

Self-aligned Double Patterning Layout Decomposition with Complementary E-Beam Lithography

Jhih-Rong Gao, Bei Yu and **David Z. Pan** Dept. of Electrical and Computer Engineering The University of Texas at Austin

Supported in part by NSF, SRC, NSFC, IBM and Intel

Outline

Motivation & Problem Formulation

- Proposed Algorithms
 - > Post Processing Based Layout Decomposition
 - Simultaneous SADP+EBL Optimization
- Experimental Results
- Conclusion

Self-Aligned Double Patterning (SADP)

- Promising double patterning technique for sub-22nm nodes
- Trim mask can be used to generate cuts
- Issue: Overlay problem caused on some trimming boundaries

Trim mask

E-Beam Lithography (EBL)

- Maskless lithography
 - High Resolution (sub-10nm)
- Issue: Low throughput
- Constraint: Variable-shaped (rectangular) beam system

SADP & E-beam Hybrid?

SADP with multiple cut masks or e-beam cuts

[Y. Borodovsky, Maskless Lito and Multibeam Mask Workshop, 2010]

Complementary/Hybrid Lithography

- Different lithography techniques work together
 - > Base features: Optical lithography or SADP
 - » Low cost, low resolution
 - > Cutting technique: high-resolution MPL/EUVL/EBL/DSA
 - » High cost, high resolution
 - > Tradeoff b/t Printing Quality and Manufacturing Cost
- This work: SADP + EBL

Related Works

- Complementary lithography
 - Y. Borodovsky, Maskless Lithography and Multibeam Mask Writer Workshop, 2010]
- SADP with line cutting for 1D layout
 - > [K. Oyama et al., SPIE 2010]
- SADP with EBL line cutting for 1D layout
 - [D. Lam et al., SPIE 2011], [Y. Du et al., ASPDAC 2012]
- SADP layout decompositions for 2D layouts
 - > [Ban+, DAC'11], [H. Zhang+, DAC'11], [Xiao+, TCAD 13]

Problem Formulation

- Given
 - General 2D layouts
 - Minimum pattern spacing on a single mask
- Objective: Perform layout decomposition with SADP+EBL
 - > No min-spacing conflict for mandrel/trim mask
 - > Minimize overlay error caused by trim mask
 - Minimize e-beam shots

Outline

Motivation & Problem Formulation

Proposed Algorithms

- > Post Processing Based Layout Decomposition
- Simultaneous SADP+EBL Optimization
- Experimental Results
- Conclusion

Dealing with SADP Conflicts

Merge&Cut (M&C) technique

- > Step1: Merge conflicting patterns
- > Step2: Cut unwanted parts by trim mask or e-beams

Merge & Cut (M&C) Technique

- May have multiple solution candidates
- Cut cost
 - > Cost of trim mask cut = α * Length of cutting boundary
 - » Penalty to minimize overlay error
 - > Cost of e-beam cut = β * Number of shots required
 - » Set β much larger than α to minimize e-beam shot counts

Finding M&C Solutions

Objective: solve all conflicts with minimum cost

- Matching-based algorithm
 - > Step1: Conflict Graph construction
 - Step2: Dual Face Graph construction
 - » Conflict node: an odd face on the conflict graph
 - » M&C node: a M&C candidate to solve a conflict
 - » Edge: b/t a conflict node and its M&C solution candidates

Odd cycle = Conflict

Conflict graph

Finding M&C Solutions (cont)

Matching-based algorithm

- > Step 3: Apply min-cost matching algorithm on face graph
 - » Edge = conflict solved by a M&C candidate
 - » Each conflict node only needs to be covered once

Matching solution = Selection of M&C candidates that can solve conflicts with the minimum cost

Method 1: Post Processing Based Layout Decomposition

Method 1: Post Processing Based Layout Decomposition (cont)

Method 2: Simultaneous SADP+EBL Optimization

Method 2: Simultaneous SADP+EBL Optimization (cont)

Initialize cost of all cuts based on trim mask cutting length

Iter. 1 Matching solution

Check trim cuts

• Update one conflicting cut as EBL cut (cost = β)

Iter. 2 Matching solution

Check trim cuts

Update cost

Iter. 3 Matching solution

Check trim cuts

Keep going...

Continue iterations until no conflict in cuts

Final matching solution

Final cut assignment

Experiment Settings

Benchmarks

- > OpenSPARC T1 designs
- Scaled down to 22nm
- Comparison methods
 - > SADP w/o merge&cut
 - > SADP w/ merge&cut
 - > Hybrid-post: post-processing based decomposition
 - > Hybrid-sim: simultaneous SADP+EBL decomposition

Comparison of Remaining Conflicts

Comparison of E-beam Utilization

Comparison of Overlay Error

Conclusion

- Complementary lithography enables high quality layout with less mask manufacturing cost
- Merge & cut technique to reduces conflicts
- Simultaneous SADP layout decomposition and E-beam assignment performed effectively to minimize
 - Conflict
 - > SADP overlay due to trim mask
 - > E-beam shot counts

Thank You