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Routing Tree Construction
Routing Tree Construction: Given a input net V = {v0,Vs}, v0 is the source (red node) and
Vs is the set of sinks (black node), construct a tree optimizing both wire length and path
length.
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(a)

source pin
sink pin
steiner points

(b)

Examples of routing tree construction. Left: spanning tree; right: Steiner tree.
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Wire length (WL) and path length (PL)
Wire length (WL) metric: lightness

I WL ratio with that of minimum spanning tree (MST).

I lightness =
w(T)

w(MST(G))
, w(·) is the total weight.

Path length (PL) metric: shallowness by SALT∗ or normalized path length by PD-II†

I Shallowness = max{
dT(v0, v)
dG(v0, v)

|v ∈ Vs}, G is the connected weighted routing graph.

I Normalized path length =

∑
v∈V dT(v0, v)∑
v∈V dG(v0, v)

.

∗Gengjie Chen and Evangeline FY Young (2019). “SALT: provably good routing topology by a novel steiner
shallow-light tree algorithm”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems.

†Charles J Alpert et al. (2018). “Prim-Dijkstra Revisited: Achieving Superior Timing-driven Routing Trees”.
In: Proc. ISPD, pp. 10–17.4 / 21
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Some questions

Best algorithm?

I Neither PD-II nor SALT, two most prominent ones, always dominates the other one in
terms of both WL and PL for all nets.

Best parameter?

I Both PD-II and SALT use a parameter to help balance WL and PL.
I Given one WL constraint, what is the best parameter to obtain the best PL?

5 / 21



Preliminary Property analysis Cloud embedding by TreeNet Framework Results

Point cloud and its embedding
Embeddings in 2-D space Point clouds
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Cloud embeddings for tree construction, where point clouds are transformed into unified
2-D Euclidean space.
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Problem formulation

Given a set of 2-D pins and two routing tree construction algorithms, SALT‡ and PD-II, our
objective is to obtain the embedding of the given point cloud by TreeNet such that
1. the embedding can be used to select the best algorithm for the given point cloud;
2. the embedding can be used to estimate the best parameter ε of SALT for the given

point cloud;
3. the embedding can be used to estimate the best parameter α of PD-II for the given

point cloud.

‡Gengjie Chen and Evangeline FY Young (2019). “SALT: provably good routing topology by a novel steiner
shallow-light tree algorithm”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems.

Charles J Alpert et al. (2018). “Prim-Dijkstra Revisited: Achieving Superior Timing-driven Routing Trees”.
In: Proc. ISPD, pp. 10–17.
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Property 1: Down-sampling
Property

Let d : V → V′ be a function for down-sampling, where V′ is a proper subset of V.
f (V) 6= f (d(V)) holds if there exists v ∈ V − d(V) so that v is not the steiner point in
f (d(V)) .

(a) (b) (c)

source pin
sink pin
steiner points

(d)

Examples of the down-sampling: (a) The general point cloud without the down-sampling;
(b) The general point cloud with the down-sampling; (c) The constructed tree without the
down-sampling; (d) The constructed tree with the down-sampling.
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Property 2 & 3: Permutation
Property

Let Vp
s be the permutation of the sink set Vs. f ({v0,Vp

s }) = f ({v0,Vs}) holds for any
V = {v0,Vs}.

Property

Let Vp be the permutation of the input net V. f (Vp) 6= f (V) holds if the source in Vp is
different from the source in V.

(a)

source pin
sink pin
steiner points

(b)

Examples of the routing trees with the same node coordinates but different source
(highlighted by red).9 / 21
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Property 4: Inequality of the same Vs
Property

For any sink set Vs with |Vs| > 1, there exists two different pins, v0 and v′0 in the 2-D plane
so that f ({v0,Vs}) 6= f ({v′0,Vs}). Moreover, the inequality holds when we only consider the
topology.
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Examples of the node with the same coordinates and local neighbors but different
parent-child relationships. Here root is highlighted in red.
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Property 5: Graph construction methods
Property

Let Gball, Gknn and Gbbox be the graph constructed from V by ball query, k nearest neighbor
and bounding box respectively. The minimum spanning tree, T may not be the subgraph of
Gball or Gnn, but always the subgraph of Gbbox.

(a) ball (b) k-nn (c) k-bbox (d) routing tree

Comparison among ball query (a) k-nn (b) and k-bbox (c) grouping methods (k = 2 in this
example). The orange regions represent the query ball in (a) and bounding boxes in (c).
The centroid is highlighted by black and the root is by red.11 / 21
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TreeConv

I Sampling selects a set of centroids from the original point cloud
- Omited considering Property 1.
- Each node is selected as the centroid.

I Grouping selects a set of neighbors for each centroid.
- Selecting k nearest bbox-neighbors of ui as the neighbors.
- Grouping returns a list of neighbors Ei ∈ Rk for each centroid ui.

I Encoding is to encode the new centroid feature using the original one and the local
feature aggregated from the neighbors of the centroid.
- v′ic = maxj∈Ei σ(θc · CONCAT(vi, vi − vj, vi − vr))

- followed by a Squeeze-and-Excitation (SE) block¶

¶Jie Hu, Li Shen, and Gang Sun (2018). “Squeeze-and-excitation networks”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132–7141.
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TreeConv
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Illustration of TreeConv. Brighter blocks indicate Grouping and darker blocks indicate
Encoding.
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TreeConv vs. existing methods.

Sampling Grouping Encoding

PointNet‖ - - v′ic = σ(θcvi)
PointNet++∗∗ Fathest Point Sampling (FPS) ball query’s local neighborhood v′ic = maxj∈Ei σ(θcvj)
PointCNN†† Random/FPS k nearest neighbor v′i = Conv(X × θ(vi − vj))
DGCNN‡‡ - k nearest neighbor v′ic = maxj∈Ei σ(θc · CONCAT(vi, vi − vj))
Our work - k bounding box neighbor v′ic = maxj∈Ei σ(θc · CONCAT(vi, vi − vj, vi − vr))

‖Charles R Qi et al. (2017). “Pointnet: Deep learning on point sets for 3d classification and segmentation”.
In: Proc. CVPR, pp. 652–660.
∗∗Charles Ruizhongtai Qi et al. (2017). “PointNet++: Deep hierarchical feature learning on point sets in a

metric space”. In: Advances in Neural Information Processing Systems, pp. 5099–5108.
††Yangyan Li et al. (2018). “PointCNN: Convolution on x-transformed points”. In: Advances in Neural

Information Processing Systems, pp. 820–830.
‡‡Yue Wang et al. (2019). “Dynamic graph CNN for learning on point clouds”. In: ACM Transactions on

Graphics 38.5, pp. 1–12.
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TreeNet
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Illustration of TreeNet Architecture for the cloud embedding.

I Normalization: ṽi =
vi − vr

dmax
.
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Algorithm selction & parameter predition

Algorithm selction

y = softmax(W3σ(W2σ(W1Hc + b1) + b2)),

Parameter predition

I 20 valid parameter εi, i ∈ {1, ..., 20} candidates for SALT
I Following similar structure with algorithm selection to obtain the output y ∈ R20.
I Given the output y, the predicted parameter ε is calculated by an element-wise

summation and can be formulated as ε =
∑20

i=1 εi · yi.

I The predicted parameter guides the routing tree construction by a simple heuristic rule
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Framework

SALT selector

Confidence > b?

SALT

PD-II

Point cloud

Y

N

SALT parameter 
predictor

PD-II parmeter 
predictor

TreeNet

The workflow of our framework. Dotted arrows represent that TreeNet generates cloud
embeddings and use them to select the algorithm or to predict parameters. The yellow
blocks are executed in our framework while the purple blocks are executed by the selected
algorithms.
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Comparison to existing methods

Method Accuracy Precision Recall∗

PointNet 54.13 53.95 1.91
PointNet++ 81.31 82.50 2.65
PointCNN 62.18 64.24 1.16
DGCNN 92.24 94.62 11.84
TreeNet w.o. Nor 87.22 88.62 15.69
TreeNet w.o. global 92.40 94.63 25.53
TreeNet w. knn 92.58 94.79 26.76
TreeNet 94.09 95.38 50.74
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Comparison to SALT & PD-II (shallowness & normalized PL)
|V| Method WL deg.

0% 5% 10% 15% 20%

Small

PD-II 1.0606 1.0369 1.0240 1.0161 1.0114
SALT 1.0462 1.0216 1.0078 1.0022 1.0006
SALT∗ 1.0462 1.0216 1.0079 1.0023 1.0006
Ours 1.0461 1.0210 1.0074 1.0021 1.0005

Imp. (%) 0.28 2.62 4.40 5.42 8.25
Imp.∗ (%) 0.32 3.04 5.14 6.75 9.94

Med.

PD-II 1.3849 1.2518 1.1688 1.1176 1.0851
SALT 1.3456 1.1775 1.0838 1.0391 1.0181
SALT∗ 1.3463 1.1815 1.0868 1.0410 1.0192
Ours 1.3435 1.1689 1.0790 1.0370 1.0172

Imp. (%) 0.62 4.85 5.72 5.57 5.41
Imp.∗ (%) 0.80 6.95 8.98 9.92 10.41

Large

PD-II 1.9093 1.5584 1.3595 1.2473 1.1805
SALT 1.7976 1.3549 1.1568 1.0727 1.0358
SALT∗ 1.8083 1.3689 1.1648 1.0771 1.0382
Ours 1.7755 1.3339 1.1481 1.0690 1.0341

Imp. (%) 2.77 5.91 5.53 5.11 4.78
Imp.∗ (%) 4.06 9.50 10.12 10.52 10.77

Huge

PD-II 2.1660 1.7169 1.4771 1.3438 1.2603
SALT 2.0111 1.4398 1.2083 1.0987 1.0466
SALT∗ 2.0291 1.4567 1.2183 1.1039 1.0489
Ours 1.9793 1.4152 1.1975 1.0941 1.0444

Imp. (%) 3.15 5.61 5.17 4.69 4.64
Imp.∗ (%) 4.85 9.09 9.50 9.47 9.20

All

PD-II 1.2921 1.1822 1.1193 1.0827 1.0604
SALT 1.2531 1.1175 1.0524 1.0236 1.0110
SALT∗ 1.2555 1.1210 1.0546 1.0248 1.0117
Ours 1.2481 1.1114 1.0495 1.0223 1.0104

Imp. (%) 1.97 5.18 5.43 5.21 5.08
Imp.∗ (%) 2.89 7.98 9.23 9.95 10.38

|V| Method WL deg.
0% 5% 10% 15% 20%

Small

PD-II 1.0156 1.0099 1.0065 1.0044 1.0031
SALT 1.0113 1.0055 1.0020 1.0006 1.0002
SALT∗ 1.0113 1.0055 1.0020 1.0006 1.0002
Ours 1.0112 1.0053 1.0019 1.0005 1.0001

Imp. (%) 0.25 2.86 4.88 6.57 10.55
Imp.∗ (%) 0.29 3.38 5.83 8.29 12.75

Med.

PD-II 1.0897 1.0579 1.0373 1.0248 1.0170
SALT 1.0778 1.0428 1.0204 1.0096 1.0044
SALT∗ 1.0780 1.0440 1.0214 1.0102 1.0048
Ours 1.0773 1.0396 1.0185 1.0086 1.0040

Imp. (%) 0.63 7.35 9.45 10.01 10.00
Imp.∗ (%) 0.82 9.90 13.70 15.74 16.65

Large

PD-II 1.1968 1.1146 1.0671 1.0413 1.0267
SALT 1.1665 1.0815 1.0365 1.0172 1.0086
SALT∗ 1.1690 1.0854 1.0390 1.0187 1.0095
Ours 1.1616 1.0726 1.0318 1.0150 1.0076

Imp. (%) 2.95 10.92 12.81 12.91 12.49
Imp.∗ (%) 4.35 15.02 18.29 19.70 20.35

Huge

PD-II 1.2472 1.1415 1.0830 1.0513 1.0328
SALT 1.2120 1.1054 1.0489 1.0224 1.0105
SALT∗ 1.2160 1.1106 1.0522 1.0242 1.0112
Ours 1.2045 1.0917 1.0413 1.0190 1.0088

Imp. (%) 3.54 13.03 15.54 15.54 16.25
Imp.∗ (%) 5.31 17.12 20.97 21.52 21.87

All

PD-II 1.0658 1.0398 1.0244 1.0157 1.0105
SALT 1.0550 1.0278 1.0125 1.0056 1.0026
SALT∗ 1.0555 1.0289 1.0132 1.0061 1.0029
Ours 1.0538 1.0253 1.0111 1.0050 1.0023

Imp. (%) 2.05 9.17 11.35 11.94 12.16
Imp.∗ (%) 3.01 12.43 16.04 17.98 19.1119 / 21
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Runtime
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Runtime comparison with SALT and
SALT∗.
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Runtime breakdown of our framework.
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Conclusion

I We formalize special properties of the point cloud for the routing tree construction;
I We design TreeNet, a novel deep net architecture to obtain the cloud embedding for

the tree construction;
I We propose an adaptive flow for the routing tree construction, which uses the cloud

embedding to select the best approach and predict the best parameter;
I Experiments on widely used benchmarks demonstrate the effectiveness of our

embedding representation, compared with all other deep learning models;
I Experiments also show that our methods outperform other state-of-the-art routing tree

construction methods in terms of both quality and runtime.
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