

## Layout Decomposition for Quadruple Patterning Lithography and Beyond Bei Yu, David Z. Pan

ECE Department, University of Texas at Austin, Austin, TX



(1)

#### Introduction

Natural extension of triple patterning lithography (TPL)
 But with one more mask

Why QPL?
Delay of EUVL
Reserach perspective: need to be prepared
Resolve native conflict from triple patterning



## **Problem Formulation**



Input layout patterns

**Overall Flow** 

Minimum coloring distance min<sub>s</sub>



# e1

## Linear Color Assignment

Technique One: Color-Friendly Rules
 Any coloring order (e.g. a-b-c-d-e) results in Local Optimality.



(b)

a and d are color-friendly



### **General K-Patterning Layout Decomposition**

#### Theorem

SDP formulation in (1) can provide  $v_i \cdot v_j$  pairs for K-patterning color assignment problem.

min  $\sum (\vec{v}_i \cdot \vec{v}_i + \frac{1}{I_i}) + \alpha \sum (1 - \vec{v}_i \cdot \vec{v}_j)$ *e<sub>ii</sub>∈SE* s.t.  $\vec{v}_i \cdot \vec{v}_i = 1$ ,  $\forall i \in V$  $ec{v}_i \cdot ec{v}_j \geq -rac{1}{k-1}, \quad orall e_{ij} \in CE$ 

#### Theorem

For K-patterning layout decomposition problem, dividing graph through (K - 1)-cut does not increase the final conflict number.

#### **Experimental Results**



Output:
Decomposed layout
The conflict number & the stitch number



SDP based Color Assignment

Technique Two: Peer Selection
Three orders would be processed simultaneously
Best solutions would be selected

(a)



## Algorithm: Linear Color Assignment

**Require:** Decomposition graph  $G = \{V, CE, SE\}$ , Stack *S*; 1: while  $\exists v_i \in V$  s.t.  $d_{conf}(v_i) < 4 \& d_{stit}(v_i) < 2 do$ 

- 2:  $S.push(v_i);$
- 3:  $G.delete(v_i);$
- 4: end while
- 5: Construct vector vec = {vec[1], vec[2], vec[3]};
  6: C1 = SEQUENCE-COLORING(V);

Using C++ on 3.0GHz Linux machine
 CSDP as SDP solver
 Benchmarks from triple patterning work [Yu+,ICCAD'11]



Figure:  $min_s = 2 \cdot s_m + w_m$  may cause  $K_5$  structure.

▶ For quadruple patterning:  $min_s = 2 \cdot s_m + 2 \cdot w_m = 80$ ▶ For pentuple patterning:  $min_s = 3 \cdot s_m + 2.5 \cdot w_m = 110$ 

## Experimental Results – Quadruple Patterning





**Vector based Color Representation** Four vectors same color:  $\vec{v_i} \cdot \vec{v_j} = 1$ ► different color:  $\vec{v_i} \cdot \vec{v_i} = -1/3$ 

Vector Programming:  $\min \sum_{e_{ij} \in CE} \frac{3}{4} (\vec{v_i} \cdot \vec{v_j} + \frac{1}{3}) + \frac{3\alpha}{4} \cdot \sum_{e_{ij} \in SE} (1 - \vec{v_i} \cdot \vec{v_j})$ s.t.  $\vec{v_i} \in \{(0, 0, 1), (0, \frac{2\sqrt{2}}{3}, -\frac{1}{3}), (\frac{\sqrt{6}}{3}, -\frac{\sqrt{2}}{3}, -\frac{1}{3}), (\frac{\sqrt{6}}{3}, -\frac{\sqrt{2}}{3}, -\frac{1}{3}), (-\frac{\sqrt{6}}{3}, -\frac{\sqrt{2}}{3}, -\frac{1}{3})\}$ 

Relax to Semidefinite Programming (SDP)

$$\begin{split} \min \sum_{\substack{e_{ij} \in CE \\ \text{s.t.} }} \vec{v_i} \cdot \vec{v_j} - \alpha \sum_{\substack{e_{ij} \in SE \\ e_{ij} \in SE }} \vec{v_i} \cdot \vec{v_j} \\ \text{s.t.} \quad \vec{v_i} \cdot \vec{v_i} = 1, \quad \forall i \in V \\ \vec{v_i} \cdot \vec{v_j} \geq -\frac{1}{3}, \quad \forall e_{ij} \in CE \end{split}$$

Mapping: Continuous solutions to discrete  $v_i \cdot v_j$ 

7: C2 = DEGREE-COLORING(vec);8: C3 = 3ROUND-COLORING(vec);9:  $C = best coloring solution among {C1, C2, C3};$ 10: POST-REFINEMENT(V); 11: while !S.empty() do 12:  $V_i = S.pop();$ 13:  $G.add(v_i);$ 14:  $c(v_i) \leftarrow a legal color;$ 15: end while

O(n) runtime complexity!

## **GH-Tree based 3-Cut Removal**





Linear algorithm gets similar conflict# cf. SDP+Backtrack

#### **Experimental Results – Pentuple Patterning**

|  | Circuit | SDP+Backtrack |     |        | SDP+Greedy |      |        | Linear |      |        |
|--|---------|---------------|-----|--------|------------|------|--------|--------|------|--------|
|  |         | cn#           | st# | CPU(s) | cn#        | st#  | CPU(s) | cn#    | st#  | CPU(s) |
|  | C6288   | 19            | 2   | 2.4    | 19         | 2    | 0.49   | 19     | 5    | 0.005  |
|  | C7552   | 1             | 1   | 0.3    | 1          | 1    | 0.05   | 1      | 4    | 0.001  |
|  | S38417  | 0             | 4   | 1.45   | 0          | 4    | 0.21   | 0      | 4    | 0.001  |
|  | S35932  | 5             | 20  | 8.11   | 5          | 20   | 0.62   | 5      | 25   | 0.009  |
|  | S38584  | 3             | 4   | 1.66   | 7          | 3    | 0.3    | 3      | 6    | 0.008  |
|  | S15850  | 6             | 5   | 2.7    | 7          | 5    | 0.4    | 5      | 15   | 0.007  |
|  | avg.    | 5.7           | 6.0 | 2.77   | 6.5        | 5.83 | 0.35   | 5.5    | 9.8  | 0.005  |
|  | ratio   | 1.0           | 1.0 | 1.0    | 1.15       | 0.97 | 0.12   | 0.97   | 1.64 | 0.002  |

#### Conclusions

First layout decomposition framework for Quadrule Patterning and Beyond
 Our algorithm is effective and efficient to obtain high quality solution
 MPL may be a promising manufacturing solution for sub-10nm technology node
 Facilitaing the advancement of MPL technology

#### Algorithm: Backtrack based Mapping

**Require:** SDP solution  $x_{ij}$ , threshold value  $t_{th}$ ; 1: for all  $x_{ij} \ge t_{th}$  do

- 2: Combine vertices  $v_i$ ,  $v_j$  into one larger vertex; 3: end for
- 4: Construct merged graph  $G' = \{V', CE', SE'\};$
- 5: **BACKTRACK(0**, *G*');
- 6: **return** color assignment result in G';

7: function BACKTRACK(t, G')

- if  $t \ge size[G']$  then
- if Find a better color assignment then
- Store current color assignment;

11: **end if** 

12: **else** 

- 13: **for all legal color** *c* **do**;
- 4:  $G'[t] \leftarrow c;$
- 15: **BACKTRACK**(*t* + 1, *G*');
- $G'[t] \leftarrow -1;$
- 17: **end for**
- 18: end if
- 19: end function



#### Algorithm: GH-tree based 3-Cut Removal

- **Require:** Decomposition graph  $G = \{V, CE, SE\}$ ;
- 1: Construct GH-tree;
- 2: Remove the edges with weight < 4;
- 3: Compute connected components on remaining GH-tree;
- 4: for each component do
- 5: Color assignment on this component;
- 6: **end for**
- 7: Color rotation to interconnect all components;

## Acknowledgements

The authors would like to thank Tsung-Wei Huang for helpful discussions.
 This work is supported in part by Oracle, NSF, and NSFC.

#### E-Mail: bei@cerc.utexas.edu