Learn to Floorplan through Acquisition of Effective Local Search Heuristics

Zhuolun He¹, Yuzhe Ma¹, Lu Zhang¹, Peiyu Liao¹, Ngai Wong², Bei Yu¹, Martin D.F. Wong¹

> ¹The Chinese University of Hong Kong ²The University of Hong Kong

Floorplanning: a Classic Problem

- Determine location of large blocks
- Minimize area, wirelength, ...
- Encode geometric relationship w/ dedicated data structure
- Perturb an encoding to generate new solutions (i.e., local search)

How to enhance? Existing works adopt a local search algorithm, and

- Select a good start point [J.A. Boyan 98, Y. Zhou 16]
- Tune search parameters [U. Benlic 17]
- Scale the regularization term [D. Beloborodov 20]
- Switch between heuristics on the fly [A. Nareyek 03]

Our aim: acquire a local search algorithm from the scratch. Intuition: prior human knowledge might mislead the learning!

Learning a Local Search Heuristic

We use Reinforcement Learning (RL) to learn a heuristic.

Problem Description

- An agent walks in the search space
- Selects a neighbor or rejects to move
- Gets to neighbor state or stays
- Optimize decision based on signals

Difficulties: large state/action space

Corresponding RL Formalization

- State s: a complete solution
- Action a: defined perturbations/reject
- Transition \mathcal{T} : (deterministic)
- ▶ Reward r: ∆cost

Dealing with Large State Space: Neural Networks

We use sequence pair [H. Murata 03] to encode floorplan.

- The state space is large: $(n!)^2 \times 8^n$ possible states for *n* blocks
 - two permutation in sequence pair
 - rotation/flip of blocks
- Tabular method infeasible
- Solution: utilize a neural network to approximate the policy
 - Input: features concatenated in 1D vector
 - Output: scalar for action value prediction
 - Architecture: a Multi-Layer Perceptron (MLP)

Dealing with Large Action Space: Sampling

- Possible actions: perturb sequence pair + rotate/flip blocks
- ▶ The action space is large: $\Theta(n^3)$ discrete actions for *n* blocks
 - space size is polynomial of problem size
 - action evaluation (state energy, action value) is costly
- Solution: sample actions in both training/testing
 - We proved its convergence in DQN.

Area and Wirelength Minimization on MCNC

- Baseline: carefully tuned Simulated Annealing (SA)
- **Cost:** 0.6 * area + 0.4 * wirelength
- Our method outperforms in all cases: up to 2.5% lower cost and 5.7× speedup

Circuit	Statistics		Area (×10 ⁶)		WL ($\times 10^5$)		Cost (×10 ⁶)		Runtime (s)	
	blocks	nets	Ours	SA	Ours	SA	Ours	SA	Ours	SA
apte	9	97	47.08	47.31	4.03	3.43	28.41	28.53	15.9	38.1
xerox	10	203	20.42	20.64	6.33	6.62	12.51	12.65	17.2	98.8
hp	11	83	9.21	9.40	1.95	2.62	5.60	5.74	11.6	44.3
ami33	33	123	1.24	1.25	0.69	0.46	0.77	0.77	43.1	82.2
ami49	49	408	38.65	39.47	17.24	12.31	23.88	24.18	66.8	165.0

Area and Wirelength Minimization on GCRS

- Early stop criteria:
 - SA: no move accepted in the last 20 temperatures
 - Our agent: no better solution found in the last 100 steps
- Our method shows comparable performance, yet runs slower in larger instance

Circuit	Statistics		Area ($\times 10^5$)		WL ($\times 10^5$)		Cost ($\times 10^5$)		Runtime (s)	
	blocks	nets	Ours	SA	Ours	SA	Ours	SA	Ours	SA
n100	100	576	1.95	1.97	1.55	1.54	1.79	1.80	389.4	396.2
n200	200	1274	2.15	2.01	3.48	3.34	2.68	2.54	784.9	1101.9
n300	300	1632	3.40	3.29	5.25	5.44	4.14	4.15	3766.9	2062.3

Search Progress Visualization

▶ Interpretation: smoother ⇒ more greedy and deterministic

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

10/12

Runtime Profiling

- Platform: Python, CPU+GPU
- Solution evaluation takes most (89.2% and 75.3%) of the runtime.
- Random sampling only takes a little portion of time (2.1% and 1.2%).

Conclusion

- Problem: floorplaning
- Motivation: 'learn' new algorithms without human expert knowledge
- Formulation: local search, selecting neighbors
- Method: Deep Q-learning w/ action sampling
- We expect more research along this line!

Thank You

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��