
Lay-Net: Grafting Netlist Knowledge on
Layout-Based Congestion Prediction

Su Zheng∗1, Lancheng Zou∗2, Peng Xu1, Siting Liu1, Bei Yu1, Martin Wong1
1Chinese University of Hong Kong 2Wuhan University

Abstract—Congestion modeling is a key point for improving
the routability of VLSI placement solutions. The underuti-
lization of netlist information limits the performance of ex-
isting layout-based congestion modeling methods. Combining
the knowledge from netlist and layout, we graft netlist-based
message passing on a layout-based model to achieve better
congestion prediction performance. The novel heterogeneous
message-passing paradigm better embeds the routing demand
into the model by considering both connections between cells
and overlaps of nets. With the help of multi-scale features, the
proposed model can effectively capture connection information
across different ranges, overcoming the problem of insufficient
global information in existing models. Based on the advance-
ments, the proposed model achieves significant improvement
compared with existing methods.

I. INTRODUCTION

Placement is a crucial and time-consuming stage in the
electronic design automation (EDA) flow [1]–[10]. Modeling
and optimization of routing congestion in placement can
greatly influence the quality of results (QoR) [11]–[13]. To
accurately model the congestion, placers commonly integrate
routing processes [14]–[17] or analytical models [18]–[21] to
estimate the congestion. However, the routing-based methods
are plagued by considerable runtime overhead while the
model-based approaches suffer from low accuracy.

To avoid the large overhead of invoking global routing
while keeping high accuracy, deep-learning-based approaches
have been proposed to replace the time-consuming routing
engines in congestion modeling. Given the placement fea-
tures like the rectangular uniform wire density (RUDY) [18],
various image-to-image translation models have been utilized
to predict the routing congestion, such as fully-convolutional
networks (FCN) [22], [23], generative adversarial networks
(GAN) [24], and J-Net [25]. Neural architecture search
(NAS) allows for the automatic and flexible design of con-
gestion prediction models [26]. LACO [27] proposes a look-
ahead mechanism, which can serve as a plugin to mitigate the
distribution shift problem in congestion modeling. In these
methods, the layout is decomposed into grid cells, each of
which is represented by a pixel on an image. Utilizing the in-
formation from netlists, graph neural networks (GNN) [28]–
[30] are designed to predict the congestion on the circuit
cells. In LHNN [31], the grid cells and nets in placement are

This work is partially supported by AI Chip Center for Emerging Smart
Systems (ACCESS) and Research Grants Council of Hong Kong SAR
(No. CUHK14208021).

∗ These authors contributed equally to this paper.

modeled by hypergraphs, and the novel lattice hypergraph
neural network can utilize the connection information to
achieve better performance. PGNN [32] employs pin-based
GNN to model the routing demand.

The above methods exploit vision models based on geo-
metric features or graph models based on connections to im-
prove congestion prediction. Nevertheless, several common
problems exist in previous methods. First, the multimodal
fusion of layout and netlist features has not been extensively
explored. Existing models cannot effectively aggregate the
information given by cell locations and net connectivity.
Second, most methods can only utilize local information,
ignoring long-range routing demand. Precisely, as illustrated
in Fig. 1(a), vision-based models predict congestion by
extracting local features with convolutional layers, which
lacks a global view of the routing demand. Regarding graph-
based methods, the well-known over-smoothing problem of
GNN [33] limits the collection of long-range information.
Third, existing GNN models overlook the routing demand
arising from the overlaps of nets, which is a crucial factor
contributing to routing congestion. As shown in Fig. 1(b),
even though the long-range connections can be established
according to the netlist, the cell-to-cell or cell-to-net links
in existing approaches cannot directly model the physical
routing demand in GNNs. These limitations call for a novel
multimodal congestion prediction model to tackle them.

To conquer the weaknesses of existing models, we not only
consider feature pyramids to extract multi-scale information
but also design a heterogeneous message-passing paradigm
to directly model the routing demand. The proposed model
Lay-Net can graft netlist-based knowledge on layout-based
model to achieve better congestion prediction performance.
Lay-Net combines the strengths of vision-based and graph-
based networks while overcoming the limitations of existing
models. Fig. 1(c) illustrates the basic principles of Lay-Net. It
utilizes multi-scale features to effectively capture both local
and global information. The routing demand is explicitly
represented by the net-to-net message-passing mechanism. In
summary, the major contributions of this paper are as follows:

• We propose a multimodal congestion prediction model
that can exploit the geometric features from post-
placement layout and the connection information from
circuit netlists. The novel network architecture boosts
the performance by gathering diverse information that
can indicate routing congestion.

• To address the limitation of local information aggrega-

(a) (b)

Aggreate

Downsample

Congestion Map

(c)

Cell-to-cell Message Passing

Cell-to-net Message Passing

Net-to-net Message Passing

Fig. 1 Comparison between existing methods and Lay-Net. (a) Models based on convolutional layers suffer from the lack
of a global view. (b) Lattice graph models can only aggregate local information from neighbors due to the over-smoothing
problem. The cell-to-net message passing does not directly model the routing demand. (c) Lay-Net enables global information
aggregation by utilizing hierarchical feature maps and explicitly models the routing demand via net-to-net message passing.

tion in existing methods, Lay-Net employs hierarchical
feature maps in its vision-based components and enables
multi-scale message passing in its graph-based compo-
nents, enabling it to capture long-range relationships.

• Lay-Net integrates a heterogeneous graph neural net-
work structure that enables cell-to-cell, cell-to-net, and
net-to-net message passing. Cell-to-cell and cell-to-net
connections can reflect the logical relationships between
the circuit components. Net-to-net connections can im-
ply the physical relationships between the nets, which
explicitly models the routing demand.

• Extensive experiments verify the effectiveness of the
novel Lay-Net, which outperforms the existing conges-
tion prediction models.

The rest of our article is organized as follows. Section II
introduces the preliminaries. Section III shows the details of
the proposed method. Section IV presents various experimen-
tal results that can prove the effectiveness of Lay-Net. The
conclusion is shown in Section V.

II. PRELIMINARIES

A. Congestion Modeling for Placement
In a placement algorithm, we commonly represent the

circuit with a netlist hypergraph, G =< V,E >. V is the
set of circuit cells, including standard cells and macros. The
set E contains the hyperedges that represent the nets in the
circuits. Each net e ∈ E connects multiple pins, each of which
belongs to a cell in V. The global placement (GP) process
adjusts the cell locations to optimize the objectives.

In [23], [27], congestion prediction models are integrated
into GP by adding a congestion penalty term into the place-
ment objective function. The objective function becomes:

min
x,y

∑

e∈E

We(x,y) + λD(x,y) + ηL(x,y), (1)

where We(x,y) is the wirelength of net e, λ is the density
penalty weight, D(x,y) is the density penalty function, η
is the congestion penalty weight, and L(x,y) is the routing
congestion penalty obtained from the congestion prediction
model. The integration of prediction models not only shows
the practical application of deep learning in placement but
also highlights the importance of congestion modeling.

B. Placement Features for Congestion Prediction

In existing congestion prediction methods, RUDY-based
features are usually adopted to model the routing de-
mand [22], [26], [27], [31]. Macro-based features are utilized
to distinguish macros from standard cells [22], [23], [27].
RUDY, PinRUDY, and MacroRegion are three representative
features [23]. To calculate RUDY, we first get the bounding
box of each net, which is formulated by:

xh
e = max

pe

xpe
, xl

e = min
pe

xpe
, yhe = max

pe

ype
, yle = min

pe

ype
,

(2)
where pe denotes a pin in the net e, whose location is
(xpe , ype). Next, the RUDY for net e in the region x ∈
[xl

e, x
h
e], y ∈ [yle, y

h
e] is defined as:

RUDYe(x,y) = (
1

xh
e − xl

e

+
1

yhe − yle
). (3)

We have RUDYe(x,y) = 0 outside the region [xl
e, x

h
e] ×

[yle, y
h
e]. Finally, RUDY can be defined as,

RUDY(x,y) =
∑

e∈E

RUDYe(x,y). (4)

In practice, the RUDY map is divided into M×N grid cells.
The RUDY of a grid cell bk,l is calculated by summing up
the RUDY values of the nets that cover it.

PinRUDY is the pin density map inspired by RUDY. To
compute the PinRUDY, we need to split the layout into a
M × N grid and estimate the pin density of each grid cell
bk,l. The PinRUDY of a pin is calculated with,

PinRUDYpe
(k, l) = (

1

xh
e − xl

e

+
1

yhe − yle
), (xpe

, ype
) ∈ bk,l.

(5)
Finally, the PinRUDY of the grid cell bk,l is defined as,

PinRUDY(k, l) =
∑

pe∈bk,l

PinRUDYpe
(k, l). (6)

MacroRegion indicates whether a region is covered by
a macro cell or not. For a grid cell bk,l, the MacroRegion
feature is defined as,

MacroRegion(k, l) =

{
1, if bk,l is in a macro cell,
0, otherwise.

(7)

Fig. 2 Multi-scale features from the Swin Transformer back-
bone. Patch merging mechanism and Swin Transformer block
are utilized to get the feature map at a lower scale.

III. METHOD

The proposed model Lay-Net learns a mapping from
the layout-netlist information to the congestion heatmap.
It achieves better congestion prediction performance by
grafting netlist-based knowledge on a layout-based model.
To exploit the layout-based information, Lay-Net maintains
multi-scale feature maps so that both short-range and long-
range relationships can be utilized. To incorporate netlist-
based knowledge, Lay-Net carries out message passing (MP)
on the multi-scale feature maps based on heterogeneous
GNN models. In this section, we first show the problem
formulation of our congestion prediction method, and then
describe the details about the multi-scale feature extraction,
heterogeneous message passing, neural network architecture,
and input features.

A. Problem Formulation

In congestion prediction, we usually divide the circuit
layout into M×N grid cells. Each grid cell is analogized to a
pixel in an image X ∈ RC×M×N that contains C placement
features, such as RUDY, PinRUDY, and MacroRegion. The
routing overflow Y ∈ R2×M×N of the grid cells can be given
by a router. The two channels correspond to the horizontal
and vertical routing overflow. Thus, image-to-image transla-
tion models like FCN and GAN can be employed to learn a
mapping fI : RC×M×N 7→ R2×M×N that minimizes:

LI(X,Y) =
1

NM
∥fI(X)− Y ∥22. (8)

Image-to-image translation models focus on geometric
information of the placement results. However, since con-
gestion is induced by excessive routing demand, incor-
porating connection information into the neural networks
is conducive. To model the relationships between grid
cells and nets, we design a heterogeneous graph GH =<
VC ,VN ,ECC ,ECN ,ENN >. Each vertex vC ∈ VC repre-
sents a grid cell Xi,j ∈ X . Similarly, a vertex vN ∈ VN

corresponds to a net in the netlist. ECC , ECN , and ENN stand
for cell-to-cell, cell-to-net, and net-to-net connections, re-
spectively. Section III-C discusses the connections in details.
In this paper, we design a multimodal model that involves
netlist and layout information to learn a function fH(GH ,X)
that minimizes:

LH(GH ,X,Y) =
1

NM
∥fH(GH ,X)− Y ∥22. (9)

Linear
Qi

Linear
Ki

Linear
V i

Linear
Qi

Linear
Ki

Linear
V i

Linear
Qi

Linear
Ki

Linear
V i

Attention
Softmax

(
QiK

T
i√

dk
V i

)Attention
Softmax

(
QiK

T
i√

dk
V i

)Attention
Softmax

(
QiK

T
i√

dk
V i

)

Linear
Qi

Linear
Ki

Linear
V i

Q K V

Attention

Softmax
(

QiK
⊤
i√

dk
V i

)

Concat

Linear

(a)

(b)

(c)

Fig. 3 Illustration of (a) multi-head self-attention layer; (b)
self-attention in non-overlapped windows; (c) self-attention
in shifted windows. Different opacities indicate that different
levels of attention are paid to the patches.

B. Multi-scale Feature Extraction

As shown in Fig. 2, Lay-Net extracts multi-scale features
via four stages, which are based on Vision Transformer
(ViT) [34] and Swin Transformer [35]. ViT splits an im-
age into fixed-size patches, each of which is regarded as
a token in sequential data. The multi-head self-attention
mechanism [36] enables ViT to learn the relationships be-
tween different parts of the input and output data, regardless
of their distance or position. Thus, it can capture global
information in the early stages of the model and achieve
better accuracy than previous convolutional neural networks
(CNN). As illustrated by Fig. 3(a), a multi-head self-attention
layer involves the query (Q), key (K), and value (V), which
are obtained by linear transformations of the layer’s input.
After that, Q, K, and V are further projected to multiple
heads via linear transformations. Each head is processed by
the attention mechanism, which can be formulated by:

Attention(Qi,Ki,Vi) = Softmax
(
QiK

⊤
i√

dk
Vi

)
, (10)

where dk is a normalization factor to avoid abnormal gradi-
ents. The heads are finally concatenated and linearly trans-
formed as the output.

Swin Transformer models an image in various scales
with patch merging and utilizes local features with self-
attention in shifted windows. These advantages help Swin
Transformer to outperform the vanilla ViT. Thus, Lay-Net
is designed based on Swin Transformer. As illustrated in
Fig. 2, Swin Transformer uses four stages to get the multi-
scale features. The features at the first stage are obtained
by splitting the input into non-overlapping patches, each of
which typically has a size of 4×4. A linear embedding layer
is applied to these raw-valued features to project them to
a specified dimension. Patch merging mechanism and Swin
Transformer block are used to downscale the features. A
patch merging layer concatenates the features of each group
of 2 × 2 neighboring patches and applies a linear layer on

(a) (b) (c) (d)

Grid Cell in Layout

Grid Cell as Vertex

Net in Netlist

Cell-to-cell Edge

Cell-to-net Edge

Net-to-net Edge

Bounding-box of NetNet as Vertex

Fig. 4 Illustration of the novel heterogeneous message-passing mechanism. (a) The original grid cells and nets. (b) Cell-to-cell
edges, each of which connects a pair of vertices linked by a net. (c) Cell-to-net edges between the nets and the grid cells that
they connect. (d) Net-to-net edges, constructed according to the overlaps between net bounding boxes.

⊕
MLP

⊕
SW-MSA

⊕
MLP

⊕
W-MSA

(a)

⊕
MLP

Heterogeneous Graph Convolution

MLP

(b)

Fig. 5 Detailed structures of (a) Swin Transformer block and
(b) heterogeneous GNN block.

the concatenated features. As shown in Fig. 5(a), a Swin
Transformer block contains the following layers:

• Multi-head self-attention in non-overlapped windows
(W-MSA). As illustrated in Fig. 3(b), the feature patches
are grouped by windows. A multi-head self-attention
layer is applied within each window.

• Multi-layer linear perceptrons (MLP), consisting of two
fully-connected layers.

• Multi-head self-attention in shifted windows (SW-
MSA). As shown in Fig. 3(c), W-MSA uses a regular
window partitioning strategy that starts from the top-
left, while SW-MSA displaces the windows by half of
the window size.

• Multi-layer linear perceptrons (MLP).

C. Heterogeneous Message Passing

Graph neural networks (GNN) process graph data via mes-
sage passing, which iteratively updates the features of vertices
or edges by exchanging information with their neighbors.
Designing a heterogeneous message-passing mechanism is
the key point for handling heterogeneous graphs in GNN. As
discussed in Section III-A, we design a heterogeneous graph
GH =< VC ,VN ,ECC ,ECN ,ENN > to represent the netlist
knowledge. The vertex sets VC and VN correspond to the
grid cells and nets, respectively. ECC contains the edges that
connect the grid cells according to the netlist. The edges in

ECN indicate the relationships between grid cells and nets.
ENN is designed to reflect the interplay between different
nets. In this section, we describe how to model the routing
demand with the edge sets and the heterogeneous message-
passing paradigm.

Cell-to-cell Connections. Each vertex in VC represents a
grid cell on the layout, which may correspond to one or
multiple cells in the netlist. Fig. 4(a) and Fig. 4(b) illustrate
the construction of ECC . For vertices vC,i, vC,j ∈ VC , if a
cell in vC,i and a cell in vC,j are connected by a net, we add
an edge (vC,i, vC,j) to ECC . As a result, ECC can reflect the
logical connections between grid cells. The message passing
according to ECC can exchange the routing demand between
grid cells, which is helpful for congestion prediction.

Cell-to-net Connections. If a net vN,k ∈ VN con-
nects grid cells vC,1, vC,2, . . . vC,l ∈ VC , we add the
edges (vC,1, vN,k), (vC,2, vN,k), . . . , (vC,l, vN,k) to ECN . As
shown in Fig. 4(c), these edges indicate the relationships
between grid cells and nets. More importantly, ECN bridges
the gap between cell-to-cell and net-to-net message passing,
fusing logical and physical information.

Net-to-net Connections. As presented in Fig. 4(d), if the
bounding boxes of two nets vN,i, vN,j ∈ VN are overlapped,
we add an edge (vN,i, vN,j) to ENN . Placement algorithms
commonly optimize the half perimeter wire lengths (HPWL)
of nets. This objective implies an assumption that most
routing demand of a net lies within its bounding box. There-
fore, the overlaps between bounding boxes can indicate the
conflicting routing demand from different nets. The net-to-
net connections directly model the physical routing demand,
distinguishing Lay-Net from existing GNN-based methods
that only utilize the logical connections from netlists.

Given the multi-scale features from the layout-based back-
bone network, we apply a GNN block at each scale to embed
the netlist knowledge into the feature maps. We construct a
heterogeneous graph G

(i)
H =< V

(i)
C ,V

(i)
N ,E

(i)
CC ,E

(i)
CN ,E

(i)
NN >

for the ith scale, where a grid cell corresponds to an element
on the feature map. The cell-to-cell, cell-to-net, and net-to-net
connections can guide the heterogeneous message passing.

Messasge Passing Paradigm. For a grid cell v ∈ V
(i)
C , whose

Netlist and Layout Features

P
at
ch

E
m
b
ed

d
in
g

S
w
in

T
ra
n
sf
o
rm

er
B
lo
ck

×NS1

H
et
er
og

en
eo
u
s
G
N
N

Stage 1

P
at
ch

M
er
g
in
g

S
w
in

T
ra
n
sf
or
m
er

B
lo
ck

×NS2

H
et
er
o
ge
n
eo
u
s
G
N
N

Stage 2

P
a
tc
h
M
er
g
in
g

S
w
in

T
ra
n
sf
or
m
er

B
lo
ck

×NS3

H
et
er
o
ge
n
eo
u
s
G
N
N

Stage 3

P
at
ch

M
er
g
in
g

S
w
in

T
ra
n
sf
o
rm

er
B
lo
ck

×NS4

H
et
er
og

en
eo
u
s
G
N
N

Stage 4

Encoder

Decoder

Congestion Heatmap

Fig. 6 Overview of Lay-Net, which consists of 4 stages. At each stage, the patch merging layer and Swin Transformer block
extract features from the output of the previous stage. The heterogeneous GNN layer conducts message passing on the output
of the Swin Transformer block.

Stage 1

Stage 2

Stage 3

Stage 4

Encoder

scale= 1
4

scale= 1
8

scale= 1
16

scale= 1
32

⊕

⊕

⊕

PPM

scale×2

scale×2

scale×2

⊕

⊕

⊕
×2

×2

×2

×4

×8

×16

×32

Fig. 7 UPerNet-based decoder, which employs upscaling
functions and residual connections to combine the multi-
scale features. The quadrangles represent convolutional layers
for extracting local features. Pyramid pooling module (PPM)
enables the utilization of global contextual information.

feature is h
(i)
v , we first transform it with MLP:

h(i)′
v = fMLP

C1 (h(i)
v). (11)

After that, we apply a heterogeneous graph convolution
operation, which can be formulated as:

h(i)′′
v =

∑

u∈NCC(v)

WCC

cuv
h(i)′
u +

∑

u∈NCN (v)

WCN

cuv
h(i)′
u ,

(12)

where NCC(v) and NCN (v) denote the neighbors of vertex
v in cell-to-cell and cell-to-net connections, respectively.
The weight matrices WCC and WCN are designed for
these two types of connections. The normalization factor
cuv is calculated according to the vertex degrees, i.e. cuv =√
|N(u)||N(v)|. Finally, we obtain the output features of the

current scale with the residual MLP defined as:

h(i)′′′
v = h(i)

v + fMLP
C2 (h(i)′′

v). (13)

Note that we omit the ReLU activation functions in these
formulas for simplicity. We employ 3-layer MLPs in het-
erogeneous message passing with the same hidden layer

dimension as the preceding Swin Transformer block. The
overall structure of a heterogeneous GNN block can be
summarized in Fig. 5(b).

Similarly, the heterogeneous message-passing paradigm
for a net v ∈ V

(i)
N can be formulated by:

h(i)′
v = fMLP

N1 (h(i)
v), (14)

h(i)′′
v =

∑

u∈NCN (v)

WNC

cuv
h(i)′
u +

∑

u∈NNN (v)

euvWNN

cuv
h(i)′
u ,

(15)

h(i)′′′
v = h(i)

v + fMLP
N2 (h(i)′′

v), (16)

where WNC and WNN denote the weight matrices for
cell-to-net and net-to-net connections, respectively. NNN (v)
contains the neighbors of vertex v in net-to-net connections.
The weight euv models the routing conflict between nets u
and v, which is computed according to the overlapping area
between their bounding boxes.

D. Network Architecture

Fig. 6 presents the network architecture of Lay-Net, which
consists of four stages. We input the layout features and
netlist information into the network. At the first stage, a patch
embedding layer partitions the layout features into 4 × 4
patches and applies a linear transformation to each patch.
The Swin Transformer block extracts meaningful information
from the patches. After that, the transformed layout features
are fed to the heterogeneous GNN block, which carries out
message passing on the graph G

(1)
H . At each following stage,

a patch merging layer concatenates the features of each group
of 2 × 2 neighboring patches. The downscaled features are
processed by the Swin Transformer and heterogeneous GNN
blocks. Note that G

(i)
H is used in the heterogeneous GNN

block at the ith stage. Combining feature pyramids [39] with
convolutional neural networks, we employ UPerNet [40] as
a decoder to aggregate the multi-scale features and predict
the congestion heatmap. As shown in Fig. 7, the UPerNet-
based decoder employs upscaling functions and residual
connections to combine the features from different stages.

Macro

Grid Cell

Vertical MacroMargin

Horizontal MacroMargin

Fig. 8 Illustration of the horizontal/vertical Macro-
Margin. For a grid cell, MacroMargin measures the
distance between its neighboring macros. If a grid
cell has no neighboring macro, we use the layout
boundary to calculate the distance.

(a) (b)

0.2 0.4 0.6

Cosine Similarity

RUDY
PinRUDY
MacroRegion
MacroMargin

(c)

Fig. 9 Illustration of MacroMargin. (a) shows the horizontal MacroMar-
gin of the mgc_des_perf_a testcase. (b) is the horizontal congestion
heatmap. (c) compares the average cosine similarities between the
features and the congestion heatmap on our dataset.

TABLE I Comparison Between Prediction Methods

Characteristic RUDY-Aware∗ Macro-Aware Routing-Free Global Info. Cell-to-cell Cell-to-net Net-to-net Multi-scale Graphs

RouteNet [22] ! ! % % % % % %

GAN [24] ! ! ! % % % % %

NAS [26] ! ! ! % % % % %

Cross-Graph [29] % % ! % ! % % %

LHNN [31] ! % ! % ! ! % %

PGNN [32] ! % ! % ! % % %

CircuitGNN [30] ! % ! % ! ! % %

Lay-Net ! ! ! ! ! ! ! !

∗: Any network that is aware of routability features are considered as RUDY-Aware.

TABLE II Comparison Between Multimodal Fusion Methods

Fusion Scheme Characteristics

PGNN [32] Pin-based GNN inside grid cells Accurate local modeling, but complex and in lack of global information
LHNN [31], CircuitGNN [30] Cell-to-cell MP between grid cells Simple and computationally efficient, but with little global information

TimingPred [37] Path-finding on grid cells Precise tracking of signal transmission, less useful for congestion modeling
HybridNet [38] Topological + geometric GNNs Little information exchange between modalities

Lay-Net GNN on multi-scale layout features Full interaction between modalities, aware of global&local routing demand

Pyramid pooling module (PPM) [41] is utilized to capture
global contextual information, while convolutional layers are
used to extract local features.

E. Input Features

Lay-Net utilizes the following layout features:

1) RUDY, defined by Equation (4).
2) PinRUDY, defined by Equation (6).
3) MacroRegion, defined by Equation (7).
4) Horizontal/vertical MacroMargin. As shown in Fig. 8,

it measures the distance between the margins of two
adjacent macros. For a grid cell with no adjacent macro,
we use the layout boundary to calculate the distance.

As a result, the input tensor of Lay-Net is 5 × M × N .
Note that MacroMargin is the novel feature proposed in this
paper. Fig. 9(a) and Fig. 9(b) visualize the MacroMargin
and congestion heatmap of the mgc_des_perf_a testcase.
It can be seen that congestion usually occurs in the region
with high MacroMargin values. Fig. 9(c) illustrates how well
the features match the congestion heatmap by measuring
their average cosine similarities on our dataset. Among the

features, MacroMargin has the highest cosine similarity with
the ground truth.

In the heterogeneous GNN block, each vertex vC ∈ V
(i)
C

utilizes the features of the corresponding grid cell output by
the Swin Transformer block. For vN ∈ V

(i)
N , we use the

horizontal span, vertical span, and area of a net as the features
of the corresponding vertex.

F. Comparison with Previous Models

TABLE I presents the difference between Lay-Net and
existing models for routability prediction, including con-
gestion prediction, design rule violation (DRV) prediction,
etc. Most methods are RUDY-aware since routability-based
features are essential for congestion prediction. Macro-aware
feature is important because we observe that congestion
frequently appears around macros. Routing-free is also a
common feature, which means that a method does not rely on
the time-consuming trial global routing process. The multi-
scale features enable Lay-Net to aggregate global information
without losing local details, distinguishing it from existing
methods. Combining cell-to-cell, cell-to-net, and net-to-net
message passing, Lay-Net models the routing demand logi-

0 100 200 300 400

0

0.5

1

Step

L
o
ss

GAN
RouteNet
LHNN
Lay-Net

Fig. 10 Loss curves of the models. Lay-Net converges
faster than other models.

H
or

iz
on

ta
l

Ve
rti

ca
l

Ground Truth RouteNet Lay-Net

Fig. 11 Visualization of congestion prediction results. RouteNet
incorrectly identifies some non-congested areas as congested.

cally and physically, which is one of Lay-Net’s advantages.
Moreover, the multi-scale heterogeneous GNNs can combine
local and global information without over-smoothing. These
advancements can boost the performance of Lay-Net.

The combination of layout features and netlist information
serves as the multimodal fusion mechanism in congestion
prediction. In related fields such as congestion prediction,
DRV prediction, and timing prediction, there exist several
ways to combine multimodal features. TABLE II compares
different multimodal fusion schemes. Multi-scale heteroge-
neous message passing enables Lay-Net to capture both local
and global routing demand. The alternation of layout-based
and netlist-based blocks in Lay-Net achieves a full interaction
between the modalities. These characteristics make Lay-Net
more suitable for congestion prediction.

IV. EXPERIMENTS

A. Experiment Settings
We implement Lay-Net with DGL [42] and Pytorch. The

hardware platform is equipped with Intel Gold 6326 CPU and
RTX 3090 GPU. We conduct the experiments on ISPD 2015
benchmark [43]. For each design, we generate 600 place-
ment solutions using Cadence Innovus v17.1 with different
parameters. To enrich the training set, we allow Innovus to
adjust the macro locations. The congestion ground truths are
generated based on the global routing solutions from Innovus.

For the training and test data, we employ a challenging
setting. We randomly divide the 20 designs in the dataset into
10 designs as part-A and 10 designs as part-B. To evaluate
the performance of our model, we conduct two experiments:
exp-AB and exp-BA. In exp-AB, the training and test sets
are part-A and part-B, respectively. Conversely, in exp-BA,
we use part-B for training and part-A for testing.

B. Comparison with Previous Methods
To compare previous methods with our Lay-Net on con-

gestion prediction, we employ the commonly used metrics,
SSIM and NRMS [27], [44]. Structural similarity (SSIM)
measures the similarity between two images, which is defined
as:

SSIM(Y ,Y) =
(2µY µY + C1)(2σY ,Y + C2)

(µ2
Y + µ2

Y
+ C1)(σ2

Y + σ2
Y

+ C2)
. (17)

Given the ground truth Y and predicted congestion Y , µY

and µY are their mean values, σ2
Y and σ2

Y
are their variances.

The correlation coefficient between the ground truth and
predicted result is σY ,Y . C1 and C2 are two constants that
stabilize the division with a weak denominator.

Normalized root mean square error (NRMS) measures the
quality of the predicted image, which can be defined as:

NRMS(Y ,Y) =
∥Y − Y ∥2

(Ymax − Ymin)
√
NY

, (18)

where NY is a number of grid cells. Ymax and Ymin are the
maximum and minimum values of Y , respectively.

Note that a larger SSIM is better, while a smaller NRMS
is preferred. To get a unified metric, we score the models by:

Score(Y ,Y) =
SSIM(Y ,Y)

NRMS(Y ,Y)
. (19)

In TABLE III, we compare RouteNet [22], GAN [24],
LHNN [31], and our model Lay-Net on congestion predic-
tion. According to Section IV-A, we randomly divide the
testcases into part-A and part-B. For a testcase in part-
A, we show the results of the models trained on part-B,
and vice versa. Lay-Net outperforms the models in terms
of average SSIM, NRMS, and score. Lay-Net and LHNN,
which incorporate netlist-based knowledge, achieve higher
SSIM than the rest of the models. However, LHNN lags
behind Lay-Net in NRMS by a large margin. This indicates
that the multi-scale features and net-to-net connections in
Lay-Net contribute to the improvement in NRMS. Compared
to LHNN, Lay-Net improves the SSIM, NRMS, and score
by 1.0%, 27.5%, and 38.9%, respectively. As shown in
Fig. 10, Lay-Net achieves faster convergence than other
models, due to the easy propagation of gradients to the
earlier stages. Fig. 11 presents the examples of congestion
prediction results. Although both RouteNet and Lay-Net can
roughly estimate the congested regions, RouteNet incorrectly
identifies some non-congested areas as congested, resulting
in lower performance than Lay-Net.

TABLE III Comparison Between Lay-Net and Previous Methods on ISPD 2015 Benchmark

Benchmark #Cells #Nets Part RouteNet [22] GAN [24] LHNN [31] Lay-Net
SSIM NRMS Score SSIM NRMS Score SSIM NRMS Score SSIM NRMS Score

des perf 1 113k 113k B 0.364 0.087 4.183 0.442 0.076 5.815 0.716 0.100 7.159 0.721 0.068 10.60
des perf a 109k 110k A 0.499 0.072 6.930 0.542 0.081 6.691 0.789 0.079 9.987 0.778 0.061 12.75
des perf b 113k 113k A 0.499 0.069 7.231 0.531 0.085 6.247 0.863 0.064 13.48 0.851 0.053 16.05
edit dist a 130k 131k A 0.464 0.091 5.098 0.491 0.109 4.504 0.777 0.089 8.730 0.772 0.068 11.35

fft 1 35k 33k A 0.432 0.087 4.965 0.482 0.102 4.725 0.753 0.079 9.531 0.755 0.060 12.58
fft 2 35k 33k A 0.465 0.083 5.602 0.494 0.100 4.939 0.775 0.085 9.117 0.771 0.063 12.23
fft a 34k 32k A 0.470 0.105 4.476 0.489 0.114 4.289 0.651 0.113 5.761 0.826 0.094 8.787
fft b 34k 32k B 0.337 0.096 3.510 0.494 0.085 5.811 0.814 0.074 11.00 0.801 0.059 13.57

matrix mult 1 160k 159k B 0.325 0.091 3.571 0.383 0.088 4.352 0.526 0.112 4.696 0.530 0.092 5.760
matrix mult 2 160k 159k B 0.375 0.083 4.518 0.435 0.077 5.649 0.669 0.105 6.371 0.676 0.070 9.657
matrix mult a 154k 154k B 0.391 0.089 4.393 0.451 0.085 5.305 0.599 0.092 6.510 0.603 0.088 6.852
matrix mult b 151k 152k B 0.422 0.092 4.586 0.493 0.081 6.086 0.708 0.173 4.092 0.715 0.070 10.21
matrix mult c 151k 152k B 0.366 0.090 4.066 0.443 0.081 5.469 0.660 0.112 5.892 0.664 0.079 8.405
pci bridge32 a 30k 30k B 0.301 0.102 2.950 0.356 0.095 3.747 0.675 0.115 5.869 0.530 0.092 5.760
pci bridge32 b 29k 29k A 0.425 0.093 4.569 0.471 0.102 4.617 0.730 0.101 7.227 0.734 0.077 9.532
superblue11 a 954k 936k B 0.445 0.074 6.013 0.521 0.070 7.442 0.675 0.115 5.869 0.740 0.066 11.21
superblue12 1.3m 1.3m B 0.323 0.111 2.909 0.392 0.096 4.083 0.638 0.093 6.860 0.641 0.084 7.630
superblue14 634k 620k A 0.476 0.083 5.734 0.498 0.099 5.030 0.793 0.083 9.554 0.783 0.063 12.42

superblue16 a 698k 697k A 0.385 0.095 4.052 0.458 0.084 5.452 0.653 0.108 6.046 0.661 0.068 9.720
superblue19 522k 512k A 0.454 0.116 3.913 0.488 0.105 4.647 0.800 0.078 10.25 0.783 0.064 12.23

Average - - - 0.411 0.090 4.566 0.468 0.091 5.142 0.713 0.099 7.202 0.717 0.072 9.958
Ratio - - - 0.57 1.25 0.46 0.65 1.26 0.52 0.99 1.38 0.72 1.00 1.00 1.00

0.4 0.6

SSIM

(a)

5 · 10−2 0.1

NRMS

(b)

5 10

Score

(c)

0 2 4 6 8

·10−2Runtime (s)

ViT
Swin
Swin+HGNN
Swin+HGNN+MM

(d)

Fig. 12 Comparison between different schemes by (a) SSIM, (b) NRMS, (c) score, and (d) runtime per sample. ViT with a
single-scale feature has the worst performance. Swin improves the results with the multi-scale modeling ability. Swin+HGNN
incorporates the netlist features to achieve better performance. The heterogeneous GNN block brings significant improvement
with some runtime overhead. Swin+HGNN+MM can surpass other models in terms of SSIM and score.

C. Ablation Study

In this section, ablation studies are conducted to demon-
strate the effectiveness of the proposed techniques. We com-
pare the following schemes:

1) ViT: It uses single-scale layout features based on RUDY,
PinRUDY, and MacroRegion.

2) Swin: It can utilize multi-scale layout features from
Swin Transformer.

3) Swin+HGNN: It applies the proposed heterogeneous
message-passing mechanism to each stage of Swin
Transformer, utilizing the netlist information.

4) Swin+HGNN+MM: In addition to Swin+HGNN, it adds
horizontal/vertical MacroMargin to the input features.
This scheme is the final implementation of Lay-Net.

The schemes are compared by SSIM, NRMS, score, and
runtime per sample in Fig. 12. As shown in Fig. 12(a),
Fig. 12(b), and Fig. 12(c), the most significant improvement
is brought by the netlist information, which underscores
the value of multimodal fusion. The utilization of multi-

scale features also contributes to the superiority of Lay-Net.
Swin+HGNN+MM further enhances the performance with
the proposed MacroMargin feature. According to Fig. 12(d),
the runtime of Swin+HGNN+MM is not much larger than
the baselines. To conclude, the ablation study validates the
benefits of using multi-scale features, netlist information,
and horizontal/vertical MacroMargin, which highlights the
improvements achieved by Lay-Net.

V. CONCLUSION

In this paper, we propose Lay-Net, a multimodal neural
network for congestion prediction that aggregates both layout
and netlist information. The utilization of multi-scale features
and the novel heterogeneous message-passing mechanism
enable Lay-Net to achieve up to 38.9% improvement over
existing methods. The effectiveness of the proposed tech-
niques is further demonstrated by the ablation studies. The
superiority of Lay-Net highlights the importance of layout-
netlist information fusion and multi-scale feature extraction
in congestion prediction.

REFERENCES

[1] B. Hu and M. Marek-Sadowska, “Fine granularity clustering-based
placement,” IEEE TCAD, vol. 23, no. 4, pp. 527–536, april 2004.

[2] T.-C. Chen, T.-C. Hsu, Z.-W. Jiang, and Y.-W. Chang, “NTUplace: a
ratio partitioning based placement algorithm for large-scale mixed-size
designs,” in Proc. ISPD, 2005, pp. 236–238.

[3] T. Chan, J. Cong, and K. Sze, “Multilevel generalized force-directed
method for circuit placement,” in Proc. ISPD, 2005, pp. 185–192.

[4] A. B. Kahng and Q. Wang, “A faster implementation of APlace,” in
Proc. ISPD, 2006, pp. 218–220.

[5] N. Viswanathan, M. Pan, and C. Chu, “FastPlace 3.0: A fast multilevel
quadratic placement algorithm with placement congestion control,” in
Proc. ASPDAC, 2007, pp. 135–140.

[6] T. Lin, C. Chu, J. R. Shinnerl, I. Bustany, and I. Nedelchev, “POLAR:
placement based on novel rough legalization and refinement,” in
Proc. ICCAD, 2013, pp. 357–362.

[7] J. Lu, H. Zhuang, P. Chen, H. Chang, C.-C. Chang, Y.-C. Wong, L. Sha,
D. Huang, Y. Luo, C.-C. Teng et al., “ePlace-MS: Electrostatics-based
placement for mixed-size circuits,” IEEE TCAD, vol. 34, no. 5, pp.
685–698, 2015.

[8] F.-K. Sun and Y.-W. Chang, “BiG: A bivariate gradient-based wire-
length model for analytical circuit placement,” in Proc. DAC, 2019.

[9] H. Szentimrey, A. Al-Hyari, J. Foxcroft, T. Martin, D. Noel, G. Gre-
wal, and S. Areibi, “Machine learning for congestion management
and routability prediction within FPGA placement,” ACM TODAES,
vol. 25, no. 5, 2020.

[10] L. Liu, B. Fu, M. D. F. Wong, and E. F. Y. Young, “Xplace:
An extremely fast and extensible global placement framework,” in
Proc. DAC, 2022, p. 1309–1314.

[11] T. Taghavi, C. Alpert, A. Huber, Z. Li, G.-J. Nam, and S. Ramji,
“New placement prediction and mitigation techniques for local routing
congestion,” in Proc. ICCAD, 2010, pp. 621–624.

[12] M.-K. Hsu, Y.-F. Chen, C.-C. Huang, S. Chou, T.-H. Lin, T.-C. Chen,
and Y.-W. Chang, “NTUplace4h: A novel routability-driven placement
algorithm for hierarchical mixed-size circuit designs,” IEEE TCAD,
vol. 33, no. 12, pp. 1914–1927, 2014.

[13] C. Cheng, A. B. Kahng, I. Kang, and L. Wang, “RePlAce: Advancing
solution quality and routability validation in global placement,” IEEE
TCAD, vol. 38, no. 9, pp. 1717–1730, 2019.

[14] M.-C. Kim, J. Hu, D.-J. Lee, and I. L. Markov, “A SimPLR method
for routability-driven placement,” in Proc. ICCAD, 2011, pp. 67–73.

[15] X. He, T. Huang, W.-K. Chow, J. Kuang, K.-C. Lam, W. Cai, and
E. F. Y. Young, “Ripple 2.0: High quality routability-driven placement
via global router integration,” in Proc. DAC, 2013, pp. 152:1–152:6.

[16] W.-H. Liu, C.-K. Koh, and Y.-L. Li, “Optimization of placement
solutions for routability,” in Proc. DAC, 2013, pp. 153:1–153:9.

[17] C.-C. Huang, H.-Y. Lee, B.-Q. Lin, S.-W. Yang, C.-H. Chang, S.-
T. Chen, Y.-W. Chang, T.-C. Chen, and I. Bustany, “NTUplace4dr:
A detailed-routing-driven placer for mixed-size circuit designs with
technology and region constraints,” IEEE TCAD, vol. 37, no. 3, pp.
669–681, 2018.

[18] P. Spindler and F. M. Johannes, “Fast and accurate routing demand
estimation for efficient routability-driven placement,” in Proc. DATE,
2007.

[19] Y. Wei, C. Sze, N. Viswanathan, Z. Li, C. J. Alpert, L. Reddy, A. D.
Huber, G. E. Tellez, D. Keller, and S. S. Sapatnekar, “GLARE: Global
and local wiring aware routability evaluation,” in Proc. DAC, 2012,
pp. 768–773.

[20] X. He, T. Huang, L. Xiao, H. Tian, and E. F. Y. Young, “Ripple: A
robust and effective routability-driven placer,” IEEE TCAD, vol. 32,
no. 10, pp. 1546–1556, 2013.

[21] J.-M. Lin, C.-W. Huang, L.-C. Zane, M.-C. Tsai, C.-L. Lin, and C.-F.
Tsai, “Routability-driven global placer target on removing global and
local congestion for vlsi designs,” in Proc. ICCAD, 2021.

[22] Z. Xie, Y.-H. Huang, G.-Q. Fang, H. Ren, S.-Y. Fang, Y. Chen, and
J. Hu, “RouteNet: Routability prediction for mixed-size designs using
convolutional neural network,” in Proc. ICCAD, 2018, pp. 80:1–80:8.

[23] S. Liu, Q. Sun, P. Liao, Y. Lin, and B. Yu, “Global placement with deep
learning-enabled explicit routability optimization,” in Proc. DATE,
2021.

[24] C. Yu and Z. Zhang, “Painting on placement: Forecasting routing con-
gestion using conditional generative adversarial nets,” in Proc. DAC,
2019.

[25] R. Liang, H. Xiang, J. Jung, J. Hu, and G.-J. Nam, “A stochastic
approach to handle non-determinism in deep learning-based design
rule violation predictions,” in Proc. ICCAD, 2022.

[26] C.-C. Chang, J. Pan, T. Zhang, Z. Xie, J. Hu, W. Qi, C.-W. Lin,
R. Liang, J. Mitra, E. Fallon, and Y. Chen, “Automatic routability pre-
dictor development using neural architecture search,” in Proc. ICCAD,
2021.

[27] S. Zheng, L. Zou, S. Liu, Y. Lin, B. Yu, and M. D. F. Wong, “Mitigating
distribution shift for congestion optimization in global placement,” in
Proc. DAC, 2023.

[28] R. Kirby, S. Godil, R. Roy, and B. Catanzaro, “CongestionNet:
Routing congestion prediction using deep graph neural networks,” in
Proc. VLSI-SoC, 2019, pp. 217–222.

[29] A. Ghose, V. Zhang, Y. Zhang, D. Li, W. Liu, and M. Coates, “Gener-
alizable cross-graph embedding for gnn-based congestion prediction,”
in Proc. ICCAD, 2021.

[30] Z. Yang, D. Li, Y. Zhang, Z. Zhang, G. Song, J. Hao et al.,
“Versatile multi-stage graph neural network for circuit representation,”
Proc. NeurIPS, vol. 35, pp. 20 313–20 324, 2022.

[31] B. Wang, G. Shen, D. Li, J. Hao, W. Liu, Y. Huang, H. Wu, Y. Lin,
G. Chen, and P. A. Heng, “LHNN: Lattice hypergraph neural network
for VLSI congestion prediction,” in Proc. DAC, 2022, pp. 1297–1302.

[32] K. Baek, H. Park, S. Kim, K. Choi, and T. Kim, “Pin accessibility and
routing congestion aware DRC hotspot prediction using graph neural
network and U-Net,” in Proc. ICCAD, 2022.

[33] C. Yang, R. Wang, S. Yao, S. Liu, and T. Abdelzaher, “Revisiting over-
smoothing in deep GCNs,” arXiv preprint arXiv:2003.13663, 2020.

[34] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” in Proc. ICLR.

[35] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proc. CVPR, 2021, pp. 10 012–10 022.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Proc. NeurIPS, vol. 30, 2017.

[37] Z. Wang, S. Liu, Y. Pu, S. Chen, T.-Y. Ho, and B. Yu, “Realistic sign-
off timing prediction via multimodal fusion,” in Proc. DAC, 2023.

[38] Y. Zhao, Z. Chai, Y. Lin, R. Wang, and R. Huang, “HybridNet:
Dual-branch fusion of geometrical and topological views for VLSI
congestion prediction,” arXiv preprint arXiv:2305.05374, 2023.

[39] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc. CVPR, 2017,
pp. 2117–2125.

[40] T. Xiao, Y. Liu, B. Zhou, Y. Jiang, and J. Sun, “Unified perceptual
parsing for scene understanding,” in Proc. ECCV, 2018, pp. 418–434.

[41] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. CVPR, 2017, pp. 2881–2890.

[42] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou,
C. Ma, L. Yu, Y. Gai et al., “Deep graph library: A graph-centric,
highly-performant package for graph neural networks,” arXiv preprint
arXiv:1909.01315, 2019.

[43] I. S. Bustany, D. Chinnery, J. R. Shinnerl, and V. Yutsis, “ISPD 2015
benchmarks with fence regions and routing blockages for detailed-
routing-driven placement,” in Proc. ISPD, 2015, pp. 157–164.

[44] M. B. Alawieh, W. Li, Y. Lin, L. Singhal, M. A. Iyer, and D. Z. Pan,
“High-definition routing congestion prediction for large-scale FPGAs,”
in Proc. ASPDAC, 2020, pp. 26–31.

