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Deep Learning Enables Intelligent DFM
Lithography Hotspot Detection [Yang+,TCAD’19] [Jiang+,DAC’19]
[Geng+,ICCAD’20]
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Lithography Modeling [Ye+,DAC’19] [Ye+,ISPD’20]
[Chen+,ICCAD’20]
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Deep Neural Networks Are Fragile

Deep Neural Networks Are Vulnerable to Adversarial Examples [Goodfellow+,ICLR’15]∗

∗Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. “Explaining and harnessing adversarial
examples”, in ICLR, 2015
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Rethinking Deep Learning-based Hotspot Detection

Are DLHSDs Apparently Secure?
I Layouts are consistent with design rules and schematic designs.
I Adversarial examples are generated by pixel-wise manipulation on original image.
I DLHSDs are invulnerable to adversarial examples (generated by SOTA).

The Answer Is No. [Liu+,TODAES’20] †
I Neural networks see limited training data.
I DRC-clean and functionality-preserving manipulation on layouts are feasible.

Why Look for Adversarial Layouts?
I Designs of Interest
I Robust ML Design

†Liu, Kang, et al. "Adversarial Perturbation Attacks on ML-based CAD: A Case Study on CNN-based
Lithographic Hotspot Detection." ACM Transactions on Design Automation of Electronic Systems (TODAES)
25.5 (2020): 1-31.
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Preliminaries

Terminologies
I X: Input layout image
I f (·;W): Trained neural networks parameterized by W
I y∗ ∈ {0, 1}: Label of X
I y = f (X): Predicted logit of X
I X′ = X + R: Adversarial layout image by including perturbations R on X

Objective
I Given X satisfying y∗ = 1 and f (X) > 0, we want to find R such that X′ is DRC-clean

and as close to X as possible and in the mean time, f (X′) < 0.
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Generating Adversarial Layouts [Liu+,TODAES’20]
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Generating Adversarial Layouts [Liu+,TODAES’20]

Iterative Run Till the Label Flipped.
1. Feedforward to acquire the gradient of loss w.r.t. input.
2. Locate regions with largest gradient response.
3. Place perturbation.

The Procedure

min ||R||2F,
s.t. f (X + R;W) < 0,

f (X;W) > 0.

R = −γ ∂f (X)
∂X ,

X = X + R.
i = argmax

k

∑

(x,y)∈Rk

∂f (X)
∂X(x, y) .

Pixel-based Gradient Method Is Not Optimal
I Some perturbed pixels in the selected grid do not contribute to flip the label.
I Not designed to remove geometry as candidate perturbations.
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Group Gradient Method Is Our Proposal

min
α
L(α) = ||

∑

i
αiXi||2F,

s.t. f (X +
∑

i
αiXi;W) < 0,

αi + αj ≤ 1,∀i, j ∈ C,
αi ∈ {0, 1},∀i.

I X = {Xi}: A group of perturbation candidates that do not violate design rules with
existing geometry and affect design functionality.

I αi ∈ {0, 1}: Coefficients indicate whether Xi is selected.
I L: The change of the layout by inserting perturbations.
I C: Conflict set indicates whether two perturbations can be selected simultaneously.
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The Group Gradient Method
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I Illustration of the proposed attack scheme, with a solution of α2 = 1, α4 = 1 and
α11 = 1.
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Perturbation Candidate Enumeration

Positive Candidate

X1
G
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X1(i, j) =
{
−1, if (i, j) ∈ G,
0, if (i, j) ∈ S.
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Perturbation Candidate Enumeration
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I (a) Massive perturbation candidates, (b) Legal perturbation candidates.
I Visualization of perturbation candidate generation
X = {X1,X2,X3,X7,X8,X11,X12,X13}. Due to design rule violation with existing
shapes {X4,X5,X6,X9,X10} will not be included in the perturbation candidate set X .
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Numerical Optimization

min
α
L(α) = ||

∑

i
αiXi||2F,

s.t. f (X +
∑

i
αiXi;W) < 0,

αi + αj ≤ 1,∀i, j ∈ C,
αi ∈ {0, 1},∀i.

I Nonlinear Integer Programming.
I Non-Convex.
I No closed form solution.
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Numerical Optimization

min
α
Lcont(α) = ||

∑

i
αiXi||2F,

s.t. f (X +
∑

i
αiXi;W) < 0,

0 ≤ αi ≤ 1,∀i.

I The constraint regarding to the conflict set is processed in perturbation candidate
enumeration.

I Problem relaxed to continuous.
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Numerical Optimization

min
α
Lsim(α) = ||α||22,

s.t. f (X +
∑

i
αiXi;W) < 0,

0 ≤ αi ≤ 1,∀i.

I Objective approximation.
I Reduce computation significantly.

15 / 26



Numerical Optimization

Theorem
Let α∗cont and α∗sim be the optimal solution of Lcont and Lsim, respectively, then we have,

Lcont(α
∗
cont) ≤ Lcont(α

∗
sim),

and,

Lcont(α
∗
sim)− Lcont(α

∗
cont)

≤ ||α∗sim||20 · ||Xδ||2F − ||α∗cont||20 · ||Xξ||2F,

where δ = argmaxi |eᵀXie| and ξ = argmini |eᵀXie|.
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Numerical Optimization

min
α
Llag(α, λ) = ||α||22 + λf (X +

∑

i
αiXi;W),

s.t. λ ≥ 0, 0 ≤ αi ≤ 1, ∀i,

I Problem simplification with Lagrangian relaxation.

αi =
1

1 + e−βi
, βi ∈ R, ∀i.

I Auxiliary variables introduced to keep αi fall into [0, 1] during optimization.
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Numerical Optimization

Update β

β
(t+1)
i = β

(t)
i −

∂L(t)lag

∂α
(t)
i

∂α
(t)
i

∂β
(t)
i

= β
(t)
i − (2α(t)

i + λ
∂f

∂α
(t)
i

)α
(t)
i (1− α(t)

i ),∀i.

(8)

Update λ

λ(t+1) = λ(t) − f (X +
∑

i
α
(t)
i Xi;W).
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I Candidate perturbations are generated by scanning over the entire clip ensuring a
comprehensive solution space.

I GGM optimizes toward DRC-clean perturbation circumventing post-processing and
potential deviation from optimality.

I Gradient back-propagation and perturbation candidate determination steps make the
framework robust when more changes are used to create adversarial layout examples.
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Comparison with State-of-the-Art
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Comparison with State-of-the-Art
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Adversarial Attack Visualization

(a) Origin (f = 0.6005) (b) Step-1 (f = 0.4984)

(c) Step-2 (f = 0.0835) (d) Step-3 (f = −1.043)
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On the Importance of Hyper Parameters
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Conclusion

I We examine the risks of deep learning-based lithography hotspot detectors assuming
a practical adversarial attack scenario, and hence motivate us the generation of
adversarial layouts.

I We explain that adversarial example generation employing a conventional pixel-based
gradient method deviates from the optimal when making legal perturbations.

I We recommend the group gradient method that makes DRC clean perturbations by
solving an unconstrained optimization problem with an objective function that is
differentiable.

I We expect this study will spur research in defenses against adversarial layout
examples culminating in robust machine learning solutions in VLSI design and sign-off
flow.
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Thank You
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