

Mitigating Distribution Shift for Congestion Optimization in Global Placement

Su Zheng^{1,2}, Lancheng Zou¹, Siting Liu¹, Yibo Lin², Bei Yu¹, Martin Wong¹

¹Chinese University of Hong Kong ²Peking University

Outline

1 Introduction

2 Proposed Method

3 Experiments

4 Conclusion

Introduction

Placement and Congestion Modeling

- Placement is crucial but time-consuming
- Congestion modeling and optimization is important
- Congestion optimization techniques
 - Trial global routing¹
 - Analytical model²

¹C.-C. Huang *et al.*, "NTUplace4dr: A detailed-routing-driven placer for mixed-size circuit designs with technology and region constraints", *IEEE TCAD*, vol. 37, no. 3, pp. 669–681, 2018. ²Y. Wei *et al.*, "GLARE: Global and local wiring aware routability evaluation", in *Proc. DAC*, 2012 pp. 768–773.

Congestion Modeling via Deep Learning

- Fully Convolutional Networks³
- Generative Adversarial Networks⁴
- Graph Neural Networks⁵

³Z. Xie *et al.,* "RouteNet: Routability prediction for mixed-size designs using convolutional neural network", in *Proc. ICCAD*, 2018, 80:1–80:8.

⁴C. Yu and Z. Zhang, "Painting on placement: Forecasting routing congestion using conditional generative adversarial nets", in *Proc. DAC*, 2019.

⁵B. Wang *et al.*, "LHNN: Lattice hypergraph neural network for VLSI congestion prediction", in *Proc. DAC*, 2022, pp. 1297–1302.

Problems of Existing Methods

• Observations: prediction only, useless in placement

Problems of Existing Methods

• Observations: distribution shift during placement

Solutions

Congestion-driven Placement with DNN

Solutions

• Look-ahead via Cell Flow Prediction

(b)

Proposed Method

Cell Flow Prediction

- Cell flow measures the motions of the cells
 - $c'_i(x_{i,j}, y_{i,j}) = (x_{i,j} x_{i-K,j}, y_{i,j} y_{i-K,j})$
 - $(x_{i,j}, y_{i,j})$ is cell j's location at *i*-th iteration, *K* is the step size
 - Inspired by optical flow

Quasi-voxelization

- Grid-cell *b*_{*k*,*l*} contains multiple cells, we need downsampling
 - Sampling: $c_i(k,l) = s_{\hat{j}}c'_i(x_{\hat{j}},y_{\hat{j}}), \quad \hat{j} = \arg\max_j s_j, (x_{i,j},y_{i,j}) \in b_{k,l}.$
 - Averaging: $c_i(k,l) = \frac{1}{N_{k,l}} \sum_{(x_{i,j}, y_{i,j}) \in b_{k,l}} c'_i(x_{i,j}, y_{i,j}).$
 - Weighted-sum: $c_i(k,l) = \sum_{(x_{i,j},y_{i,j}) \in b_{k,l}} \frac{s_j}{N_{k,l}} \times c'_i(x_{i,j},y_{i,j})$.

Invariant Feature Space

• Invariant feature space learning

Complete Flow

• Cell flow prediction + invariant feature space learning

Complete Flow

• DREAMPlace⁶ + Look-ahead Congestion Optimization

Update

⁶Y. Lin *et al.,* "DREAMPlace: Deep learning toolkit-enabled GPU acceleration for modern VLSI placement", in *Proc. DAC*, 2019.

23

Experiments

Experimental Settings

- Placement Platform: DREAMPlace⁷
- Baseline: DREAM-Cong⁸
- Congestion Prediction Metrics:

$$NRMS(\overline{Y}, Y) = \frac{\|\overline{Y} - Y\|_2}{(Y_{\max} - Y_{\min})\sqrt{N_Y}},$$

$$SSIM(\overline{Y}, Y) = \frac{(2\mu_Y\mu_{\overline{Y}} + C_1)(2\sigma_{Y,\overline{Y}} + C_2)}{(\mu_Y^2 + \mu_{\overline{Y}}^2 + C_1)(\sigma_Y^2 + \sigma_{\overline{Y}}^2 + C_2)}.$$
(2)

- Placement Metrics: (Given by Innovus)
 - Wire Length (WL)
 - Worst Congestion Score (WCS)

⁷Y. Lin *et al.*, "DREAMPlace: Deep learning toolkit-enabled GPU acceleration for modern VLSI placement", in *Proc. DAC*, 2019.

⁸S. Liu *et al.*, "Global placement with deep learning-enabled explicit routability optimization", in *Proc. DATE*, 2021.

Comparison on Congestion Prediction

Comparison on Congestion Optimization

Benchmark	#Cells	#Nets	DREAMPlace			DREAM-Cong			LACO		
			WCS_H	WCS_V	$WL(10^{5} \mu m)$	WCS_H	WCS_V	$WL(10^5 \mu m)$	WCS_H	WCS_V	$WL(10^{5} \mu m)$
des_perf_1	113k	113k	0.47	0.40	13.88	0.47	0.40	13.82	0.40	0.40	13.87
des_perf_a	109k	110k	2.25	1.67	22.21	1.89	1.60	22.33	1.69	1.30	22.27
des_perf_b	113k	113k	0.07	0.27	16.70	0.13	0.27	16.71	0.07	0.20	16.57
edit_dist_a	130k	131k	4.05	4.14	53.54	4.30	4.07	53.62	3.50	3.14	53.40
fft_1	35k	33k	0.59	0.40	4.96	0.43	0.47	4.95	0.46	0.40	4.91
fft_2	35k	33k	0.40	0.78	5.86	0.36	0.67	5.88	0.27	0.61	5.84
fft_a	34k	32k	0.55	0.56	10.56	0.83	0.77	10.53	0.50	0.56	10.52
fft_b	34k	32k	3.50	2.33	12.13	3.50	2.67	12.16	3.33	2.33	12.12
matrix_mult_1	160k	159k	0.71	0.53	25.85	0.88	0.58	28.95	0.68	0.44	25.83
matrix_mult_2	160k	159k	0.65	0.42	25.71	0.78	0.84	29.99	0.61	0.45	25.71
matrix_mult_a	154k	154k	0.47	0.40	36.99	0.44	0.37	37.02	0.47	0.37	36.78
matrix_mult_b	151k	152k	8.69	2.65	35.08	8.69	2.65	35.29	8.69	2.65	35.07
matrix_mult_c	151k	152k	0.53	0.40	35.42	0.50	0.27	35.97	0.47	0.30	35.42
pci_bridge32_a	30k	30k	2.06	0.84	6.12	1.83	0.87	6.14	1.89	0.95	6.13
pci_bridge32_b	29k	29k	0.03	0.23	9.77	0.14	0.31	10.57	0.10	0.20	9.65
superblue11_a	954k	936k	1.10	25.00	392.78	1.15	23.00	396.98	1.10	25.00	392.93
superblue12	1293k	1293k	3.00	3.00	414.10	2.73	2.57	414.12	2.45	2.57	413.95
superblue14	634k	620k	1.10	4.17	277.32	1.06	4.67	277.69	1.00	3.50	277.97
superblue16_a	698k	697k	0.91	10.75	309.04	1.00	10.00	310.17	1.00	9.75	309.03
superblue19	522k	512k	1.70	3.67	201.34	1.30	4.33	202.36	1.57	3.50	201.27
Average	-	-	1.64	3.13	95.47	1.62	3.07	96.22	1.51	2.93	95.46
Ratio	-	-	1.00	1.00	1.00	0.99	0.98	1.01	0.92	0.94	1.00

Conclusion

Conclusion

- Look-ahead, cell flow, invariant feature space learning bring better congestion prediction
- More accurate congestion prediction leads to better congestion optimization
- Up to 8% improvement in the maximum routing overflow

THANK YOU!

