


Restructure-Tolerant Timing Prediction via
Multimodal Fusion

Ziyi Wang1, Siting Liu1, Yuan Pu1, Song Chen2,
Tsung-Yi Ho1, Bei Yu1

1Chinese University of Hong Kong
2University of Science and Technology of China

2/21



• repetitive P&R to guarantee timing
closure is costly

• Timing evaluation in early stages is
necessary

• raise the demand for pre-routing
timing prediction

Background: Pre-routing Timing Prediction

3/21



• Traditional method, e.g., Elmore’s model [Rub+83], is imprecise due to inaccurate
wire estimation without actual routing information.

• ML-driven timing prediction works can be divided into 2 classes:

1 two-stage [Bar+19] [He+22]: first predict local net/cell delays and then apply
graph traversals to evaluate global timing metric.

2 end-to-end [Guo+22]: directly predict global timing metrics, but still relies on
local net/cell delay prediction as auxiliary tasks.

Previous Methods

4/21



• follow a local-view fashion: only focus on local graph information

can not deal with real-world scenarios where timing optimization is taken into
account!

Drawback of Previous ML-assisted Works

5/21



CLK

D Q

CLK

D Q

s

eC4C4

C1C1

C2C2

C3C3

(a) Input circuit

CLK

D Q

CLK

D Qe

s C5C5

C6C6

C7C7

C8C8
C9C9

(b) Optimized circuit

Example of circuit reconstruction after timing optimization.

graph topology is destructed after timing optimization!
• timing prediction based on only graph information is unreliable!

Timing optimization: Destructed topology

6/21



CLK

D Q

CLK

D Q

?
?

?
?

s

eC4C4

C1C1

C2C2

C3C3

label=？

(a) Input netlist

CLK

D Q

CLK

D Qe

s C5C5

C6C6

C7C7

C8C8
C9C9

(b) Optimized netlist

1 prohibits labeling the net/cell delays inside the box.

• previous local-view method can only work in semi-supervised way

2 leads to a mismatch between input features and ground-truth features.

• inconsistency between local delay supervision and global timing metrics
prediction.

Impact of Topology Restructuring

7/21



Endpoint-wise
Netlist Information 

Extraction

Placed 
Circuit

Endpoint Arrival Time 
Regression

Output

MLP

Endpoint-wise
Layout Information

Extraction

CLK

D Q

CLK

D Q vnvn

Endpoint-wise
Netlist

Embeddings

Endpoint-wise
Layout 

Embeddings

Endpoint Embeddings

• Global endpoint-wise views from both netlist and layout

• Customized GNN model to extract endpoint-wise netlist information.

• CNN model with masking to extract endpoint-wise layout information.

Overview

8/21



• each pin as a node

• heterogeneous graph with two edge types: cell edge and net edge

• transformed to DAG by removing cell edges of registers

CLK

D Q

CLK

D Q e
CLK

D Q

e
CLK

D Q

Given Placed Circuit

e

e

Generated heterogenous graph
cell node
net node

net edge
cell edge

e endpoint

Netlist Embedding: Data Representation

9/21



• Motivated by delay propagation
• flows in the topological order and aggregated at endpoints
• different aggregators Ac and An for cell nodes and net nodes, respectively.
• use maximum operator to gather predecessor messages for cell nodes

e

e

Topological Levels Generation 
& Message-Passing

vnvn

Endpoint-wise
Netlist

Embeddings

Netlist Embedding: Message Passing Scheme

10/21



Conv Max pooling Fused feature map Input features

Fully 
Connected

Layer

Layout 
embedding

Problem: identical layout embedding for all endpoints.
• does not make sense: timing optimization’s impact varies greatly for different

endpoints.

We should extract unique layout information for each endpoint!

Layout Embedding: Naive Flow

11/21



• We propose a critical region-based method to extract unique endpoint-wise layout
information.

• We derive the critical region from a critical path.

Critical path for e is defined as the longest path from PIs to e.
Arrival time at e is closely related to the critical path.

Endpoint-wise masking

12/21



• Reverse the graph and conduct a DFS starting from each endpoint e
• Always move to the successor with topological level -1 in the next step.
• Stopped when reaching PIs.

e

(c) Input graph

0

1

3

2

4

5

0

1

e

(d) Path-finding

Purple, blue, and gray represent the endpoint, net nodes and cell nodes, respectively. The number
next to each node in (b) indicates its topological level, and the purple lines depict the longest path Pe

for e.

Critical path finding

13/21



• The critical region Re for an endpoint e is constructed by taking the union region
covered by the bounding boxes of the two-pin net edges along the critical path Pe:

Re =
⋃

{d,s}∈En(Pe)

Bd,s, (1)

0

1

3

2

4

5

0

1

e

(a) Found critical
paths

(b) Output mask

The dotted boxes illustrate the critical region Re, which consists of net edge bounding boxes along
Pe. Only the regions covered by net edges are considered.

Mask Generation

14/21



⊙⊙

Endpoint-wise
Layout 

Embeddings

Endpoint-wise Mask Generation

H
4
H
4

W
4
W
4

Fully 
Connected

Layer

Layout Features
32

WW

HH

64

W
2
W
2

 

H
2
H
2

W
4
W
4

H
4
H
4

32 1

Conv Max pooling

Layout Feature Fusion

e

e

MLML

MeMe

ML
eML
e

Our endpoint-wise layout embedding generation flow with a CNN model and a novel
endpoint-wise masking technique.

Layout Embedding Generation Flow

15/21



Table: Statistics of the dataset. edp stands for endpoint, en
and ec denote net edge and cell edge, respectively.

Benchmark #pin #edp #en #ec

train

jpeg 932842 40801 650878 607795
rocket 698347 52731 490499 432068

smallboom 694441 61764 488052 423344
steelcore 26598 1662 19439 17732

xgate 20842 684 14653 13010

test

arm9 44469 2500 33065 29287
chacha 35687 1986 25117 23083
hwacha 1357798 61313 985057 922085
or1200 1165114 172401 844443 658961
sha3 794720 60323 552021 485596

Avg
train 474614 31528 332704 298790
test 679558 59705 487941 423802

• 10 open-source designs
from chipyard and
Github.

• Cadence Genus advanced
7-nm ASAP7 PDK
[Cla+16] for synthesis,
and Cadence Innovus for
placement, timing
optimization, and routing.

Experimental Setting: Dataset Preparation

16/21



Benchmark
baselines’ net/cell delay prediction (R2 score) Endpoint arrival time prediction (R2 score)

DAC19 [Bar+19] DAC22-he [He+22] DAC22-guo [Guo+22] DAC19 DAC22-he DAC22-guo our CNN-only our GNN-only our full
arm9 0.0101 -0.5187 -0.2960 / -1.8234 0.6655 0.7304 0.8279 -0.0011 0.8405 0.8852

chacha -0.1389 -0.1008 -0.0813 / -0.2737 0.4406 0.6146 -0.0253 -0.1152 0.7346 0.9027
hwacha 0.0519 -0.0323 -0.8003 / -0.8630 0.2752 0.5186 0.7090 -0.0173 0.8022 0.8623
or1200 -0.0395 -0.3051 -3.5679 / -0.0924 0.3226 0.4484 0.6776 -0.0019 0.7381 0.8081
sha3 0.3941 0.5554 -0.3713 / 0.1230 0.7784 0.7917 0.8464 -0.0058 0.8635 0.9035
avg 0.0555 -0.0803 -1.0234 / -0.5859 0.4965 0.6207 0.6071 -0.0283 0.7958 0.8724

• Our framework vastly outperforms all the baseline approaches

• Hard to model timing optimization’s impact locally with pre-routing information.

• Prediction on local delay is inconsistent with that on global timing metrics.

• Layout alone is useless but works well when combined with netlist.

Comparison with SOTA timing prediction works

17/21



Table: Runtime (s) comparison with an industry-leading commercial tool.

design
commercial (20 threads) ours

opt route sta total pre infer total speedup
jpeg 7863 624922 227 633012 20.63 5.56 26.19 24170×

rocket 16239 19161 167 35567 18.53 2.02 20.55 1731×
smallboom 9051 53942 152 63145 19.72 4.81 24.53 2574×

steelcore 1294 747 20 2061 0.39 1.12 1.51 1365×
xgate 338 630 17 985 0.34 0.48 0.82 1201×
arm9 305 1825 16 2146 0.88 1.78 2.66 807×

chacha 1621 1794 23 3438 0.82 1.20 2.02 1702×
hwacha 43883 136946 241 181070 23.89 5.77 29.66 6105×
or1200 28641 40291 339 69271 112.20 6.52 118.72 583×
sha3 18785 16870 185 35840 24.95 2.58 27.53 1302×
avg. 12802 89713 139 102654 22.23 3.184 25.42 4154×

Runtime Analysis

18/21



• Fast and accurate pre-routing timing prediction is critical in reducing design cycles.

• Previous ML-assisted works following a local-view fashion did not consider the
impact of timing optimization, leading to performance degradation in real-world
applications.

• A novel endpoint embedding framework is presented with multimodal fusion by
utilizing both GNN and CNN to extract netlist and layout information.

• We should keep a close eye on multimodal fusion in the VLSI design flow for more
thorough information mining.

Summary

19/21



[1] J. Rubinstein, P. Penfield, and M. A. Horowitz, “Signal delay in rc tree
networks”, tcad, pp. 202–211, 1983.

[2] E. C. Barboza, N. Shukla, Y. Chen, and J. Hu, “Machine learning-based
pre-routing timing prediction with reduced pessimism”,, 2019.

[3] X. He, Z. Fu, Y. Wang, C. Chang Liu, and Y. Guo, “Accurate timing prediction
at placement stage with look-ahead rc network”,, 2022.

[4] Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin, “A timing engine
inspired graph neural network model for pre-routing slack prediction”,, 2022.

[5] L. T. Clark et al., “Asap7: A 7-nm finfet predictive process design kit”,
Microelectronics Journal, 2016.

Reference I

20/21



THANK YOU!


	Learning Circuit Representation from Multimodal
	Summary

