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Electric Beam Lithography (EBL)

IPromising candidate for next generation lithography process
IVariable Shaped Beam (VSB)
ICharactor Projection (CP): a pattern is pre-designed on the stencil, then it can be

printed in one electronic shot;
IKey limitation: has been and still is the low throughput.
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Figure : (a) VSB; (b) CP.

Multi-Column Cell (MCC) system
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ISeveral independent character projections (CP) are used to further speed-up the
writing process.

IEach CP is applied on one section of wafer, and all CPs can work parallelly to
achieve better throughput.

IDifferent CPs share one stencil design.

Problem Formulation

Some Definitions
In an MCC system with P CPs, the whole wafer is divided into P regions
{w1,w2, . . . ,wP}, and each region is written by one particular CP. For each
character candidate ci ∈ CC, its writing time through VSB mode is denoted as ni,
while its writing time through CP mode is 1. Suppose ci repeats tic times on region
wc. Let ai indicate whether ci is selected. Therefore, for region wc the total writing
time Tc is as follows:

Tc =
n∑

i=1

ai · (tic · 1) +
n∑

i=1

(1− ai) · (tic · ni)

=
n∑

i=1

tic · ni −
n∑

i=1

tic · (ni − 1) · ai = T VSB
c −

n∑
i=1

Ric · ai

The total writing time of the MCC system is formulated as follows:

Ttotal = max{Tc} = max{T VSB
c −

n∑
i=1

Ric · ai},∀c ∈ P (1)

Overlapping aware Stencil Planning (OSP) for MCC system
Given a set of character candidate CC, select a subset CCP out of CC as
characters, and place them on the stencil. The objective is to minimize the total
writing time Ttotal expressed by (1), while the placement of CCP is bounded by the
outline of stencil. The width and height of stencil is W and H, respectively.

1D-OSP and 2D-OSP
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Figure : (a) 1D-OSP; (b) 2D-OSP.

E-BLOW for 1D-OSP
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INovel iterative solving framework to search near-optimal solution
ILinear programming (LP) relaxation with lower bound theoretically
ISuccessive rounding
IDynamic programming based refinement

E-BLOW for 1D-OSP (cont.)

ILP formulation
min Ttotal (2)

s.t Ttotal ≥ T VSB
c −

n∑
i=1

(
M∑

k=1

Ric · aik), ∀c ∈ P (2a)

xi + wi ≤W , ∀i ∈ N (2b)
m∑
k

aik ≤ 1, ∀k ∈ M (2c)

xi + wij − xj ≤W (2 + pij − aik − ajk) (2d)
xj + wji − xi ≤W (3− pij − aik − ajk) (2e)
aik,ajk,pij : 0− 1 variable (2f )

Symmetrical Blank (S-Blank) Assumption
I the blanks of each character is symmetry (left slack = right slack).
INote that for different characters i and j , their slacks si and sj can be different.

Theorem

Under S-Blank assumption, the greedy approach can get maximum
overlapping space

∑
i si −max{si}.

Simplified ILP Formulation
max

∑
i

∑
j

aij · profiti (3)

s.t.
∑

i

(wi − si) · aij ≤W − Bj,∀j (3a)

Bj ≥ si · aij,∀i (3b)∑
j

aij ≤ 1, ∀ci ∈ CC (3c)

aij = 0 or 1 (3d)
The simplified ILP formulation is similar to the following multiple knapsack
problem:

max
∑

i

∑
j

(wi − si) · aij · ratioi (3′)

s.t.
∑

i

(wi − si) · aij ≤W −maxs (3a′)

(3c)− (3d)
where ratioi = profiti/(wi − si), and maxs is the maximum horizontal slack length of
every character, i.e. maxs = max{si|i = 1,2, . . . ,n}.

Lemma

If each ratioi is the same, the multiple knapsack problem (3′) can find a
1/2−approximation algorithm using LP Rounding method.

Theorem

The LP Rounding solution of (3) can be a 0.5/α− approximation to
program (3′).

Successive Relaxation Because of the reasonable LP rounding property, we
propose a successive relaxation algorithm to solve program (3) iteratively.

Algorithm: SuccRounding( thinv )

Require: ILP Formulation (3)
1: set all aij to variables;
2: repeat
3: update profiti for all variables aij;
4: solve relaxed LP of (3);
5: repeat
6: find apq = max{aij, and ci can insert into row rj};
7: for all aij ≥ apq × thinv do
8: if ci can be assigned to row rj then
9: aij = 1 and set it to a non-variable;

10: Update capacity of row rj;
11: end if
12: end for
13: until cannot find apq
14: until

One key step of the Algorithm is the profiti update (line 3). For each character ci,
we set its profiti as follows:

profiti =
∑

c

tc
tmax
· (ni − 1) · tic (4)

where tc is current writing time of region wc, and tmax = max {tc,∀c ∈ P}. Through
applying the profiti, the region wc with longer writing time would be considered
more during the LP formulation.

1D-OSP Refinement Simplified formulation and successive relaxation are under
the symmetrical blank assumption. Although it can be effectively solved, for
asymmetrical cases it would lose some optimality. To compensate the losing, we
present a dynamic programming based refinement procedure.

Algorithm: Refine(k)

1: if k = 1 then
2: Generate partial solution (w1, sl1, sr1);
3: else
4: Refine(k-1);
5: for each partial solution (w , l , r ) do
6: (w1, l1, r1) = (w + wk −min(srk, l), slk, r );
7: (w2, l2, r2) = (w + wk −min(slk, r ), l , srk);
8: Replace (w , l , r ) by (w1, l1, r1) and (w2, l2, r2);
9: if solution set size ≥ threshold then

10: SolutionPruning();
11: end if
12: end for
13: end if

E-BLOW for 2D-OSP
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ISimulated annealing based framework.
ISequence Pair as topology representation.
IPre-filter process to remove bad characters.
IClustering is applied to achieve speedup.

KD-Tree based Clustering
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ISpeed-up the process of finding available pair (ci, cj);
IFrom O(n) to O(logn);
IFor c2, to find another candidate with the similar space, only scan c1− c5.

Experimental Results

I Implemented in C++
I Intel Core 3.0GHz Linux machine with 32G RAM
IGUROBI as linear programming (LP) solver
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For 1D cases, the greedy algorithm introduces 47% more shots number, and
[TCAD’12] introduces 19% more shots number.
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For 2D cases, greedy introduces 30% more shot number, while [TCAD’12]
introduces 14% more shot number.

CPU Runtime Comparison
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Compared with [TCAD’12], E-BLOW can reduce 34.3% of runtime for 1D cases,
while 2.8× speedup for 2D cases.
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