IEEE International Reliability
Physics Symposium (IRPS), 2013, pp. 2F–5.

[24] M. Rashed, N. Jain, J. Kim, M. Tarabbia, I. Rahim, S. Ahmed, J. Kim,
I. Lin, S. Chan, H. Yoshida, S. Beasor, L. Yuan, J. Kye, J. Chee,
A. Mittal, D. Doman, S. Johnson, U. Schroeder, N. Cave, T. Tang,
J. Stephen, R. Augur, S. Kengeri, and S. Venkatesan, “Innovations in
special constructs for standard cell libraries in sub 28nm technologies,”
in IEEE International Electron Devices Meeting (IEDM), 2013, pp.
9.7.1–9.7.4.

[25] S. Popovych, H.-H. Lai, C.-M. Wang, Y.-L. Li, W.-H. Liu, and T.-C.
Wang, “Density-aware detailed placement with instant legalization,” in
ACM/IEEE Design Automation Conference (DAC), 2014, pp. 122:1–
122:6.

[26] X. Xu, B. Cline, G. Yeric, B. Yu, and D. Z. Pan, “A systematic
framework for evaluating cell level middle-of-line (MOL) robustness
for multiple patterning,” in Proceedings of SPIE, vol. 9427, 2015.

[27] A. B. Kahng, S. Reda, and Q. Wang, “Architecture and details of a
high quality, large-scale analytical placer,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2005, pp. 891–898.

[28] J. Vygen, “Algorithms for detailed placement of standard cells,” in
IEEE/ACM Proceedings Design, Automation and Test in Eurpoe (DATE),
1998, pp. 321–324.

[29] A. B. Kahng, P. Tucker, and A. Zelikovsky, “Optimization of linear
placements for wirelength minimization with free sites,” in IEEE/ACM
Asia and South Pacific Design Automation Conference (ASPDAC), 1999,
pp. 241–244.

[30] U. Brenner and J. Vygen, “Faster optimal single-row placement with
fixed ordering,” in IEEE/ACM Proceedings Design, Automation and Test
in Eurpoe (DATE), 2000, pp. 117–121.

[31] Y. Du and M. D. F. Wong, “Optimization of standard cell based detailed
placement for 16 nm FinFET process,” in IEEE/ACM Proceedings
Design, Automation and Test in Eurpoe (DATE), 2014, pp. 357:1–357:6.

[32] “Boost C++ Library,” http://www.boost.org.
[33] “NanGate FreePDK15 Open Cell Library,” http://www.nangate.com/

?page id=2328.
[34] “Cadence SOC Encounter,” http://www.cadence.com.

403

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 10.80 points
 Normalise (advanced option): 'original'

 32

 D:20150727081745
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 10.8000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryList_V1
 qi2base

