

LRSDP: Low-Rank SDP for Triple Patterning Lithography Layout Decomposition

Yu Zhang^{1,2}, Yifan Chen¹, Zhonglin Xie¹, Hong Xu², Zaiwen Wen¹, Yibo Lin^{$1,3$}, Bei Yu²

¹Peking University ²Chinese University of Hong Kong ³Institute of Electronic Design Automation, Peking University

2/25

Due to the availability issue of EUV (Extreme Ultra-Violet) lithography, triple patterning layout (TPL) decomposition is widely adopted in advanced technology $nodes¹$.

Input features.

TPL decomposition.

Existing MPL decomposition studies follow a two-step procedure:

- **1** Graph simplification
- Subgraph Decomposition
	- ILP, SDP, EC, etc

Comparison of current TPL decomposers

Observation

However, these methods usually assume the subgraphs are small, i.e., fewer than 100 vertices. When the design complexity increases, the sizes of subgraphs also boost, and large subgraphs generally take >90% of runtime.

The proportion of small, medium, and large subgraphs after graph simplification.

The time ratio spent on solving the TPL decomposition for these subgraphs.

We propose LRSDP, a scalable low-rank SDP solver for the MPL decomposition problem on large graphs. Our SDP solver mainly includes three parts:

- Low-rank factorization
- 2 Augmented Lagrangian method (ALM)
- 3 Riemannian gradient descent method with Barzilai-Borwein steps (RGBB)

The vector program for TPL is NP-hard due to the discrete constraint. The problem can be further relaxed as the following semidefinite program 2 ,

$$
\min_{\mathbf{X} \in \mathbb{R}^{n \times n}} \langle C, \mathbf{X} \rangle
$$
\n
$$
\text{s.t.} \quad x_{ii} = 1, \quad \forall i \in V
$$
\n
$$
x_{ij} \ge -\frac{1}{2}, \quad \forall e_{ij} \in \text{CE}
$$
\n
$$
\mathbf{X} \ge 0,
$$
\n
$$
(1)
$$

²B. Yu *et al.*, "Layout decomposition for triple patterning lithography", 2011, pp. 1-8.

Low-rank Factorization

It has been recognized that the solution to the SDP program relaxed by combinatorial optimization is often low-rank 3 , so we perform low-rank factorization to our SDP program:

Low-rank Factorization

Original SDP program⁴:

min *X*∈R*n*×*ⁿ* $\langle C, X \rangle$ (2) s.t. $x_{ii} = 1, \quad \forall i \in V$ $x_{ij} \geq -\frac{1}{2}$ $\frac{1}{2}$, $\forall e_{ij} \in \text{CE}$ $X \geq 0$, −→

: After low-rank factorization:

$$
\min_{\mathbf{R} \in \mathbb{R}^{p \times n}} \langle \mathbf{C}, \mathbf{R}^{\top} \mathbf{R} \rangle
$$
\ns.t.

\n
$$
\|\mathbf{r}_{i}\|_{2} = 1, \quad \forall i \in V
$$
\n
$$
\mathbf{r}_{i}^{\top} \mathbf{r}_{j} \geq -\frac{1}{2}, \quad \forall e_{ij} \in \text{CE},
$$
\n(3)

⁴B. Yu *et al.*, "Layout decomposition for triple patterning lithography", 2011, pp. 1-8.

Benefits of Low-rank Factorization

- 1 The semidefinite constraint can be naturally omitted as the factorization implies it;
- 2 This low-rank factorization leads to many fewer variables in the problem of interest, as *p* ≪ *n*;
- 3 Although the new formula becomes nonlinear and nonconvex, the global optimality of the solution to this factorized version can still be ensured by properly choosing p^5 .

Preliminary of Riemannian optimization

Riemannian optimization is used to solve optimization problems with manifold structure constraints:

$$
\min_{x \in \mathcal{M}} f(x),\tag{4}
$$

where M refers to manifold constraints and $f : M \to R$ is a smooth cost function.

Preliminary of Riemannian optimization

Some examples of smooth manifold constraints:

$$
\mathcal{M} = \{ X \in \mathbb{R}^{n \times n} \mid \text{tr}(X) = 1, \ X \ge 0 \}
$$

$$
\mathcal{M} = \{ X \in \mathbb{R}^{n \times n} \mid X_{i,i} = 1, \ X \ge 0 \}
$$

$$
\mathcal{M} = \{ X \in \mathbb{R}^{m \times n} \mid ||x_i||_2 = 1 \}
$$

 $12/25$

Riemannian Manifold in SDP for TPL

We further restrict the optimization of variable *R* from $\mathbb{R}^{p \times n}$ to a smooth Riemannian manifold: $\mathcal{M} = \{R \in \mathbb{R}^{p \times n} | R = [r_1, \cdots, r_n], \|r_i\|_2 = 1\}$, which is exactly a unit sphere.

$$
\min_{\mathbf{R} \in \mathbb{R}^{p \times n}} \langle C, \mathbf{R}^{\top} \mathbf{R} \rangle
$$
\n
$$
\text{s.t. } ||\mathbf{r}_i||_2 = 1, \quad \forall i \in V \qquad \longrightarrow \qquad \text{s.t. } \mathbf{r}_i^{\top} \mathbf{r}_j \ge -\frac{1}{2}, \quad \forall e_{ij} \in \text{CE},
$$
\n
$$
\mathbf{r}_i^{\top} \mathbf{r}_j \ge -\frac{1}{2}, \quad \forall e_{ij} \in \text{CE},
$$
\n(6)

Benefits of Riemannian Optimization

- Guarantee the satisfiability of the unit length constraint.
- \bullet Utilize the structure information of M to reduce searching space.

Unrestricted search in Euclidean space. Restricted search in Riemannian space.

Eliminate Inequality Constraint

Now, the only difficult constraint is the inequality constraint. Here we introduce an auxiliary variable $W \in \mathbb{R}^{n \times n}$ to remove the inequality constraint, so the factorized SDP is reformulated as:

$$
\min_{\mathbf{R} \in \mathcal{M}} \langle \mathbf{C}, \mathbf{R}^{\top} \mathbf{R} \rangle + h(\mathbf{W}) \tag{7}
$$
\n
$$
\text{s.t.} \quad \mathbf{P} \odot \mathbf{R}^{\top} \mathbf{R} = \mathbf{W},
$$

where ⊙ denotes element-wise product, *h* is a characteristic function, and *P* encodes the information of conflict edges:

$$
h(\mathbf{W}) = \begin{cases} 0, & w_{ij} \ge -\frac{1}{2}, \forall e_{ij} \in \text{CE}, \\ +\infty, & \text{otherwise}, \end{cases} \qquad p_{ij} = \begin{cases} 1, & \forall e_{ij} \in \text{CE}, \\ 0, & \forall e_{ij} \notin \text{CE}. \end{cases}
$$

Augmented Lagrangian Method

The major framework of LRSDP is based on the augmented lagrangian method, which includes an additional term to penalize infeasible points.

The ALM function is denoted by:

$$
L_{\sigma}(\mathbf{R}, \mathbf{W}, \mathbf{y}, \sigma) = \langle \mathbf{C}, \mathbf{R}^{\top} \mathbf{R} \rangle + h(\mathbf{W}) - \langle \mathbf{y}, \mathbf{P} \odot \mathbf{R}^{\top} \mathbf{R} - \mathbf{W} \rangle + \frac{\sigma}{2} || \mathbf{P} \odot \mathbf{R}^{\top} \mathbf{R} - \mathbf{W} ||_F^2, \tag{8}
$$

where $y \in \mathbb{R}^{n \times n}$, and $\sigma > 0$ are parameters for ALM. The subproblem in *k*-th iteration is an unconstrained Riemannian optimization problem:

$$
\min_{\mathbf{R}\in\mathcal{M}}\Phi_k(\mathbf{R})=\langle\mathbf{C},\mathbf{R}^\top\mathbf{R}\rangle+h(\mathbf{P}\odot\mathbf{R}^\top\mathbf{R}-\mathbf{y}^k/\sigma_k-T(\mathbf{R}))+\frac{\sigma_k}{2}\|T(\mathbf{R})\|_F^2.
$$
 (9)

Given the unconstrained optimization problem $\min\limits_{x\in\mathbb{R}^n}f(x)$, the optimal step size for the *k*-th iteration is:

$$
\alpha_k = H^{-1},\tag{10}
$$

where *H* is the Hessian matrix of $f(x_k)$. However, this ideal step length is usually unnecessarily expensive to compute for a general nonlinear cost function *f*.

The basic idea of the Barzilai-Borwein (BB) method 6 is to approximate the $\text{computationally expensive Hessian matrix.}$ When $s_k^{\top} y_k > 0$, the BB step-length is

$$
\alpha_k^{BB} = \frac{s_k^\top s_k}{s_k^\top y_k}.\tag{11}
$$

with $s_k := x_k - x_{k-1}$ and $y_k := \nabla f(x_k) - \nabla f(x_{k-1})$. Then, the BB method performs the iteration: $x_{k+1} = x_k + \alpha_k^{BB} g_k$.

 6 B. Iannazzo and M. Porcelli, "The riemannian barzilai–borwein method with nonmonotone line search and the matrix geometric mean computation", *IMA Journal of Numerical Analysis*, vol. 38, no. 1, pp. 495–517, 2018.

Riemannian Gradient Descent with Barzilai-Borwein Steps

We can compare Euclidean gradient descent with Riemannian gradient descent:

Euclidean optimization:

Find a descent direction $g_k = -\nabla f(x_k)$;

$$
\bullet \text{ Update } x_{k+1} = x_k + \alpha_k^{BB} g_k.
$$

Riemannian optimization:

- Find a descent direction $g_k = -\text{grad} f(x_k) \in T_{x_k} \mathcal{M};$
- 2 Update $x'_k = x_k + \alpha_k^{BB} g_k \in T_{x_k} \mathcal{M}$;
- **8** Retract $x_{k+1} = R_{x_k}(\alpha_k^{BB} g_k) \in \mathcal{M}$.

Riemannian Gradient Descent with Barzilai-Borwein Steps

RGBB is performed to find the optimal solution for the subproblem. The RGBB at *k*-th step is illustrated as follows:

LRSDP Flow

Experiment result

Table 1. ISPD'19 benchmarks that can be solved by all three decomposers.

Experiment result

Table 2. ISPD'19 benchmarks that can't be solved by all three decomposers. Some algorithms crash ('Failed') or exceed the time limit ('TLE').

- Among two SDP-based approaches, our method is $12.48\times$ faster than CSDP on average with 5% lower cost.
- Our method is 186.62× faster than ILP and only increases about 11% cost, which makes a better trade-off between performance and efficiency.
- Our method is able to deal with fairly large cases within the time limit, whereas CSDP is prone to fail on these large layouts.

THANK YOU!

