Layout Decomposition for Triple Patterning Lithography

Bei Yu¹ Kun Yuan² Boyang Zhang¹ Duo Ding¹ David Z. Pan¹

¹ECE Dept. University of Texas at Austin, Austin, TX USA

²Cadence Design Systems, Inc., San Jose, CA USA

Nov. 7, 2011

Outline

2 Algorithm

- TPL Decomposition Flow
- Mathematical Formulation and Graph Simplification
- Semidefinite Programming (SDP) Approximation

Overcome the lithography limitations

- 193*nm* based lithography tool, hard for sub-30*nm*
- Delay or limitations of other techniques, i.e. EUV, E-Beam

Double/Multiple Patterning Lithography

- Original layout is divided into two/several masks (layout decomposition)
- Decrease pattern density, improve the depth of focus (DOF)
- Objective: minimize both conflicts and stitches

Triple Patterning Lithography (TPL)

- Layout is decomposed into three masks
- Similar but more difficult than 3 coloring problem

Why Triple Patterning Lithography (TPL) ?

- Resolve some native conflict from DPL
- Reduce the number of stitches
- Triple effective pitch, achieve further feature-size scaling (22nm/16nm)

< 合 ▶

Layout Decomposition

DPL Layout Decomposition

- Iterative Method (remove conflict \rightarrow minimize stitch) Local Optimal
 - Cut based methodologies (ICCAD'08, ICCAD'09, ASPDAC'2010)
- Minimize conflict and stitch simultaneously
 - ILP Formulation (Yuan et. al ISPD'2009) → optimal but slow
 - Heuristic (Xu et. al ISPD'2010) \rightarrow only for planar layout

TPL Layout Decomposition

Previously only via layout is considered (Cork et. al SPIE'08)

TPL Layout Decomposition

Our work is the first systematic study for general layout

- Mathematical Formulation
- Novel Color representations
- Semidefinite Programming based approximation

TPL Layout Decomposition is HARDER

- Solution space is much bigger
- Conflict graph is NOT planar
- Detect conflict is not P, but NP-Complete

Problem Formulation

Problem: TPL Layout Decomposition

Input: layout and minimum coloring space. Output: decomposed layout, minimize the stitch number and the conflict number.

Two Lemmas:

- Deciding whether a *planar* graph is 3-colorable is NP-complete
- Coloring a 3-colorable graph with 4 colors is NP-complete

Theorem 1

TPL Layout Decomposition problem is NP-Hard

Image: Image:

- E

TPL Decomposition Flow Mathematical Formulation and Graph Simplification Semidefinite Programming (SDP) Approximation

Layout Graph and Decomposition Graph

Graphs Construction*:

- Given input layout.
- Generate Layout Graph (LG).
- Projection.
- Generate Decomposition Graph (DG).
- * same with Yuan et. al ISPD'09

Two sets of edges:

- CE: conflict edge.
- SE: stitch edge.

TPL Decomposition Flow Mathematical Formulation and Graph Simplification Semidefinite Programming (SDP) Approximation

Layout Graph and Decomposition Graph

Graphs Construction*:

- Given input layout.
- 2 Generate Layout Graph (LG).
- Projection.
- Generate Decomposition Graph (DG).
- * same with Yuan et. al ISPD'09

Two sets of edges:

- CE: conflict edge.
- SE: stitch edge.

(4) (3) (4) (4) (4)

< 合 ▶

TPL Decomposition Flow Mathematical Formulation and Graph Simplification Semidefinite Programming (SDP) Approximation

Layout Graph and Decomposition Graph

Graphs Construction*:

- Given input layout.
- 2 Generate Layout Graph (LG).
- Projection.
- Generate Decomposition Graph (DG).
- * same with Yuan et. al ISPD'09

Two sets of edges:

- CE: conflict edge.
- SE: stitch edge.

TPL Decomposition Flow Mathematical Formulation and Graph Simplification Semidefinite Programming (SDP) Approximation

Layout Graph and Decomposition Graph

Graphs Construction*:

- Given input layout.
- 2 Generate Layout Graph (LG).
- Projection.
- ④ Generate Decomposition Graph (DG).
- * same with Yuan et. al ISPD'09

Two sets of edges:

- CE: conflict edge.
- SE: stitch edge.

Introduction TPL Decomposition Flow Algorithm Mathematical Formulation and Graph Simplificat Experimental Results Semidefinite Programming (SDP) Approximation

Overview of the TPL Decomposition Flow

- Resolve Layout Decomposition problem:
 - Integer Linear Programming (ILP)
 - Vector Programming
- Three graph based Simplifications improve scalability
- Vector Programming can be replaced by approximation methods:
 - Semidefinite Programming (SDP)
 - Mapping Algorithm

Introduction TPL Decomposition Flow Algorithm Mathematical Formulation Experimental Results Semidefinite Programmir

Mathematical Formulation and Graph Simplification Semidefinite Programming (SDP) Approximation

Overview of the TPL Decomposition Flow

- Resolve Layout Decomposition problem:
 - Integer Linear Programming (ILP)
 - Vector Programming
- Three graph based Simplifications improve scalability
- Vector Programming can be replaced by approximation methods:
 - Semidefinite Programming (SDP)
 - Mapping Algorithm

Introduction TPL Decomposition Flow Algorithm Mathematical Formulation and Graph Simplification Experimental Results Semidefinite Programming (SDP) Approximation

Overview of the TPL Decomposition Flow

- Resolve Layout Decomposition problem:
 - Integer Linear Programming (ILP)
 - Vector Programming
- Three graph based Simplifications improve scalability
- Vector Programming can be replaced by approximation methods:
 - Semidefinite Programming (SDP)
 - Mapping Algorithm

Introduction TPL Decomposition Flow Algorithm Mathematical Formulation and Graph Simplificat Experimental Results Semidefinite Programming (SDP) Approximation

Overview of the TPL Decomposition Flow

- Resolve Layout Decomposition problem:
 - Integer Linear Programming (ILP)
 - Vector Programming
- Three graph based Simplifications improve scalability
- Vector Programming can be replaced by approximation methods:
 - Semidefinite Programming (SDP)
 - Mapping Algorithm

TPL Decomposition Flow Mathematical Formulation and Graph Simplification Semidefinite Programming (SDP) Approximation

Mathematical Formulation

$$\begin{array}{ll} \min & \sum_{e_{ij} \in CE} c_{ij} + \alpha \sum_{e_{ij} \in SE} s_{ij} \\ \text{s.t.} & c_{ij} = (x_i == x_j) & \forall e_{ij} \in CE \\ & s_{ij} = x_i \oplus x_j & \forall e_{ij} \in SE \\ & x_i \in \{0, 1, 2\} & \forall i \in V \end{array}$$

- $\sum c_{ij}$ is the number of conflicts, $\sum s_{ij}$ is the number of stitches
- Represent 3 colors using two 0-1 variables (0,0), (0,1), (1,0)
- Similar to previous DPL works, (1) can be transferred to ILP
- Solving ILP is NP-Hard problem, suffers from runtime penalty

(1)

Image: A math a math

TPL Decomposition Flow Mathematical Formulation and Graph Simplification Semidefinite Programming (SDP) Approximation

Graph Simplification

Independent Component Computation

Partition the whole problem into several sub-problems

Bridge Computation

• Further partition the problem by removing bridges

TPL Decomposition Flow Mathematical Formulation and Graph Simplification Semidefinite Programming (SDP) Approximation

Graph Simplification (cont.)

Layout Graph Simplification

- Iteratively remove node with degree ≤ 2
- Push the nodes into stack
- Right layout can be directly colored

TPL Decomposition Flow Mathematical Formulation and Graph Simplification Semidefinite Programming (SDP) Approximation

Vector Programming

New representation of colors

- Three vectors $(1,0), (-\frac{1}{2},\frac{\sqrt{3}}{2})$ and $(-\frac{1}{2},-\frac{\sqrt{3}}{2})$
- same color: $\vec{v_i} \cdot \vec{v_j} = 1$
- different color: $\vec{v_i} \cdot \vec{v_j} = -1/2$

Vector Programming:

$$\min \sum_{e_{ij} \in CE} \frac{2}{3} (\vec{v}_i \cdot \vec{v}_j + \frac{1}{2}) + \frac{2\alpha}{3} \sum_{e_{ij} \in SE} (1 - \vec{v}_i \cdot \vec{v}_j)$$
(2)
s.t. $\vec{v}_i \in \{(1,0), (-\frac{1}{2}, \frac{\sqrt{3}}{2}), (-\frac{1}{2}, -\frac{\sqrt{3}}{2})\}$

- Equal to Mathematical Formulation (1)
- Still NP-Hard

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Introduction TPL Decomposition Flow Algorithm Mathematical Formulation and Graph Simplification Experimental Results Semidefinite Programming (SDP) Approximation

Semidefinite Programming (SDP) Approximation

Relax Vector Programming (2) to Semidefinite Programming (SDP)

SDP: min
$$A \bullet X$$
 (3)
 $X_{ii} = 1, \forall i \in V$
 $X_{ij} \ge -\frac{1}{2}, \forall e_{ij} \in CE$
 $X \succ 0$

SDP (3) can be solved in polynomial time

Mapping Algorithm

- Continuous SDP Solutions \Rightarrow Three Vectors
- Tradeoff between speed and global optimality

Image: A matrix

Introduction TPL Decomposition Flow Algorithm Mathematical Formulation Experimental Results Semidefinite Programmin

TPL Decomposition Flow Mathematical Formulation and Graph Simplification Semidefinite Programming (SDP) Approximation

Example of SDP Approximation

SDP: min
$$A \bullet X$$
 (3)
 $X_{ii} = 1, \quad \forall i \in V$
 $X_{ij} \ge -\frac{1}{2}, \quad \forall e_{ij} \in CE$
 $X \succeq 0$

5

4

1

After solving the SDP:

$$X = \begin{pmatrix} 1.0 & -0.5 & -0.5 & 1.0 & -0.5 \\ 1.0 & -0.5 & -0.5 & -0.5 \\ & 1.0 & -0.5 & 1.0 \\ & & & 1.0 & -0.5 \\ & & & & 1.0 \end{pmatrix}$$

Introduction TPL Decomposition Flow Algorithm Mathematical Formulation and Graph Simplification Experimental Results Semidefinite Programming (SDP) Approximation

Example of SDP Approximation

SDP: min
$$A \bullet X$$
 (3)
 $X_{ii} = 1, \quad \forall i \in V$
 $X_{ij} \ge -\frac{1}{2}, \quad \forall e_{ij} \in CE$
 $X \succeq 0$

After solving the SDP:

$$X = \begin{pmatrix} 1.0 & -0.5 & -0.5 & 1.0 & -0.5 \\ 1.0 & -0.5 & -0.5 & -0.5 \\ & 1.0 & -0.5 & 1.0 \\ & & 1.0 & -0.5 \\ & & & 1.0 \end{pmatrix}$$

Image: A matrix

Experimental Results

Experimental Setting:

- implement in C++
- Intel Core 3.0GHz Linux machine with 32G RAM
- 15 layouts based on ISCAS-85 & 89 are tested
- Layout parser: OpenAccess2.2
- ILP solver: CBC
- SDP solver: CSDP

Experimental Results – Graph Simplification

- Graph Simplification can save 82% runtime¹
- Still maintain the optimality

¹Normal ILP uses Independent Component Computation

ICCAD2011 1A.1

Layout Decomposition for Triple Patterning Lithography

Experimental Results – How fast is SDP?

- SDP can effectively speed-up ILP
- Compared with Accelerated ILP, SDP can save 42% runtime

Experimental Results – How good (bad) is SDP?

SDP can achieve near optimal results.

ICCAD2011 1A.1 Layout Decomposition for Triple Patterning Lithography

Experimental Results – Dense Layout

Circuit	SE#	CE#	Accelerated ILP			SDP Based		
			st#	cn#	CPU(s)	st#	cn#	CPU(s)
C1	16	247	1	5	5.5	0	6	0.29
C2	38	289	0	15	17.32	0	16	0.77
C3	24	381	0	14	33.41	0	15	0.32
C4	56	437	9	32	203.17	9	32	0.49
avg.	-	-	2.5	16.5	64.9	2.25	17.3	0.468
ratio	-	-	1	1	1	0.9	1.05	0.007

- For very dense layout
- SDP can achieve $140 \times$ speed-up.

Experimental Results – S1488

- Stitch number: 0
- Conflict number: 1

Conclusion

- First systematic work on triple patterning layout decomposition
- Mathematical formulation to minimize both stitches and conflicts
- Novel color representations
- Semidefinite programming based approximation

Expect to see more researches on Triple Patterning Lithography

Thank You !

ICCAD2011 1A.1 Layout Decomposition for Triple Patterning Lithography

> < ≣

Appendix – ILP Formulation

$$\begin{array}{ll} \min \sum_{e_{ij} \in CE} c_{ij} + \alpha \sum_{e_{ij} \in SE} s_{ij} \\ \text{s.t.} \quad x_{i1} + x_{i2} \leq 1 \\ x_{i1} + x_{j1} \leq 1 + c_{ij1} & \forall e_{ij} \in CE \\ (1 - x_{i1}) + (1 - x_{j1}) \leq 1 + c_{ij1} & \forall e_{ij} \in CE \\ x_{i2} + x_{j2} \leq 1 + c_{ij2} & \forall e_{ij} \in CE \\ (1 - x_{i2}) + (1 - x_{j2}) \leq 1 + c_{ij2} & \forall e_{ij} \in CE \\ c_{ij1} + c_{ij2} \leq 1 + c_{ij} & \forall e_{ij} \in CE \\ x_{i1} - x_{i1} \leq s_{ij1} & \forall e_{ij} \in SE \\ x_{j2} - x_{j2} \leq s_{ij2} & \forall e_{ij} \in SE \\ x_{j2} - x_{i2} \leq s_{ij2} & \forall e_{ij} \in SE \\ s_{ij} \geq s_{ij1}, s_{ij} \geq s_{ij2} & \forall e_{ij} \in SE \\ \end{array}$$

UTUDA

(4)