

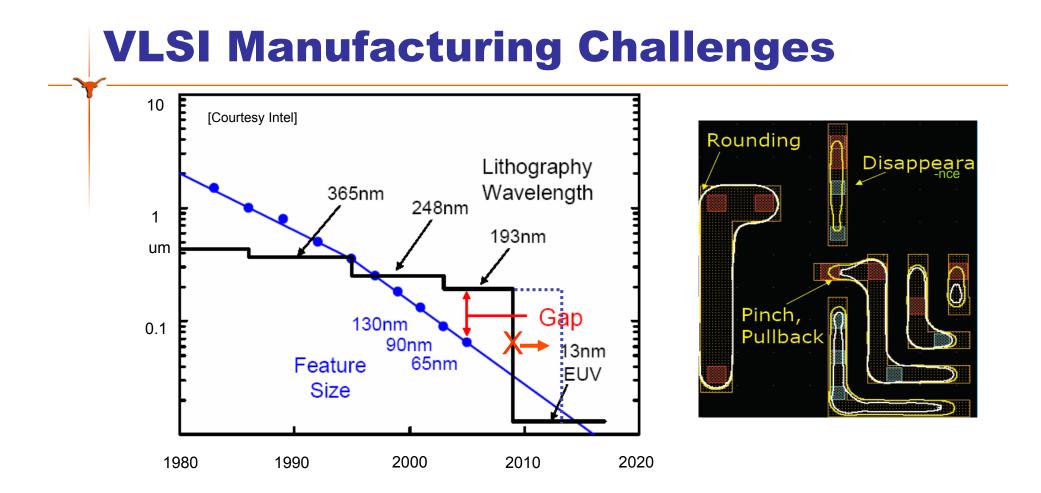
ASP-DAC 2015

Machine Learning and Pattern Matching in Physical Design

Bei Yu¹, David Z. Pan¹, Tetsuaki Matsunawa², and Xuan Zeng³ ¹UT Austin; ²Toshiba; ³Fudan University <u>http://www.cerc.utexas.edu/utda</u>

Supported in part by NSF, SRC, IBM, Toshiba, NSFC, SSTC

- Modern VLSI Challenges
- Machine Learning and Pattern Matching 101
- Applications in VLSI Design and Verification
- Some Advanced Issues
- Conclusion



The industry forced to extend 193nm lithography

- > Feature size is much smaller than the wavelength
- > Deep sub-wavelength design and manufacturing

Machine Learning 101

Study of algorithms that can learn from data

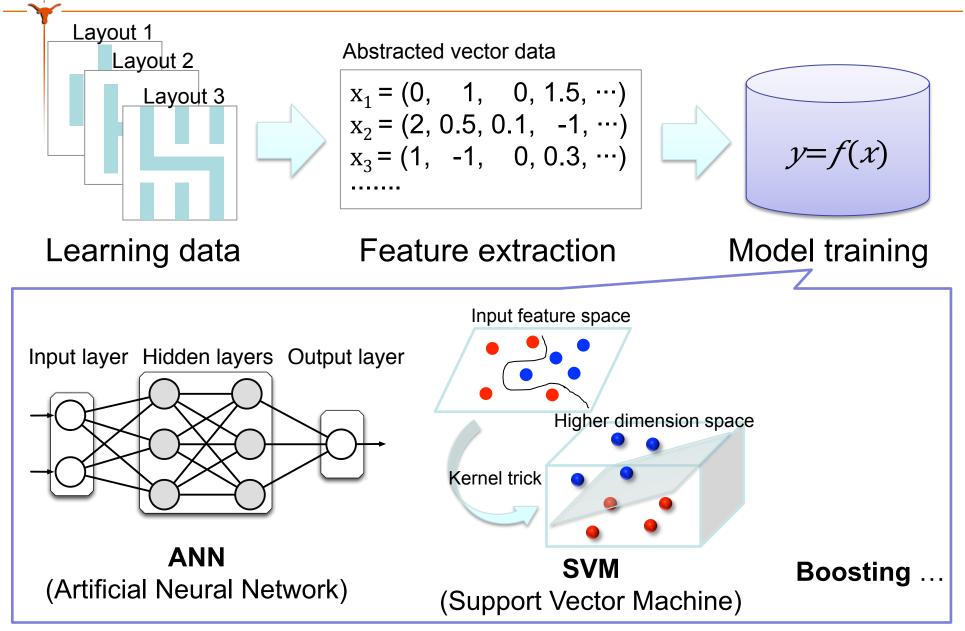
$$y=f(x)$$

- y : output
- x : input data
- f : function

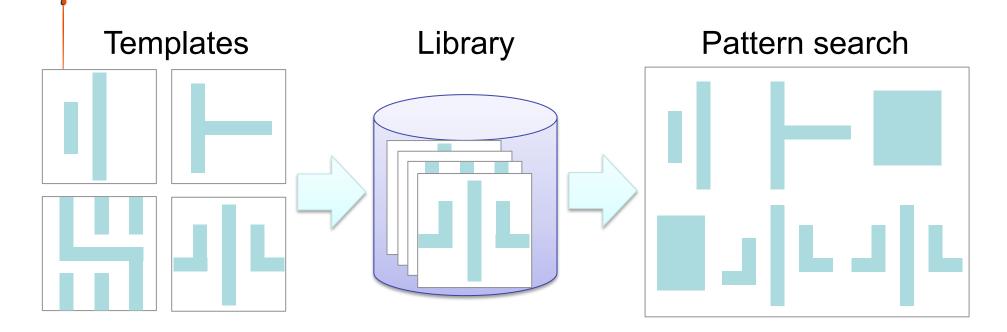
Supervised learning (labels (y) are given)

- > Classification : y is categorical data
- Regression : y is continuous data
- Unsupervised learning (no labels are given)
 - > Clustering, etc.

Machine Learning 101 (cont'd)

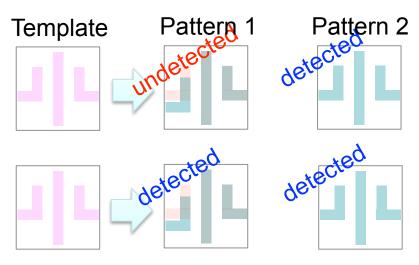


Pattern Matching 101

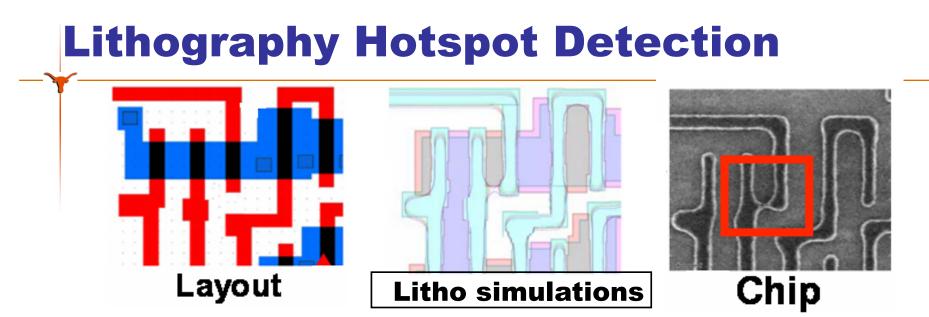


- Exact Pattern Matching
 - > Detected pattern = template
 - >
- Fuzzy Pattern Matching
 - > Detected pattern ≈ template

6



- Modern VLSI Challenges
- Machine Learning and Pattern Matching 101
- Applications in VLSI Design and Verification
 - > Lithography Hotspot Detection
 - > Lithography Friendly Routing
 - > Datapath Extraction and Placement
- Some Advanced Issues
- Conclusion



Lithographic hotspots

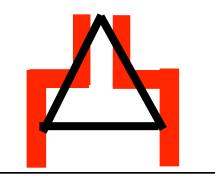
- What you see (at design) is NOT what you get (at fab)
- > Hotspots mean poor printability
- > Highly dependent on manufacturing conditions
- > Exist after resolution enhancement techniques

Litho-simulations are extremely CPU intensive

- > Full-blown OPC could take a week
- Impossible to be used in inner design loop

Various Approaches

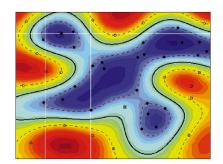
[Xu+ ICCAD07] [Yao+ ICCAD08, [Khang SPIE06], etc.



Pattern/Graph Matching

Pros and cons

- Accurate and fast for known patterns
- But too many possible patterns to enumerate
- Sensitive to changing manufacturing conditions
- High overshoot (falsealarms)

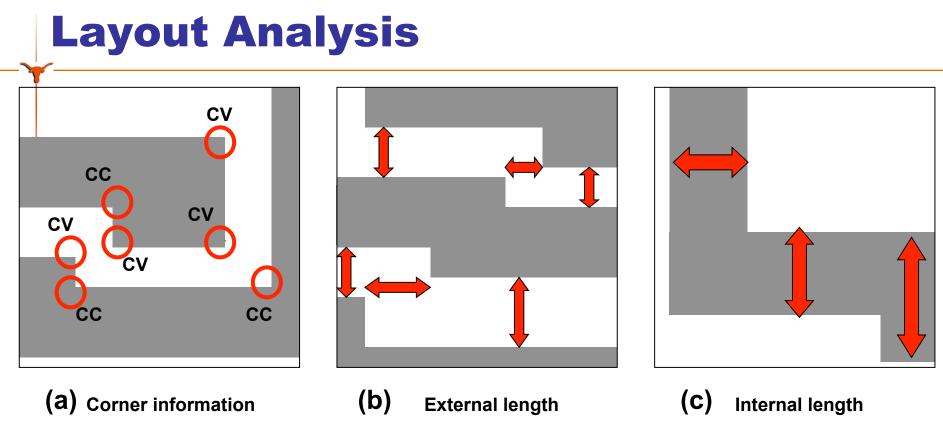


SVM [J. Wuu+ SPIE09] [Drmanac+ DAC09] Neural Network Model [Norimasa+ SPIE07][Ding + ICICDT09] Regression Model [Torres+ SPIE09]

Data Mining/Machine Learning

Pros and cons

- Good to detect unknown or unseen hotspots
- Accuracy may not be good for "seen" patterns (cf. PM)
- Hard to trade-off accuracy and false alarms

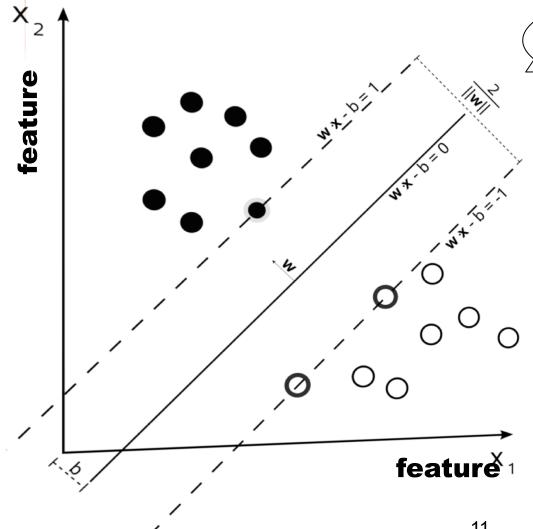


Layout Fragmentation

- > With a pre-defined set of measurement operators
- > Accurate and very fast to apply (e.g., link to CALIBRE API)
- Full detection to cover whole layout without samplings (cf. windowbased approach)
- > Complexity and runtime scale O(n)

Machine Learning Kernel - SVM

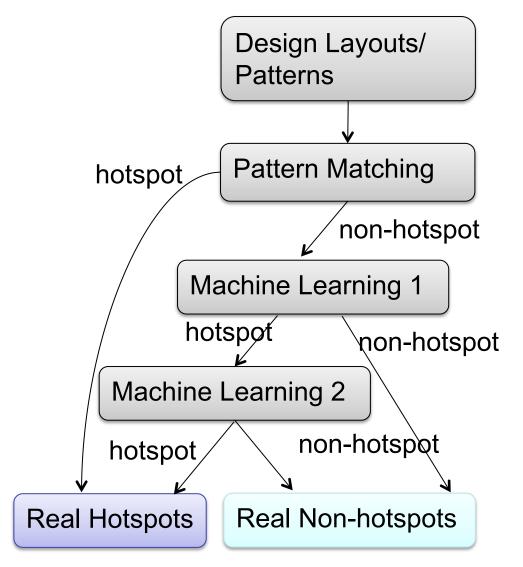
Support Vector Machine – A linear separation demo



To maximize the separation margin

- Convert hotspot detection problem to a *binary* classification problem (hot or nonhot separation)
- Support Vector Machine can find a set of support vectors to construct a boundary plane that maximize the separation of 2 distinctive sets of data

A Naïve Combination Combination of ML and Pattern Matching



Meta-Classification

Pattern Matching Methods Good for detecting previously known types of hotspots Machine Learning Methods Good for detecting new/previously unknown hotspots

A New Unified Formulation (EPIC) Good for detecting all types of hotspots with advantageous accuracy/false-alarm (Meta-Classifier)

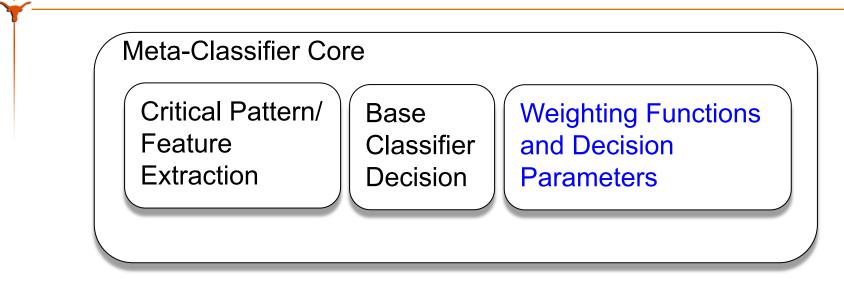
 Meta-Classification combines the strength of different types of hotspot detection techniques

[Ding et al, ASPDAC 2012 BPA]

An Illustrative Example

Detection Sub-block	Detection Results (H: hotspot, N: non-hotspot, X: Don' t Care)						
Machine Learning 1	Х	Н	Ν	Н	Ν		
Machine Learning 2	Х	Н	Н	Ν	Ν		
Pattern Matching	Н	Ν	Ν	Ν	Ν		
Final Decision	Н	Н	Ν	Н	Ν		

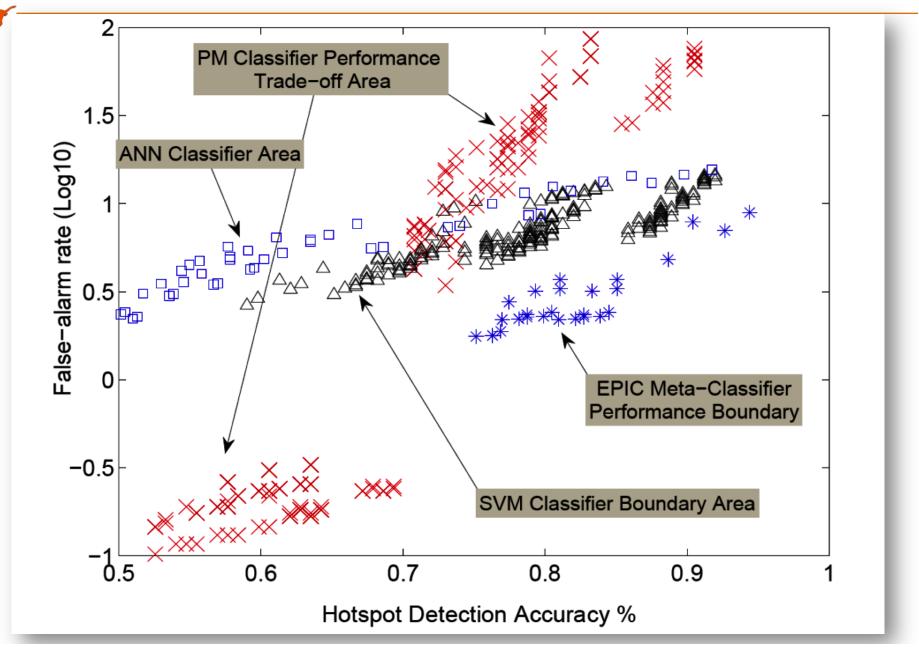
Components of Meta-Classifier Core



Base classifier results are first collected

- Weighting functions to make the overall meta decision (e.g., Minimize Mean Square Error among all samples in data set)
 - > Quadratic Programming (QP) formulation
- Accuracy and false-alarm trade-off

False-alarm Rate and Accuracy



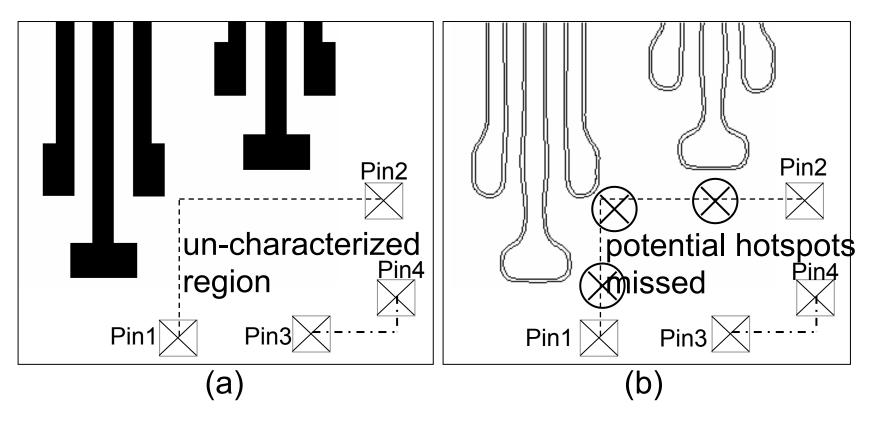
ICCAD'12 Contest

- Released benchmark by Mentor: 2D structures on metal layers with 32 to 28nm processes
- Desired target performance
 - > Low false alarm: <100 false hits/mm²
 - > Fast run time: < 1 CPU-hr/mm²
 - > Detection accuracy: > 80%
 - > Portability: General calibration strategy
- Publications
 - > [Lin et al. DAC 2013]
 - > [Yu et al. DAC 2013]
 - > [Gao et al. SPIE 2014]

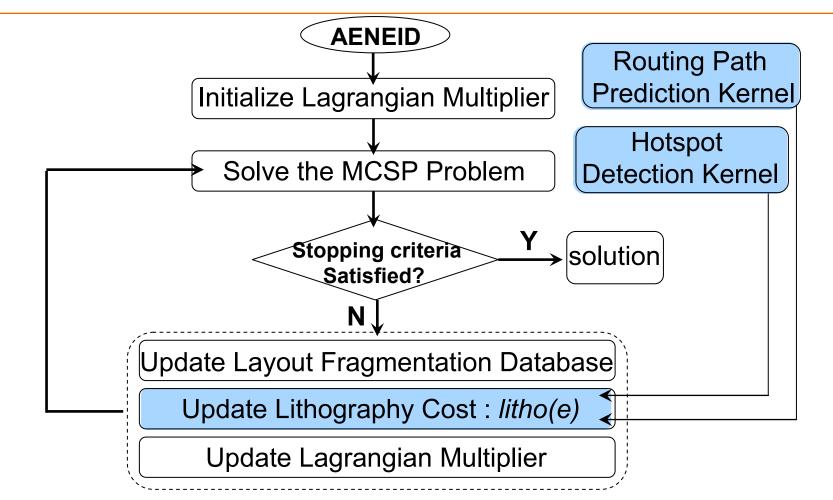
>

Lithography-Friendly Detailed Routing

 [DAC'11] AENEID: Hotspot learning models in early design stage, used to guide routing



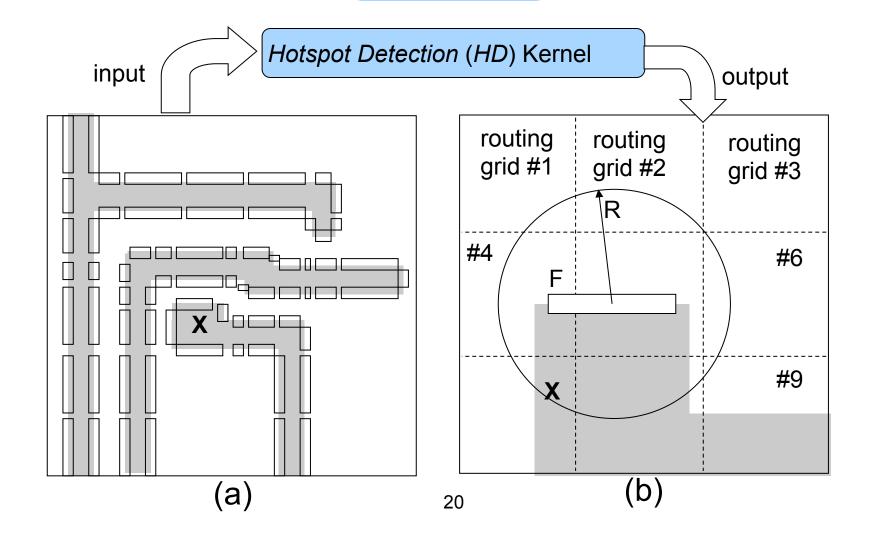
AENEID Overall Flow

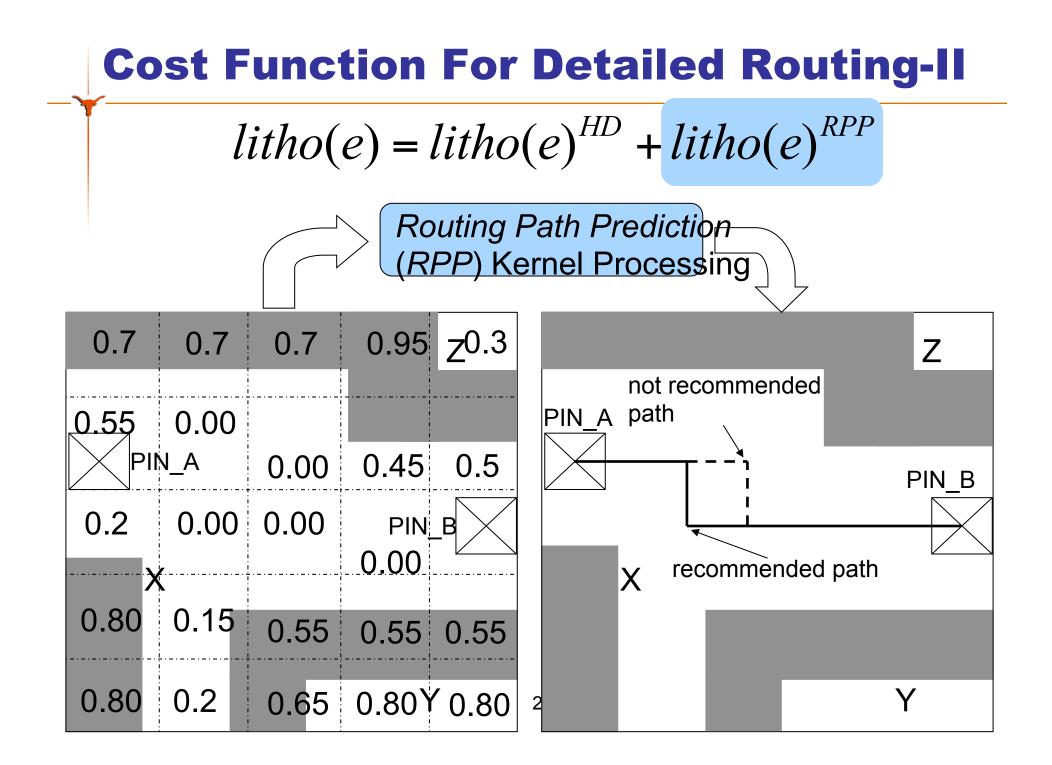


 Machine learning models to guide AENEID to avoid hotspot patterns in the early design stages

Cost Function For Detailed Routing-I

$$litho(e) = litho(e)^{HD} + litho(e)^{RPP}$$





Testing Benchmarks and Simulation Results

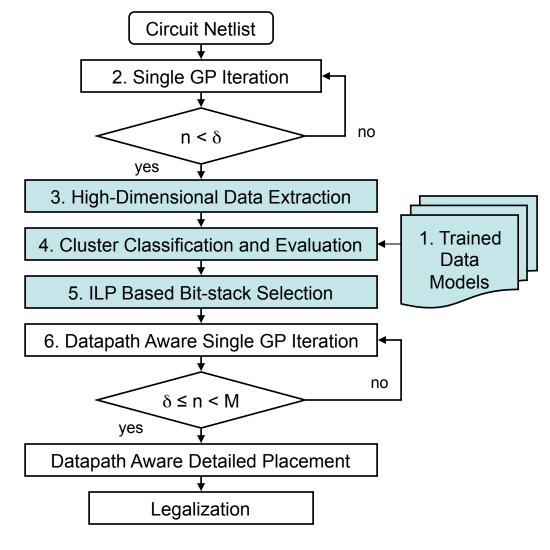
Benchmarks	CK1	CK2	CK3	
Layout Size	50X50um ²	100X100um ²	160X160um ²	
Nets to Route	0.45K	1.48K	3.4K	
M1 Blockage#	1K	8.8K	13.1K	
M2 Fragment#	12.2K	41K	152.6K	
M2 Blockage#	0.14K	0.47K	2K	
M2 Fragment#	0.56K	1.9K	8.3K	

Compared with ELIAD (Minsik Cho, et al. TCAD09), AENEID shows 23%-64% hotspot reduction at the cost of 30% extra run-time without penalty on total wirelength

	AENEID											
	HD					HD + RPP						
Circuit	C	K1	Cł	<2	Cł	<3	Cł	(1	C	< 2	Cł	<3
Circuit Size um ²	50 ²		100 ²		16	0 ²	50 ²		100 ²		160 ²	
Wire-length um	85	9.3	550	2.0	2479	97.0	859	9.1	5502.0		24797.5	
Run-time sec		8	40)9	32	91	8	}	400		3279	
Run-time overhead %	33		3	8	19		33		35		18	
Metal layer	M1	M2	M1	M2	M1	M2	M1	M2	M1	M2	M1	M2
Hotspot#	11	2	34	7	90	17	8	2	22	5	58	15
Hotspot reduc %	35	33	48	30	44	26	53	33	66	50	64	35
Avg. hotspot reduc %	36						50					
Avg. extra run-time %	30 29											

Machine Learning for Placement

- Data mining and extraction based on not just graph but also physical information
- We can extract datapath like structures even for "random" logics
- Use them to explicitly guide placement
- Very good results obtained cf. other leading placers like simPL, NTUPlace, mPL, CAPO



[Ward+, DAC' 12]

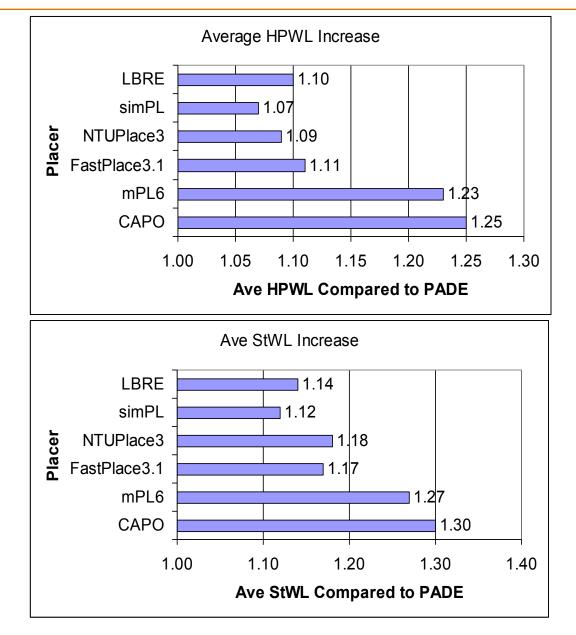
Datapath Placement Techniques

- Steiner wirelength (StWL) improvement through bit-stack alignment
 - > Significantly improves total StWL and routing congestion
- Datapath placement techniques
 - > Skewed Weighting with Step Size Scheduling
 - > Fixed-Point Alignment Constraint
 - > Bit-Stack Aligned Cell Swapping
 - > Datapath Group Repartitioning
- Integrate alignment constraints into forcedirected placement
- Simultaneously place datapath & random logic

[Ward+, ISPD' 12]

PADE: Hybrid Experimental Results

- All numbers are average wirelength ratio cf. PADE
- PADE without datapath extraction generates the simPL wirelength results
- HPWL: 7%+ better
- StWL: 12%+ better



PADE: ISPD2005 Results

- PADE Wirelength results on the ISPD 2005 Placement Benchmarks
- At least 2% better in HPWL
- At least 3% better in StWL
- Highlights the effectiveness of structure aware extraction

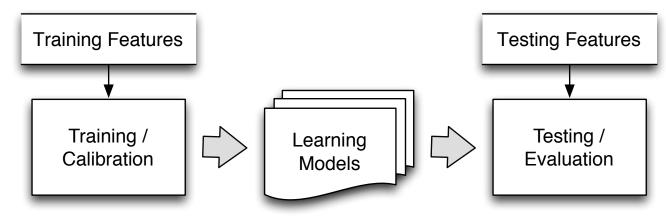
	CAPO	mPL6	FastPlace3.1	NTUPlace3	simPL	PADE
Adaptec1	97.22	86.2	88.75	91.06	87.05	85.12
Adaptec2	114.54	100.64	104.03	99.06	102.13	98.92
Adaptec3	296.22	235.06	239.7	234.52	228.32	222.08
Adaptec4	257.47	208.85	215.02	211.86	201.82	196.23
Bigblue1	127.72	108.31	105.24	110.02	109.94	106.98
Bigblue2	189.6	174.69	178.44	175.27	168.65	164.33
Bigblue3	452.91	370.7	421.31	389.39	369.61	361.96
Bigblue4	1105.52	930.63	911.64	974.44	901.85	883.82
AVE	1.22	1.04	1.07	1.06	1.03	1.00

- Modern VLSI Challenges
- Machine Learning and Pattern Matching 101
- Applications in VLSI Design and Verification
- Some Advanced Issues
- Conclusion

Issue 1: ML or PM?

Machine Learning:

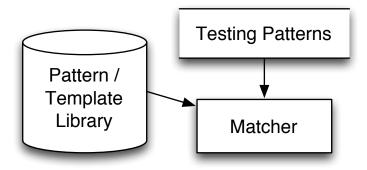
- > (+) good to unseen data
- > (-) longer training time



Pattern Matching:

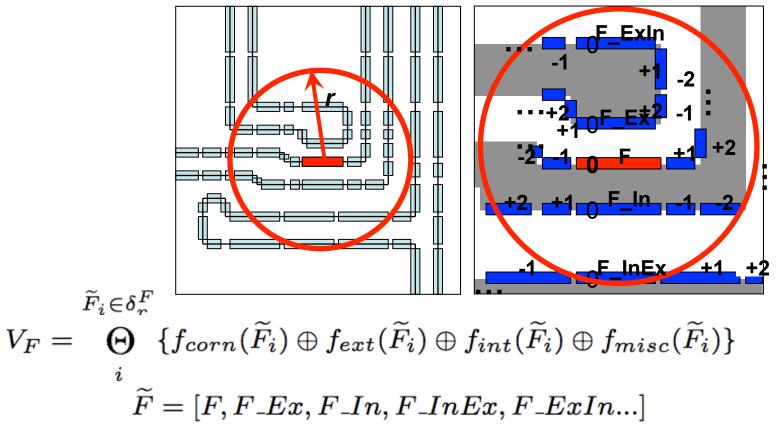
- > (+) Easy to implement, fast
- > (-) Sensitive to process change

Hybrid approaches are desirable!



Issue 2: Feature Extraction

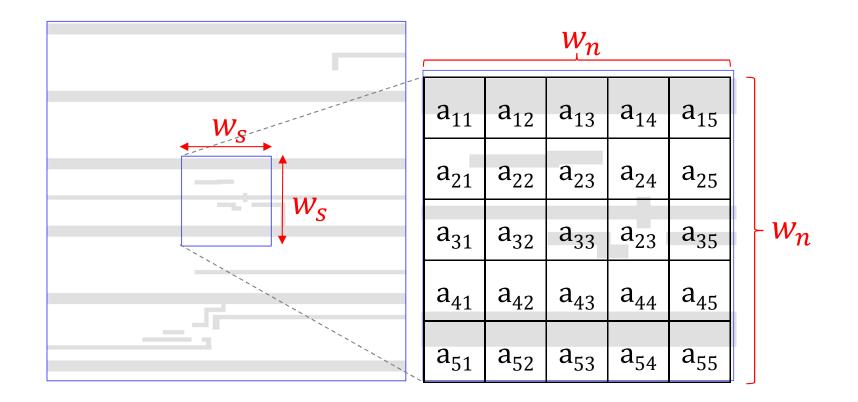
Fragmentation based feature [ASPDAC'11, SPIE'14]



 V_F is the feature vector associated with *fragment F* Θ is a concatenate function; \oplus is a sort-n-combine function δ_r^F includes both proximity and some peripheral information

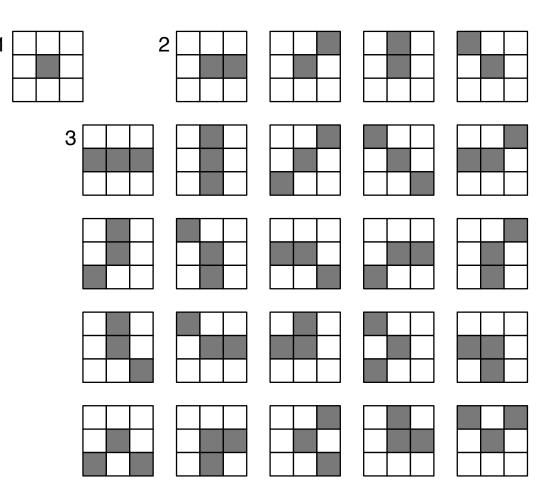
Issue 2: Feature Extraction

 Density based feature [Wuu+, ASPDAC'11; Matsunawa +, SPIE'15]



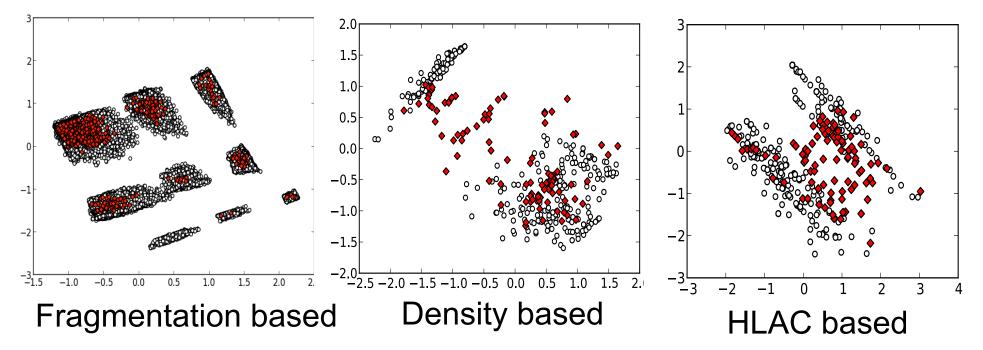
Issue 2: Feature Extraction (cont.)

- HLAC based feature [Nosato+, JM3'14]
 - > higher-order local autocorrelation (HLAC)
 - > 25 local masks => 25 dimensional vector feature



Issue 2: Feature Evaluation

Analyze Feature Space

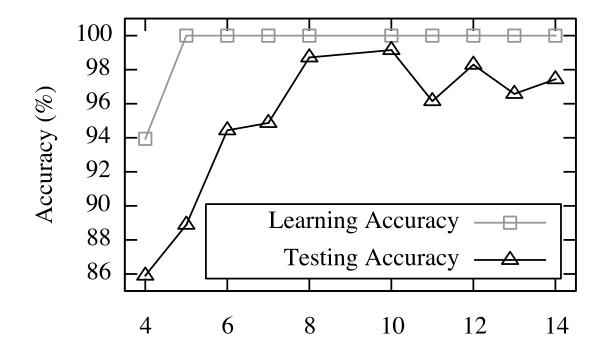


Measure feature distances [Matsunawa+, SPIE'15]

$$d_{i} = \frac{\sqrt{(x_{i} - \mu)^{T} V^{-1}(x_{i} - \mu)} - d_{NHS_{min}}}{d_{NHS_{max}} - d_{NHS_{min}}}$$

Issue 3: Overcome Overfitting

Overfitting: good training, but bad testing



Wn value

Possible Solutions:

- Regularization (additional constraints or objective terms)
- Cross validation

Conclusion

Machine learning and pattern matching 101

- Applications in VLSI design and verification
 - Lithography hotspot detection
 - Lithography friendly routing
 - > Datapath-like circuit extraction and placement
- Still many open problems and opportunities
 - Hybrid machine learning and pattern matching
 - > Feature extraction and classification
 - > Overfitting in machine learning
 - Cross-layer applications