Learn to Floorplan through Acquisition of Effective Local Search Heuristics

Zhuolun He¹, Yuzhe Ma¹, Lu Zhang¹, Peiyu Liao¹, Ngai Wong², Bei Yu¹, Martin D.F. Wong¹

> ¹The Chinese University of Hong Kong ²The University of Hong Kong

Floorplanning: a Classic Problem

- \blacktriangleright Determine location of large blocks
- Minimize area, wirelength, ...
- \blacktriangleright Encode geometric relationship w/ dedicated data structure
- \blacktriangleright Perturb an encoding to generate new solutions (i.e., local search)

How to enhance? Existing works adopt a local search algorithm, and

- ▶ Select a good start point [J.A. Boyan 98, Y. Zhou 16]
- Tune search parameters [U. Benlic 17]
- Scale the regularization term [D. Beloborodov 20]
- Switch between heuristics on the fly [A. Nareyek 03]

Our aim: acquire a local search algorithm from the scratch. Intuition: prior human knowledge might mislead the learning!

Learning a Local Search Heuristic

We use *Reinforcement Learning* (RL) to learn a heuristic.

Problem Description

- \blacktriangleright An agent walks in the search space
- Selects a neighbor or rejects to move
- Gets to neighbor state or stays
- Optimize decision based on signals

Difficulties: large state/action space

Corresponding RL Formalization

- State *s*: a complete solution
- Action *a*: defined perturbations/reject
- Transition T : (deterministic)
- I Reward *r*: ∆*cost*

Dealing with Large State Space: Neural Networks

 \triangleright We use sequence pair [H. Murata 03] to encode floorplan.

- The state space is large: $(n!)^2 \times 8^n$ possible states for *n* blocks
	- \blacktriangleright two permutation in sequence pair
	- \blacktriangleright rotation/flip of blocks
- \blacktriangleright Tabular method infeasible
- Solution: utilize a neural network to approximate the policy
	- \blacktriangleright Input: features concatenated in 1D vector
	- Output: scalar for action value prediction
	- ▶ Architecture: a Multi-Layer Perceptron (MLP)

Dealing with Large Action Space: Sampling

- \triangleright Possible actions: perturb sequence pair + rotate/flip blocks
- **IDED** The action space is large: $\Theta(n^3)$ discrete actions for *n* blocks
	- \blacktriangleright space size is polynomial of problem size
	- action evaluation (state energy, action value) is costly
- \triangleright Solution: sample actions in both training/testing
	- \triangleright We proved its convergence in DQN.

Area and Wirelength Minimization on MCNC

- \blacktriangleright Baseline: carefully tuned Simulated Annealing (SA)
- I Cost: 0.6 ∗ *area* + 0.4 ∗ *wirelength*
- ▶ Our method outperforms in all cases: up to 2.5% lower cost and $5.7\times$ speedup

Area and Wirelength Minimization on GCRS

- \blacktriangleright Early stop criteria:
	- \triangleright SA: no move accepted in the last 20 temperatures
	- \triangleright Our agent: no better solution found in the last 100 steps
- \triangleright Our method shows comparable performance, yet runs slower in larger instance

Search Progress Visualization

K ロト K 御 ト K 君 ト K 君 ト ÷. 299

メロトメ 御 トメ き トメ き ト **STEP** 298

Runtime Profiling

- Platform: Python, CPU+GPU
- Solution evaluation takes most (89.2% and 75.3%) of the runtime.
- Random sampling only takes a little portion of time (2.1% and 1.2%).

Conclusion

- \blacktriangleright Problem: floorplaning
- Motivation: 'learn' new algorithms without human expert knowledge
- \blacktriangleright Formulation: local search, selecting neighbors
- \blacktriangleright Method: Deep Q-learning w/ action sampling
- \triangleright We expect more research along this line!

Thank You

Kロメ K個 X K ミメ K ミメーミーの Q Q ^