

ATFormer: A Learned Performance Model with Transfer Learning Across Devices for Deep Learning Tensor Programs

Yang Bai, Wenqian Zhao, Shuo Yin, Zixiao Wang, Bei Yu

Department of Computer Science and Engineering Chinese University of Hong Kong

[Background](#page-2-0)

[Method](#page-2-0)

Background: AutoTuner with Machine Learning

Method

We describe a DNN model as a computation graph and then define some important terminologies.

Computation Graph

Computation Graph *G* is partitioned into a set of subgraphs *S* based on the graph-level optimizer.

Hierarchical Search Space

A tensor program, denoted by *p*, represents an implementation of the subgraph using low-level primitives that are dependent on the hardware platform. Each tensor program can be considered as a candidate in the search space. We define the hierarchical search space $\phi_{1,2}$, which decouples high-level structures ϕ_1 from low-level details ϕ_2 , allowing for the efficient exploration of potential tensor candidates during the tuning process.

Each search task is extracted from an independent subgraph *Sⁱ* on a specific hardware platform H. Thus, we define search task *Q* as follows:

$$
Q_{\mathbb{H}(S|G)} = \left\{ Q_{(S_1|G)}^1, Q_{(S_2|G)}^2, \dots, Q_{(S_n|G)}^n \right\},\tag{1}
$$

where *n* is the number of subgraphs in *G*. Note that each subgraph *Sⁱ* contains a computation-intensive operator σ and $\sigma \in S_i$. Here, we can transform a tuning problem into an optimization problem that explores the potential tensor programs in a hierarchical search space.

Given code generation function \eth , high-level structure generation parameters ϕ_1 . low-level detail sampling parameters ϕ_2 , computation-intensive operator σ and operator setting k (*e.g.*, kernel size), our goal is to use $\phi_{1,2}$ to build a hierarchical search space and generate tensor program *p* to achieve the optimal prediction score *y* [∗] on a specific hardware platform H.

$$
\phi_{1,2}^* = \underset{\phi}{\arg \max y},
$$

\n
$$
y = f_{\mathbb{H}}(\mathfrak{F}(\phi_1, \phi_2 | \sigma, k)).
$$
\n(2)

Method: Search-based Framework

The overview of a search-based framework with computation graph, cost model, and search space.

Hierarchical features of Conv2D with a full tensor program representation in the search space.

The performance model's architecture includes two attention blocks that extract coarse and fine-grained features of the tensor program, as well as a lightweight MLP layer for directly predicting the score.

Transfer learning among different platforms.

Evaluation

End-to-end performance comparison of cost models across DNNs and normalized by the XGBoost.

Table: Transferable adaptation evaluation between different GPU platforms on ResNet-18.

Table: Pre-trained models on TenSet-500 via transfer learning with converged latency.

Table: Total latency and tuning time of different methods, using ResNet-18, MobileNet-V2 and Bert-Tiny networks for end-to-end evaluation. The relative gains obtain for batch size $= 1$ with 300 measurement trials.

Conclusion

This paper introduces ATFormer, a novel and effective design for optimizing tensor programs.

- ATFormer employs hierarchical features with varying levels of granularity to model the end-to-end compilation.
- Self-attention blocks are utilized to explore global dependencies of a complete tensor program for high-quality evaluation.
- Through transfer learning, ATFormer achieves faster-converged latency and superior transferability across different hardware platforms, outperforming previous state-of-the-art benchmarks.

THANK YOU!