

Physical Synthesis for Advanced Neural Network Processors

Zhuolun He¹, Peiyu Liao¹, Siting Liu¹, Yuzhe Ma¹, Yibo Lin², Bei Yu¹,

¹The Chinese University of Hong Kong ²Peking University

Survey: Datapath Driven Placement

Case Study: Datapath Driven Floorplan for Neural Network Processors

Discussion: Advanced Technologies for Neural Network Processors

Survey: Datapath Driven Placement

Case Study: Datapath Driven Floorplan for Neural Network Processors

Discussion: Advanced Technologies for Neural Network Processors

Conclusion

◆□ > < □ > < Ξ > < Ξ > < Ξ > ○ Q ○

Deep Learning: an Important Workload

- Deep learning has emerged as an important workload
- > Yet, how to efficiently execute them?

Dataflow Optimization and Physical Synthesis

- Dataflow optimization becomes essential
 - Schedules operation by data availability
 - Exposes opportunity for parallelism and data reuse
- Dataflow regularity gives rise to new physical synthesis approaches
 - Directly determines system performance!

Survey: Datapath Driven Placement

Case Study: Datapath Driven Floorplan for Neural Network Processors

Discussion: Advanced Technologies for Neural Network Processors

Conclusion

・ロト・四ト・モート ヨー うへの

Datapath Driven Standard Cell Placement

Classical idea: bit-sliced DSP datapaths [Cai, DAC'90]

- Decide ordering of linearly placed blocks
- Solved by A* in the search space
- Standard cell placement [Tsay, TCAD'95]
 - Strongly connected subcircuits (cones) are extracted
 - BFS + heuristics
 - Placed as macro cells

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Datapath Driven Placement: Abstract Physical Model

- Placer has little control of exact locations if datapath is generated separately
- Abstract physical model [Ye, ICCAD'00]
 - Bit-sliced abstraction
 - Compiled from HDL
 - Blocks are placed abutted
- Two-step heuristic for linear placement
 - quadratic assignment
 - sliding window optimization

APM of a booth multiplier [Ye, ICCAD'00]

Datapath Driven Systolic Array Placement

- Systolic arrays are a popular choice to support neural network computations
- Current FPGA CAD tools cannot synthesize them in high quality
- One solution: restrict fixed locations for PEs [Zhang, ISCAS'19]
 - Sufficient DSPs, close to used I/O banks

PE placement with floorplan constraints [Zhang, ISCAS'19]

Datapath Driven Placement: Many More

- Detailed placement [Serdar, DATE'01]
- SOC placement [Tong, JOS'02] [Jing, ICCCAS'02]
- Parallel multiplier design [Bae, ISPD'15]
- Genaral ASIC design [Ye, ISCAS'02] [Chou, DAC'12] [Wang, IETCDS'17]

• • • •

Regularity Extraction

- Consider cells with the same bit-slice are lined up horizontally [Nijssen IWLS'96]
 - geometric regularity: circuit is fitted onto a matrix of rectangular buckets
 - interconnect regularity: most nets are within one slice/one stage
- Typical methods for regularity extraction
 - Search-wave expansion [Nijssen IWLS'96]
 - Signature-based [Arikati, ICCAD'97]
 - Template covering [Chowdhary, TCAD'99]
 - Network flow [Xiang, ISPD'13]
 - Bipartite graph vertex covering [Huang, DAC'17]

Regularity Extraction: Network Flow Approach

- a set of n disjoint paths from input to output
- maximize the number of datapath gates on these paths
- Can be optimally identified by the min-cost max-flow algorithm

DMF identification can be transformed to a network flow problem [Xiang, ISPD 13]

Machine Learning Techniques for Datapath Driven Placeme

Machine learning techniques are involved [Ward, DAC'12]

- Graph-based (e.g., automorphism) and physical features (e.g., cell area) are analyzed and extracted from the netlist
- Features are fed to SVMs and NNs to classify and evaluate datapath patterns
- Maximize the evaluation accuracies of datapath and non-datapath pattern
- Proposed new placer: PADE

PADE effectively handles datapath in placement. [Ward, DAC'12]

Survey: Datapath Driven Placement

Case Study: Datapath Driven Floorplan for Neural Network Processors

Discussion: Advanced Technologies for Neural Network Processors

Problem Formulation

- Floorplan computation kernels of a neural network [Michael, ISPD'20]
 - Blocks are soft: kernel sizing
 - Floorplanning
 - Optimize performance, wirelength, etc.

Kernel floorplanning. Figure adopted from ISPD Contest.

Datapath Driven Floorplan

- Our strategy: datapath-driven floorplan
 - Neural network is usually hierarchical: a stack of layers
 - Arrange the floorplan according to the datapath

Datapath driven floorplans. (a) Single-row; (b) Multi-row.

DACIFIC DACIFIC

Floorplan Compacting

- The floorplan can be further compacted
 - Vertically: push to center
 - Horizontally: a linear programming problem

(a) Mamba floorplan; (b) Horizontally compacted Mamba floorplan.

Result: Datapath Driven Floorplan Outperforms

Benchmark Statistics				TBS SA Algorithm [Jiang, ICCAD"20]				Our Strategy			
Case	#Kernels	λ_1	λ_2	Max Time	WL	Protocol	Cost	Max Time	WL	Protocol	Cost
А	17	1	0	37044	3611.5	11	40655.5	35280	2047	13	37327
В	34	1	0	70560	6657	20	77217	65856	4905	17	70761
С	102	1	0	76608	15696	69	92034	65772	4278	281	70050
D	54	1	0	38304	9327.5	44	47631.5	34944	3071.5	89	38015.5
Е	17	10	100	36288	2080.5	7	57793	39690	590	16	47190
F	34	10	100	76608	3237	15	110478	70560	1475	14	86710
G	102	10	100	91728	7784	29	172468	69888	2508	141	109068
н	54	10	100	47040	4450	21	93640	43008	893	115	63438
1	27	4	0	56448	3790	16	71608	52920	612	13	55368
J	81	4	0	63504	8009.5	52	95542	57792	1117.5	286	62262
к	18	4	0	576	236	3	1520	504	400	14	2104
L	54	4	0	1280	910.5	60	4922	504	774	114	3600
М	25	4	0	2359296	9359	24	2396732	2336256	5100	67	2356656
Ν	28	4	0	2268	707.5	0	5098	1599	448.5	9	3393
0	27	40	400	63504	1202	6	113984	52920	612	13	82600
Р	81	40	400	115101	4015	24	285301	66528	2273	102	198248
Q	18	40	400	1152	178	1	8672	504	400	14	22104
R	54	40	400	1372	1443	30	71092	504	774	114	77064
S	25	40	400	2495376	3551	25	2647416	2396160	1899.5	65	2498140
Т	28	40	400	5720	555.5	0	27940	2015	367.5	9	20315
Avg							1.17×				1.00×

Survey: Datapath Driven Placement

Case Study: Datapath Driven Floorplan for Neural Network Processors

Discussion: Advanced Technologies for Neural Network Processors

Processing-in-Memory Technologies

- PIM provides massive parallelism with high energy efficiency [Wang, ASAP'19]
- However, lots of systems rely on external control
- Neural networks can be implemented with NVMs
 - RRAM [Chi, SIGARCH'16] [Sun, DATE'18]
 - STT-MRAM [Yan, SC'18] [Pan, TMAGN'18]
 - PCM [Kim, DATE'20]
 - memristor [Yao, Nature'20]
- In-memory analog simulation
 - memristor crossbar [Li, Nat. Commun'18]
 - FTJ [Li, Adv.Mater'20]

Nanophotonic and Optical Neural Networks

- The nanophotonic circuit is an alternative neuromorphic computing system
 - ultra-high bandwidth, speed and ultra-low energy consumption
- Signals are encoded in the amplitude of optical pulses
- Implements a multi-layer optical neural network (ONNs)
- Recent advances
 - Exploring nonlinear functions with ONNs [Zuo, OPTICA'19]
 - Reducing area overhead of ONNs [Gu, ASPDAC'20]

3D Technologies and Beyond-CMOS devices

3D technologies offer a wide spectrum of integration schemes

- TSV-based Tetris [Gao, ASPLOS'17]
- TCI-based QUEST [Ueyoshi, ISSCC'18]
- M3D-based accelerators [Chang, ISLPED'17] [Chang, JETC'18]
- Beyond-CMOS devices give rise to new solutions for low-power design
 - HyperFET for spiking neural networks [Tsai, TMSCS'16]
 - TFET for cellular neural networks [Palit, ISLPED'13]

Survey: Datapath Driven Placement

Case Study: Datapath Driven Floorplan for Neural Network Processors

Discussion: Advanced Technologies for Neural Network Processors

- Review on datapath driven placement
 - Placement with datapath constraints
 - Regularity extraction methods
 - Machine learning techniques
- Case study: floorplan for advanced neural network processors
 - Datapath driven floorplan greatly outperforms standard methods
- Advanced technologies for neural network processor design
 - Processing-in-Memory
 - Nanophotonic
 - 3D technologies
 - Beyond-CMOS devies

Thank You

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ⊙