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Lithography Status & Challenges
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Advanced lithography to extend 193nm lithography
I Now and near future: double/triple/quadruple patterning
I Long term future: other advanced lithography
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From Double Patterning to Triple Patterning

ITRS roadmap

28nm Single Patterning

22nm Double Patterning

14nm Triple Patterning

11nm Quadruple Patterning

Mask 2

Mask 1

stitch

Mask 1 Mask 2 Mask 3

I Layout decomposition
I Patterning friendly design
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Previous Works in TPL Layout Decomposition
I ILP or SAT

[Cork+,SPIE’08][Yu+,ICCAD’11][Cork+,SPIE’13]
I Greedy or Heuristic

[Ghaida+,SPIE’11][Fang+,DAC’12]
[Kuang+,DAC’13][Yu+,DAC’14][Fang+,SPIE’14]

I SDP or Graph based (trade-off)
[Yu+, ICCAD’11][Chen+,ISQED’13][Yu+,ICCAD’13]

Limitations: can NOT guarantee TPL friendly

(a) (b)
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Layout Compliance Problem Formulation
Input:

I Input layout patterns (may not be TPL friendly)
I Minimum coloring distance mins
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Output:
I Apply layout decomposition and layout modification
I Remove all conflicts
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Layout Decomposition v.s. Layout Compliance
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Layout Compliance

= Layout Decomposition + Layout Modification
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Challenge 1: NO Shortcut in TPL
Complexity
Optimizing conflict & stitch simultaneously is NP-hard for DPL/TPL.

Shortcut in DPL:
I Step by step
I Each step can be optimally solved

(a) (b) (c)

Input Layout Step 1:
Conflict Minimization

Step 2:
Stitch Minimization

TPL:
I NO such shortcut, as conflict minimization is NP-hard
I Door closed?
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Challenge 2: Where do the conflicts come from?
DPL:

I Detect odd-cycle
I Long pattern chains

(a) (b)

TPL:
I NP-hard to detect
I But mostly local 4-clique

(a) (b) (c)
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Challenge 3: Decomposer – Clutching at Straws

CPU runtime

Conflict #

Performance target
ILP: Good performance 

but expensive

Greedy or heuristic: 
Fast but bad quality

SDP or graph search:  Tradeoff,
still not good in performance

I Gap
I Our performance target
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Overall Flow
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Step 1: Initial Layout Decomposition

I Our method: linear color assignment
I Linear runtime complexity [Yu+,DAC’14]
I May leave some conflicts to Step 2 & 3
I Much faster than ILP or SDP
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Runtime comparisions:
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Step 1: Fast Layout Decomposition (cont.)

I But, Any coloring order results in Local Optimality
I Example: order a-b-c-d

a c
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Color-Friendly Rules:
I a-c tend to be with the same color
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Step 1: Fast Layout Decomposition (cont.)
Peer Selection:

I Three orders would be processed simultaneously
I Best solution would be selected
I Still Linear runtime complexity

3Round-Coloring

Degree-Coloring

Sequence-Coloring
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Step 1: Fast Layout Decomposition (cont.)
Peer Selection:

I Whole problem → a set of components
I Different components have different dominant orders
I Overall better results than any single order
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Fast Layout Decomposition Result Example

I Row by row
I Resolved in 0.1 second
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Step 2: Layout Modification
Initial layout decomposition output: native conflict is labeled:

(a) (b)

Layout modification to break down each four-clique:

(a) (b)
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Step 3: Incremental Layout Decomposition

I Input: One layout region & stitch# bound
I Output: color re-assignment in the region
I Method: branch-and-bound
I Early return if satisfy stitch# bound
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Runtiem & stitch# bound trade-off:
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Step 3: Incremental Layout Decomposition– Example

(a) (b)

(c) (d)

a Decomposed result after initial layout decomposition.
b All layout patterns to be re-assigned colors are labeled.
c The constructed local decomposition graph.
d The result of incremental layout decomposition.
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Interfaced with open source tool Electric

24 / 27



Layout Compliance Results
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Conclusions
I First attempt for TPL layout compliance
I Faciliating the advancement of patterning technique

CPU runtime

Conflict #

Performance target
ILP: Good performance 

but expensive

Greedy or heuristic: 
Fast but bad quality

SDP or graph search:  Tradeoff,
still not good in performance

-

Future works
I Timing issue
I Smarter automatically layout modification
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Thank You !
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