
Learning Point Clouds in EDA

Wei Li, Guojin Chen, Haoyu Yang, Ran Chen, Bei Yu

The Chinese University of Hong Kong

1 / 39

Challenge: Irregular Structure Learning

I Verification [Yang et.al
TCAD’2018]

…

HS

Non-HS

I Mask optimization [Yang et.al DAC’2018]

Litho-
SimulatorGenerator

More Considerations

I Existing attempts still rely on regular format of data, like images;

I Netlists and layouts are naturally represented as graphs;

I Few DL solutions for graph-based problems in EDA.

 SPICE 10. Application Demo

10-2CIC
National Science Council
Chip Implementation Center

(1). Two-stage OP AMP Design

M1 M2

M3 M4

M5

M6

M7M8

Cc

CL

Vbias

1 2

3
4

5

vout

Ibias

vdd

vdd

* Target specification :
* CL = 4pF, Av>4000,
* GB=2MHz
* 1 < CMR < 4 , 0.8 < Vout < 4.2
* SR = 2 V/us , Pdiss < 10mW ,
* with 0.5um UMC process

vss

vout

Vbias

vdd

2 / 39

Irregular data representation in EDA: Graph

…

An example of graph embeddings of layout graphs, where the graphs are transformed into vector
space.

3 / 39

Irregular data representation in EDA: Point Cloud

Clustering in Self-Stabilizing BonnPlace

I Perform partitioning-based GlobalPlacement on clustered netlist.

I Compute a new clustering in each iteration of the loop.

I Dissolve clusters during the levels of GlobalPlacement.

I Methods for both clustering and unclustering are position-based.

Levels of GlobalPlacement in a single iteration with coarse clustering on Beate.

14

Clustering in Self-Stabilizing BonnPlace

I Perform partitioning-based GlobalPlacement on clustered netlist.

I Compute a new clustering in each iteration of the loop.

I Dissolve clusters during the levels of GlobalPlacement.

I Methods for both clustering and unclustering are position-based.

Levels of GlobalPlacement in a single iteration with coarse clustering on Beate.

14

An example of point-cloud embeddings of a placement.

4 / 39

Graph vs. Point Cloud

Graph

I A set of vertices and edges;

I Strictly constrains inter-connected relationships: requires the definition of
connections (edges) among objects (nodes);

Point Cloud

I A set of data points in space;

I Directly preserves the original geometric information without any discretization or
misinterpretation;

5 / 39

Previous works: Deep learning in EDA

By topics

I Routability estimation;

I Clock-tree synthesis;

I Placement & floorplanning;

I Lithography hotspot detection and mask optimization;

Graph Neural Networks

I Message-passing scheme;

I Netlist;

I Layout;

6 / 39

Previous works: Point Cloud Learning with Neural Networks

View 1

View 2

View N

Multi-view-based methods:
I Transform a 3D point cloud into multiple views through projection;

I Extracted view-based features are fused together to generate a cloud embedding;

7 / 39

Previous works: Point Cloud Learning with Neural Networks

Volumetric-based Methods:
I Voxelize a point cloud into regular grids;

I A 3D Convolutional Neural Network is used for the embedding extraction;

8 / 39

Previous works: Point Cloud Learning with Neural Networks

Point-based Methods:
I Directly handle with raw points to avoid information loss.

I Include three procedures to obtain the embedding: Sampling, Grouping and
Encoding.

- Sampling: select centroids from the original point;

- Grouping: select neighbors (also called agglomerates) for each centroid;

- Encoding: encode the new centroid feature using the features from the neighbors
and itself;

9 / 39

Challenges in EDA applications

I Order invariance;

- Both multi-view based methods and volumetric-based methods: transformation

- point-based methods: some symmetric functions like max-pooling or summation
or special trainable network

I Irregularity:

- Both multi-view based methods and volumetric-based methods transform the
irregular point cloud into regular grid-like data such as image or voxel.

- point-based methods directly work on points and propose networks specifically for
irregular data like GNNs.

I Sparsity;

I Dimension: 3D vs. 2D

10 / 39

Outline

Case Study 1: Routing Tree Construction

Case Study 2: Hotspot Detection

Conclusion

11 / 39

Case study 1: Routing Routing Tree Construction

Routing Tree Construction: Given a input net V = {v0,Vs}, v0 is the source (red
node) and Vs is the set of sinks (black node), construct a tree optimizing both wire
length and path length.

A

D

C

B

(a)

source pin
sink pin
steiner points

(b)

Examples of routing tree construction. Left: spanning tree; right: Steiner tree.

11 / 39

Wire length (WL) and path length (PL)

Wire length (WL) metric: lightness

I WL ratio with that of minimum spanning tree (MST).

I lightness =
w(T)

w(MST(G))
, w(·) is the total weight.

Path length (PL) metric: shallowness or normalized path length

I Shallowness = max{
dT(v0, v)
dG(v0, v)

|v ∈ Vs}, G is the connected weighted routing graph.

I Normalized path length =

∑
v∈V dT(v0, v)∑
v∈V dG(v0, v)

.

12 / 39

Non-trivial questions in the routing tree construction

Best algorithm?

I Neither PD-II nor SALT, two most prominent ones, always dominates the other one in
terms of both WL and PL for all nets.

Best parameter?

I Both PD-II and SALT use a parameter to help balance WL and PL.

I Given one WL constraint, what is the best parameter to obtain the best PL?

13 / 39

Point cloud and its embedding

Embeddings in 2-D space Point clouds
source pin

x y
20 60
40 25
�

60 85
80 60

x y
75 35
10 40
�

85 20
85 70

x y
50 80
20 65
�

80 20
80 65

y

x

x

xy

y

sink pin

Cloud embeddings for tree construction, where point clouds are transformed into unified 2-D
Euclidean space.

14 / 39

Problem formulation

Given a set of 2-D pins and two routing tree construction algorithms, SALT1 and
PD-II2, our objective is to obtain the embedding of the given point cloud by
TreeNet such that

1. the embedding can be used to select the best algorithm for the given point cloud;

2. the embedding can be used to estimate the best parameter ε of SALT for the given
point cloud;

3. the embedding can be used to estimate the best parameter α of PD-II for the given
point cloud.

1Gengjie Chen and Evangeline FY Young (2019). “SALT: provably good routing topology by a
novel steiner shallow-light tree algorithm”. In: IEEE TCAD.

2Charles J Alpert et al. (2018). “Prim-Dijkstra Revisited: Achieving Superior Timing-driven
Routing Trees”. In: Proc. ISPD, pp. 10–17.

15 / 39

Property 1: Down-sampling

Property
Let d : V → V′ be a function for down-sampling, where V′ is a proper subset of V.
f (V) 6= f (d(V)) holds if there exists v ∈ V−d(V) so that v is not the steiner point in f (d(V)) .

(a) (b) (c)

source pin
sink pin
steiner points

(d)

Examples of the down-sampling: (a) The general point cloud without the down-sampling; (b) The
general point cloud with the down-sampling; (c) The constructed tree without the down-sampling; (d)
The constructed tree with the down-sampling.

16 / 39

Property 2 & 3: Permutation
Property
Let Vp

s be the permutation of the sink set Vs. f ({v0,Vp
s }) = f ({v0,Vs}) holds for any

V = {v0,Vs}.

Property
Let Vp be the permutation of the input net V. f (Vp) 6= f (V) holds if the source in Vp is
different from the source in V.

(a)

source pin
sink pin
steiner points

(b)

Examples of the routing trees with the same node coordinates but different source (highlighted by
red).

17 / 39

Property 4: Inequality of the same Vs

Property
For any sink set Vs with |Vs| > 1, there exists two different pins, v0 and v′0 in the 2-D plane
so that f ({v0,Vs}) 6= f ({v′0,Vs}). Moreover, the inequality holds when we only consider the
topology.

A

D

C

B

(a)

AD

C

B

(b)

Examples of the node with the same coordinates and local neighbors but different parent-child
relationships. Here root is highlighted in red.

18 / 39

Property 5: Graph construction methods

Property
Let Gball, Gknn and Gbbox be the graph constructed from V by ball query, k nearest neighbor
and bounding box respectively. The minimum spanning tree, T may not be the subgraph of
Gball or Gnn, but always the subgraph of Gbbox.

(a) ball (b) k-nn (c) k-bbox (d) routing
tree

Comparison among ball query (a) k-nn (b) and k-bbox (c) grouping methods (k = 2 in this example).
The orange regions represent the query ball in (a) and bounding boxes in (c). The centroid is
highlighted by black and the root is by red.

19 / 39

TreeConv

I Sampling selects a set of centroids from the original point cloud

- Omited considering Property 1.

- Each node is selected as the centroid.

I Grouping selects a set of neighbors for each centroid.

- Selecting k nearest bbox-neighbors of ui as the neighbors.

- Grouping returns a list of neighbors Ei ∈ Rk for each centroid ui.

I Encoding is to encode the new centroid feature using the original one and the local
feature aggregated from the neighbors of the centroid.

- v′ic = maxj∈Ei σ(θc · CONCAT(vi, vi − vj, vi − vr))

- followed by a Squeeze-and-Excitation (SE) block3

3Jie Hu, Li Shen, and Gang Sun (2018). “Squeeze-and-excitation networks”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 7132–7141.

20 / 39

TreeConv

K
-b

bo
x

gr
ou

pi
ng

Lo
ca

l i
nf

or
m

at
io

n
G

lo
ba

l i
nf

or
m

at
io

n

C
on

ca
t

 c
on

v

M
ax

SE
 b

lo
ck

Illustration of TreeConv. Brighter blocks indicate Grouping and darker blocks indicate Encoding.

21 / 39

TreeConv vs. existing methods.

Sampling Grouping Encoding

PointNet4 - - v′ic = σ(θcvi)
PointNet++5 Fathest Point Sampling (FPS) ball query’s local neighborhood v′ic = maxj∈Ei σ(θcvj)
PointCNN6 Random/FPS k nearest neighbor v′i = Conv(X × θ(vi − vj))
DGCNN7 - k nearest neighbor v′ic = maxj∈Ei σ(θc · CONCAT(vi, vi − vj))
Our work - k bounding box neighbor v′ic = maxj∈Ei σ(θc · CONCAT(vi, vi − vj, vi − vr))

4Charles R Qi et al. (2017). “Pointnet: Deep learning on point sets for 3d classification and
segmentation”. In: Proc. CVPR, pp. 652–660.

5Charles Ruizhongtai Qi et al. (2017). “PointNet++: Deep hierarchical feature learning on point
sets in a metric space”. In: Advances in Neural Information Processing Systems, pp. 5099–5108.

6Yangyan Li et al. (2018). “PointCNN: Convolution on x-transformed points”. In: Advances in
Neural Information Processing Systems, pp. 820–830.

7Yue Wang et al. (2019). “Dynamic graph CNN for learning on point clouds”. In: ACM
Transactions on Graphics 38.5, pp. 1–12.

22 / 39

TreeNet

Tr
ee

C
on

v

Tr
ee

C
on

v

Tr
ee

C
on

v

Tr
ee

C
on

v

M
A

X
 &

 M
EA

N

+
N

or
m

al
iz

at
io

n

Illustration of TreeNet Architecture for the cloud embedding.

I Normalization: ṽi =
vi − vr

dmax
.

23 / 39

Algorithm selction & parameter predition

Algorithm selction

y = softmax(W3σ(W2σ(W1Hc + b1) + b2)),

Parameter predition

I 20 valid parameter εi, i ∈ {1, ..., 20} candidates for SALT

I Following similar structure with algorithm selection to obtain the output y ∈ R20.

I Given the output y, the predicted parameter ε is calculated by an element-wise
summation and can be formulated as ε =

∑20
i=1 εi · yi.

I The predicted parameter guides the routing tree construction by a simple heuristic
rule

24 / 39

Framework

SALT selector

Confidence > b?

SALT

PD-II

Point cloud

Y

N

SALT parameter
predictor

PD-II parmeter
predictor

TreeNet

The workflow of our framework. Dotted arrows represent that TreeNet generates cloud embeddings
and use them to select the algorithm or to predict parameters. The yellow blocks are executed in our
framework while the purple blocks are executed by the selected algorithms.

25 / 39

Comparison to existing methods

Method Accuracy Precision Recall∗

PointNet 54.13 53.95 1.91
PointNet++ 81.31 82.50 2.65
PointCNN 62.18 64.24 1.16
DGCNN 92.24 94.62 11.84
TreeNet w.o. Nor 87.22 88.62 15.69
TreeNet w.o. global 92.40 94.63 25.53
TreeNet w. knn 92.58 94.79 26.76
TreeNet 94.09 95.38 50.74

26 / 39

Comparison to SALT & PD-II (shallowness & normalized PL)

|V| Method
WL deg.

0% 5% 10% 15% 20%

Small

PD-II 1.0606 1.0369 1.0240 1.0161 1.0114
SALT 1.0462 1.0216 1.0078 1.0022 1.0006
SALT∗ 1.0462 1.0216 1.0079 1.0023 1.0006
Ours 1.0461 1.0210 1.0074 1.0021 1.0005

Imp. (%) 0.28 2.62 4.40 5.42 8.25
Imp.∗ (%) 0.32 3.04 5.14 6.75 9.94

Med.

PD-II 1.3849 1.2518 1.1688 1.1176 1.0851
SALT 1.3456 1.1775 1.0838 1.0391 1.0181
SALT∗ 1.3463 1.1815 1.0868 1.0410 1.0192
Ours 1.3435 1.1689 1.0790 1.0370 1.0172

Imp. (%) 0.62 4.85 5.72 5.57 5.41
Imp.∗ (%) 0.80 6.95 8.98 9.92 10.41

Large

PD-II 1.9093 1.5584 1.3595 1.2473 1.1805
SALT 1.7976 1.3549 1.1568 1.0727 1.0358
SALT∗ 1.8083 1.3689 1.1648 1.0771 1.0382
Ours 1.7755 1.3339 1.1481 1.0690 1.0341

Imp. (%) 2.77 5.91 5.53 5.11 4.78
Imp.∗ (%) 4.06 9.50 10.12 10.52 10.77

Huge

PD-II 2.1660 1.7169 1.4771 1.3438 1.2603
SALT 2.0111 1.4398 1.2083 1.0987 1.0466
SALT∗ 2.0291 1.4567 1.2183 1.1039 1.0489
Ours 1.9793 1.4152 1.1975 1.0941 1.0444

Imp. (%) 3.15 5.61 5.17 4.69 4.64
Imp.∗ (%) 4.85 9.09 9.50 9.47 9.20

All

PD-II 1.2921 1.1822 1.1193 1.0827 1.0604
SALT 1.2531 1.1175 1.0524 1.0236 1.0110
SALT∗ 1.2555 1.1210 1.0546 1.0248 1.0117
Ours 1.2481 1.1114 1.0495 1.0223 1.0104

Imp. (%) 1.97 5.18 5.43 5.21 5.08
Imp.∗ (%) 2.89 7.98 9.23 9.95 10.38

|V| Method
WL deg.

0% 5% 10% 15% 20%

Small

PD-II 1.0156 1.0099 1.0065 1.0044 1.0031
SALT 1.0113 1.0055 1.0020 1.0006 1.0002
SALT∗ 1.0113 1.0055 1.0020 1.0006 1.0002
Ours 1.0112 1.0053 1.0019 1.0005 1.0001

Imp. (%) 0.25 2.86 4.88 6.57 10.55
Imp.∗ (%) 0.29 3.38 5.83 8.29 12.75

Med.

PD-II 1.0897 1.0579 1.0373 1.0248 1.0170
SALT 1.0778 1.0428 1.0204 1.0096 1.0044
SALT∗ 1.0780 1.0440 1.0214 1.0102 1.0048
Ours 1.0773 1.0396 1.0185 1.0086 1.0040

Imp. (%) 0.63 7.35 9.45 10.01 10.00
Imp.∗ (%) 0.82 9.90 13.70 15.74 16.65

Large

PD-II 1.1968 1.1146 1.0671 1.0413 1.0267
SALT 1.1665 1.0815 1.0365 1.0172 1.0086
SALT∗ 1.1690 1.0854 1.0390 1.0187 1.0095
Ours 1.1616 1.0726 1.0318 1.0150 1.0076

Imp. (%) 2.95 10.92 12.81 12.91 12.49
Imp.∗ (%) 4.35 15.02 18.29 19.70 20.35

Huge

PD-II 1.2472 1.1415 1.0830 1.0513 1.0328
SALT 1.2120 1.1054 1.0489 1.0224 1.0105
SALT∗ 1.2160 1.1106 1.0522 1.0242 1.0112
Ours 1.2045 1.0917 1.0413 1.0190 1.0088

Imp. (%) 3.54 13.03 15.54 15.54 16.25
Imp.∗ (%) 5.31 17.12 20.97 21.52 21.87

All

PD-II 1.0658 1.0398 1.0244 1.0157 1.0105
SALT 1.0550 1.0278 1.0125 1.0056 1.0026
SALT∗ 1.0555 1.0289 1.0132 1.0061 1.0029
Ours 1.0538 1.0253 1.0111 1.0050 1.0023

Imp. (%) 2.05 9.17 11.35 11.94 12.16
Imp.∗ (%) 3.01 12.43 16.04 17.98 19.11

27 / 39

Runtime

SmallMed.LargeHuge All
01

5

10

Ti
m

e
(m

s) SALT
SALT ∗

Ours

Runtime comparison with SALT and
SALT∗.

58.46%

40.05%

1.05%

(a) Small

23.04%

69.83%

7.13%

(b) Med.

11.13%

75.97%

12.9%

(c) Large

14.09%

68.44%

17.47%

(d) Huge

24.39%

TreeNet Inference

65.94%

SALT

9.67%

PD-II

(e) All

Runtime breakdown of our framework.

28 / 39

Outline

Case Study 1: Routing Tree Construction

Case Study 2: Hotspot Detection

Conclusion

29 / 39

Design Rule Checking

Lithography Hotspot
Detection

Mask Optimization

Layout

Mask

Lithography Hotspot
Detection

29 / 39

Pattern Matching based Hotspot Detection

library'
hotspot&

Pa)ern'
matching'

hotspot&hotspot&

I Fast and accurate

I [Yu+,ICCAD’14] [Nosato+,JM3’14] [Su+,TCAD’15]

I Fuzzy pattern matching [Wen+,TCAD’14]

I Hard to detect non-seen pattern

30 / 39

Pattern Matching based Hotspot Detection

library'
hotspot&

Pa)ern'
matching'

hotspot&hotspot&

detected�

hotspot&

undetected�

detected�
Cannot&detect&
hotspots¬&in&
the&library&

I Fast and accurate

I [Yu+,ICCAD’14] [Nosato+,JM3’14] [Su+,TCAD’15]

I Fuzzy pattern matching [Wen+,TCAD’14]

I Hard to detect non-seen pattern

30 / 39

Classification based Hotspot Detection

Hotspot&
detec*on&
model&

Classifica*on&

Extract&layout&
features&

I Predict new patterns

I Decision-tree, ANN, SVM, Boosting ...

I [Drmanac+,DAC’09] [Ding+,TCAD’12] [Yu+,JM3’15] [Matsunawa+,SPIE’15]
[Yu+,TCAD’15]

I Hard to balance accuracy and false-alarm

31 / 39

Classification based Hotspot Detection

Non$
Hotspot�

Hotspot�

Hotspot&
detec*on&
model&

Classifica*on&

Extract&layout&
features&

Hard,to,trade$off,
accuracy,and,false,
alarms,

I Predict new patterns

I Decision-tree, ANN, SVM, Boosting ...

I [Drmanac+,DAC’09] [Ding+,TCAD’12] [Yu+,JM3’15] [Matsunawa+,SPIE’15]
[Yu+,TCAD’15]

I Hard to balance accuracy and false-alarm

31 / 39

HSD-Research: New Representation

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a23 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

Feature Vector : X = {a11, a12, …, a54, a55}

��

��
��

��

(a)

Encode

00011101

Binary

29

(b)

x0 x1 x3x2 x4
y0
y1

y3
y2

y4

y5

0.2 0.072 0.06 0.048

0.09

0.137

0.017
0.06
0.013

(c)
I (a) Density-based encoding [SPIE’15]8

I (b) Concentric circle sampling [ICCAD’16]9

I (c) Squish pattern [ASPDAC’19]10

8Tetsuaki Matsunawa et al. (2015). “A new lithography hotspot detection framework based on
AdaBoost classifier and simplified feature extraction”. In: Proc. SPIE. vol. 9427.

9Hang Zhang, Bei Yu, and Evangeline F. Y. Young (2016). “Enabling Online Learning in
Lithography Hotspot Detection with Information-Theoretic Feature Optimization”. In: Proc. ICCAD,
47:1–47:8.

10Haoyu Yang, Piyush Pathak, et al. (2019). “Detecting multi-layer layout hotspots with adaptive
squish patterns”. In: Proc. ASPDAC, pp. 299–304.

32 / 39

Simplified CNN Architecture [DAC’17]11

Feature Tensor Generation:
I Clip Partition

I Discrete Cosine Transform

I Discarding High Frequency Components

I Feature Tensor

Division

11Haoyu Yang, Jing Su, Yi Zou, Bei Yu, et al. (2017). “Layout Hotspot Detection with Feature
Tensor Generation and Deep Biased Learning”. In: Proc. DAC, 62:1–62:6.

33 / 39

Simplified CNN Architecture [DAC’17]11

Feature Tensor Generation:
I Clip Partition

I Discrete Cosine Transform

I Discarding High Frequency Components

I Feature Tensor

Division DCT

0

50

100

0 20 40 60 80 100

0

5

10

15

20

25

 0

5

10

15

20

11Haoyu Yang, Jing Su, Yi Zou, Bei Yu, et al. (2017). “Layout Hotspot Detection with Feature
Tensor Generation and Deep Biased Learning”. In: Proc. DAC, 62:1–62:6.

33 / 39

Simplified CNN Architecture [DAC’17]11

Feature Tensor Generation:
I Clip Partition

I Discrete Cosine Transform

I Discarding High Frequency Components

I Feature Tensor

Division DCT

0

50

100

0 20 40 60 80 100

0

5

10

15

20

25

 0

5

10

15

20

2
6664

C11,1 C12,1 C13,1 . . . C1n,1

C21,1 C22,1 C23,1 . . . C2n,1

...
...

...
. . .

...
Cn1,1 Cn2,1 Cn3,1 . . . Cnn,1

3
7775

2
6664

C11,k C12,k C13,k . . . C1n,k

C21,k C22,k C23,k . . . C2n,k

...
...

...
. . .

...
Cn1,k Cn2,k Cn3,k . . . Cnn,k

3
7775

(
k

Encoding

11Haoyu Yang, Jing Su, Yi Zou, Bei Yu, et al. (2017). “Layout Hotspot Detection with Feature
Tensor Generation and Deep Biased Learning”. In: Proc. DAC, 62:1–62:6.

33 / 39

Simplified CNN Architecture [DAC’17]

Feature Tensor
I k-channel hyper-image

I Compatible with CNN

I Storage and computional efficiency

Layer Kernel Size Stride Output Node #
conv1-1 3 1 12× 12× 16
conv1-2 3 1 12× 12× 16

maxpooling1 2 2 6× 6× 16
conv2-1 3 1 6× 6× 32
conv2-2 3 1 6× 6× 32

maxpooling2 2 2 3× 3× 32
fc1 N/A N/A 250
fc2 N/A N/A 2

…

Hotspot

Non-Hotspot

Convolution + ReLU Layer Max Pooling Layer Full Connected Node

2
6664

C11,1 C12,1 C13,1 . . . C1n,1

C21,1 C22,1 C23,1 . . . C2n,1

...
...

...
. . .

...
Cn1,1 Cn2,1 Cn3,1 . . . Cnn,1

3
7775

2
6664

C11,k C12,k C13,k . . . C1n,k

C21,k C22,k C23,k . . . C2n,k

...
...

...
. . .

...
Cn1,k Cn2,k Cn3,k . . . Cnn,k

3
7775

(
k

34 / 39

Case Study 2: Point-Cloud based Hotspot Detection

(d) (e)

Examples of the transformation from layout to point cloud. left: original GDSII layout, the hotspot is
marked as red rectangle. right: transformed point cloud.

35 / 39

Workflow

GDSII Layout Point Cloud Data Point Cloud Predictions Layout Predictions

Hotspot Labels
Point Cloud Hotspot Proposal
Detected Hotspot
False Alarm
Missed Hotspots

Point Cloud
Hotspot
Detector

Overall flow of point cloud hotspot detection model.

I Hotspot box proposal generation

- Obtain point-wise features by PointNet++;

- One segmentation head for predicting foreground points information and one box
regression head for generating hotspot proposals;

I Hotspot box refinement

- The embedding is further used to refine hotspot proposals and predict confidence
for each proposal;

36 / 39

Preliminary results

Bench
Faster R-CNN12 TCAD’1913 TCAD’2014 PCloud-HSD

Accu (%) FA Time (s) Accu (%) FA Time (s) Accu (%) FA Time (s) Accu (%) FA Time (s)
Case2 1.8 3 1.0 77.78 48 60.0 93.02 17 2.0 83.1 36 1.6
Case3 57.1 74 11.0 91.20 263 265.0 94.5 34 10.0 88.4 89 8.2
Case4 6.9 69 8.0 100 511 428.0 100 201 6.0 100 294 5.5

Average 21.9 48.7 6.67 89.66 274 251 95.8 84 6 90.5 139.6 5.1
Ratio 0.23 0.58 1.11 0.94 3.26 41.83 1 1 1 0.95 1.66 0.85

12Shaoqing Ren et al. (2015). “Faster R-CNN: Towards real-time object detection with region
proposal networks”. In: Proc. NIPS, pp. 91–99.

13Haoyu Yang, Jing Su, Yi Zou, Yuzhe Ma, et al. (2019). “Layout hotspot detection with feature
tensor generation and deep biased learning”. In: IEEE TCAD 38.6, pp. 1175–1187.

14Ran Chen et al. (2019). “Faster Region-based Hotspot Detection”. In: Proc. DAC, 146:1–146:6.
37 / 39

Outline

Case Study 1: Routing Tree Construction

Case Study 2: Hotspot Detection

Conclusion

38 / 39

Conclusion

I We formalize special properties of the point cloud for the routing tree construction;

I We propose an adaptive flow for the routing tree construction, which uses the cloud
embedding to select the best approach and predict the best parameter;

I We further study the possibility of point cloud based hotspot detection.

I More applications to explore...

38 / 39

Thank You!

39 / 39

	Introduction
	Main Talk
	Case Study 1: Routing Tree Construction
	Case Study 2: Hotspot Detection
	Conclusion

