

PHYSICS-INFORMED OPTICAL KERNEL REGRESSION **USING COMPLEX-VALUED NEURAL FIELDS**

Guojin Chen¹, Zehua Pei¹, Haoyu Yang², Yuzhe Ma³, Bei Yu¹, Martin Wong¹ ¹The Chinese University of Hong Kong, 2 nVIDIA, 3 HKUST(GZ)

Introduction

- Lithography is fundamental to integrated circuit fabrication, necessitating large computation overhead.
- All previous methods regard the lithography system as an image-to-image black box mapping.
- In this paper, we propose a new ML-based paradigm disassembling the rigorous lithographic model into non-parametric mask operations and learned optical kernels containing determinant source, pupil, and lithography information.

Keywords: PINN, NeRF, Lithography

Overall flow of Nitho

Figure 1. (a) Components of the lithography imaging system: illumination source, lenses, and pupil. (b) Lithography simulation flow using source- and pupil-dependent optical

Summary of previous works

Figure 2. General flow of previous (TEMPO) and Resist stage (DOINN). SOTA.

- Previous works, two stage: mask-to-resist, mask-to-aerial
- Modeling the lithography process as a black box, utilizing neural networks to fit this black box.

Figure 5. The overall aerial image prediction pipeline of Nitho framework, which separates mask-related linear operations from optical kernel regression using coordinate-based CMLP.

(1)

Hopkins Model & Transmission Cross-Coefficient (TCC)

The imaging equation:

$$\begin{aligned} \mathcal{F}(\vec{I})(f,g) &= \iint_{-\infty}^{\infty} \underline{\mathcal{T}\left(\left(f'+f,g'+g\right),\left(f',g'\right)\right)} \\ & \underline{\mathcal{F}(\vec{M})\left(f'+f,g'+g\right)\mathcal{F}(\vec{M})^*\left(f',g'\right)} \mathrm{d}f' \mathrm{d}g', \end{aligned}$$

where \vec{M} is the mask, (f, g) is its frequencies. \mathcal{T} is TCC given by:

 $\mathcal{T}\left(\left(f',g'\right),\left(f'',g''\right)\right) := \iint_{-\infty}^{\infty} \underline{\mathcal{F}(J)(f,g)}$ $\mathcal{F}(H)\left(f+f',g+g'\right)\mathcal{F}(H)^*\left(f+f'',g+g''\right)\mathrm{d}f\,\mathrm{d}g,$

where the weight factor J solely depends on effective source, H is projector transfer function.

The benefits of learning optical kernels

- Get rid of negative influence of layer types & dataset distribution.
- Less training data required & smaller model size.

The solutions of learning optical kernels

Nitho: NeRF inspired lithography simulator.

The lithography conditions are location dependent. TCC is given by:

$$\mathcal{T}\left(\left(f',g'\right),\left(f'',g''\right)\right) := \iint_{-\infty}^{\infty} \frac{\mathcal{F}(J)(f,g)}{\mathcal{F}(H)\left(f+f',g+g'\right)\mathcal{F}(H)^*\left(f+f'',g+g''\right)} \mathrm{d}f \,\mathrm{d}g,$$

One more thing: positional encoding

NeRF's positional encoding: (2)

Ours:

 $\gamma(\vec{v}) = \left[\sin(2^0\pi\vec{v}), \cos(2^0\pi\vec{v}), \dots, \sin\left(2^{L-1}\pi\vec{v}\right), \cos\left(2^{L-1}\pi\vec{v}\right)\right]^{\mathrm{T}},$

 $\gamma(\vec{v}) = [\cos(2\pi \vec{Bv}) * (1+j), \sin(2\pi \vec{Bv}) * (1+j)]^{\mathrm{T}},$

Table 1. Result Comparison with State-of-the-Art.															
	Aerial Image								Resist Image						
Bench	TEMPO			DOINN			Nitho			TEMPO*		DOINN*		Nitho	
	MSE	ME	PSNR	MSE	ME	PSNR	MSE	ME	PSNR	mPA	mIOU	mPA	mIOU	mPA	mIOU
	$\times 10^{-5}$	$\times 10^{-2}$	dB	$\times 10^{-5}$	$\times 10^{-2}$	dB	$\times 10^{-5}$	$\times 10^{-2}$	dB	(%)	(%)	(%)	(%)	(%)	(%)
B1	108.29	10.49	32.01	5.55	1.94	47.10	1.32	0.51	50.75	94.60	88.70	99.19	98.32	99.45	99.21
B2m	1899 04	1396	30 77	1202.39	611	31 64	25 48	0.82	49 06	98 24	96 55	98 79	97 10	99 1 5	99 02

6.54 3.86 42.76 2.26 2.75 46.37 **2.01 0.68 48.06** 99.06 93.28 99.21 98.41 **99.59 99.34** B2v

Aerial Image ψ

(4)

Drawbacks of previous works

Figure 4. (a) t-SNE distribution of datasets. (b) Comparison of generalization capability on out-of-distribution (OOD) datasets.

Previous image-learning based	Industrial lithography simulato
 ✗ ☺ Bias on image distribution. ✗ ☺ Large models. ✓ ☺ Fast prediction. 	 ✓ ☺ Good generalization capability. ✗ ☺ Computationally
Motivation	expensive.

1. Design the kernel dimension based on physical "resolution limit".

- 2. Implement a set of differentiable complex-valued neuron layers.
- 3. A new training paradigm separates the influence of masks and optical kernels

SOCS w. optical kernels / Kernel Dimensions

Computing using complex-valued neural network

Complex Liner Layer: $\vec{W} = \vec{A} + i\vec{B}$ by a complex vector $\vec{h} = \vec{x} + i\vec{y}$, where \vec{A} and \vec{B} are real matrices and \vec{x} and \vec{y} are real vectors. We obtain:

 $\vec{W}\vec{h} = (\vec{A}\vec{x} - \vec{B}\vec{y}) + i(\vec{B}\vec{x} + \vec{A}\vec{y}),$

Complex ReLU: Complex rectified linear unit (CReLU) is applied as:

 $\mathbb{C}\operatorname{ReLU}(z) = \operatorname{ReLU}(\Re(z)) + i \operatorname{ReLU}(\Im(z)).$

\mathbb{C} MLP: The \mathbb{C} MLP is further constructed as,

 $\mathbb{C}MLP : \mathbb{C}Linear \to (\mathbb{C}Linear \to \mathbb{C}ReLU) \times N \dots \to \mathbb{C}Linear,$

where $\times N$ means there are N hidden blocks ($\mathbb{C}Linear \rightarrow \mathbb{C}ReLU$).

NeRF

B2m + B2v 4352.25 15.21 27.10 3114.24 12.35 29.92 **33.13 0.78 47.88** 98.63 95.84 98.71 96.68 **99.61 99.36** Average 1591.5310.8833.161081.11 5.79 39.26 **15.49 0.70 48.94** 97.6393.59 98.9897.63 **99.4599.23** 102.77 15.55 0.68 69.81 8.27 0.80 **1.00 1.00 1.00** 0.98 0.94 0.99 0.98 **1.00 1.00** Ratio

Figure 6. Visualization of the results of Nitho in aerial and resist stage.

Mask Resist G.T. TEMPO DOINN Ours Ablation study on smaller training sets and kernels sizes

Inputs:

(3)

Figure 7. (a) Comparison with SOTA on smaller training sets. (b) Ablation study on kernel size on different datasets.

FROM CHIPS TO SYSTEMS - LEARN TODAY, CREATE TOMORROW

