
Fast and Efficient DNN Deployment via Deep Gaussian Transfer Learning

Qi Sun1, Chen Bai1, Tinghuan Chen1, Hao Geng1, Xinyun Zhang2, Yang Bai1, Bei Yu1

1The Chinese University of Hong Kong 2SmartMore
{qsun,cbai,thchen,hgeng,ybai,byu}@cse.cuhk.edu.hk, xinyun.zhang@smartmore.com

Abstract

Deep neural networks (DNNs) have been widely used re-
cently while their hardware deployment optimizations are
very time-consuming and the historical deployment knowl-
edge is not utilized efficiently. In this paper, to accelerate
the optimization process and find better deployment con-
figurations, we propose a novel transfer learning method
based on deep Gaussian processes (DGPs). Firstly, a deep
Gaussian process (DGP) model is built on the historical
data to learn empirical knowledge. Secondly, to transfer
knowledge to a new task, a tuning set is sampled for the new
task under the guidance of the DGP model. Then DGP is
tuned according to the tuning set via maximum-a-posteriori
(MAP) estimation to accommodate for the new task and fi-
nally used to guide the deployments of the task. The experi-
ments show that our method achieves the best inference la-
tencies of convolutions while accelerating the optimization
process significantly, compared with previous arts.

1. Introduction
Deep neural networks (DNNs) have shown great suc-

cesses in various application scenarios [1, 2, 3, 4]. How-
ever, the enormous computational intensities and heavy data
communications result in great challenges to inference. In
recent years, great efforts have been made to accelerate the
inference from various perspectives, including quantization
[5, 6, 7], pruning [8, 9, 10, 11], optimization of deployment
configurations [12, 13, 14, 15, 16], hardware-guided model
training [17, 18], neural architecture search [19, 20], and
etc. Many different platforms have been tested, e.g., mobile
devices [21, 22], FPGAs [23, 24], and GPUs [16, 25].

In this paper, we focus on the optimization of deploy-
ment configurations. Configurations represent the resource
allocations, scheduling, binding of DNN models on hard-
ware platforms, and etc. Traditionally, these optimization
methods are tightly coupled with hardware architectures
and model structures [26, 27, 28]. These methods usually
propose some analytical formulations to model the laten-
cies, and characterize the target DNN models and hardware

platforms with respect to some properties, e.g., the sizes of
layers, and the capacities of buffers. Therefore, these meth-
ods cannot be flexibly adapted to different models. Further,
some general deployment frameworks are developed, e.g.,
Halide [12] and TVM [13], which use some auto-tuning al-
gorithms to automatically find the optimal deployment con-
figuration for any given model and hardware platform. For
example, XGBoost [29] is used to build a boosted deci-
sion tree to predict the deployment performance of con-
figurations. Simulated annealing (SA) is used as the so-
lution searching algorithm. AutoTVM [14], which inte-
grates the above algorithms, is an automatic optimization
framework in TVM [13] and achieves outstanding perfor-
mance. GGA [16] takes advantage of a guided genetic algo-
rithm (GGA) to explore the candidate configurations, under
the guidance of an artificially designed scoring calculator.
CHAMELEON [15] proposes to use a proximal policy re-
inforcement learning algorithm to learn the actions to search
the configuration space progressively.

However, these automatic frameworks are still unsatisfy-
ing. Firstly, the optimization process is slow, resulting from
the large configuration space and the time-consuming com-
pilation process. Usually, the configuration space contains
more than millions of configurations, e.g., more than 200
million in the first layer of VGG-16. It is inevitable to tra-
verse lots of configurations to guarantee the performance of
the searching algorithm. It also takes a long time to com-
pile a configuration and do the inference to get the real on-
board latency. Therefore, the overall optimization process
is very slow, e.g., longer than a whole day. Secondly, al-
though lots of efforts are required to optimize the deploy-
ments of various DNN models, explicit empirics have sel-
dom been drawn from the historical data. Despite that many
duplicated works have been done to deploy some models,
we usually start from scratch to optimize new models even
though they are very similar to what has been deployed be-
fore. It is believed that with prior empirics, we can fur-
ther improve the inference performance. CHAMELEON
[15] leverages reinforcement learning to learn the evolution
rules of the deployment configurations from the historical
data. However, the experimental results show that the per-

1

formance improvements mainly rely on adaptive sampling
(AS) which adjusts the searching scope adaptively, instead
of the policies of reinforcement learning. The guided ge-
netic algorithm (GGA) [16] explores the candidate config-
urations to evaluate the similarities between the new layers
and the history data, so as to guide the genetic evolution
process. However, this method relies on complex and tricky
evolution rules and the high-quality scoring calculator of
the similarities. These disadvantages make it hard to be
popularized in practical scenarios. And its deployment con-
figurations have worse inference latencies compared with
CHAMELEON [15]. Meanwhile, engineers are looking
forward to the advent of automatic optimization flows with-
out human interference. Ideally, the inputs of an automatic
optimization flow are the historical tuning data with no need
for manually designed rules.

To counteract these problems, on the one hand, it is ur-
gent to find an accurate method to estimate the performance
quickly without interacting with hardware to compile the
model and do the inference. On the other hand, historical in-
formation should be fully utilized to guide the deployments
of new models. In this paper, we propose a novel automatic
optimization framework based on deep Gaussian transfer
learning. Firstly, a deep Gaussian process (DGP) model is
built on the historical optimization data to learn the hidden
knowledge related to model structures, hardware character-
istics, optimal deployment strategies, and etc. Stochastic
variational inference is adopted to optimize the DGP. Sec-
ondly, when deploying a new DNN model, some efficient
initial configurations of this new model are sampled un-
der the guidance of the prior knowledge in the pre-trained
DGP model. Maximum-a-posteriori (MAP) estimation is
applied to tune the DGP model according to these initial
configurations, to make the DGP model accommodate for
the new task with no loss of the hidden knowledge. Fi-
nally, the tuned DGP model is used as a replacement to the
time-consuming compilations and on-board inferences dur-
ing optimization, to predict the performance values of new
configurations accurately. Our tuned DGP model acceler-
ates the optimization process remarkably while reducing the
inference latency of the final model deployment simultane-
ously. We test our method on various types of convolutional
layers and networks and results show that our method out-
performs the state-of-the-art baselines significantly.

The remainder of this paper is organized as the follow-
ing. Section 2 recaps the preliminaries. Section 3 illustrates
our motivations and deep Gaussian transfer learning algo-
rithm. Section 4 demonstrates the experiments and results.
Finally, we conclude this paper in Section 5.

2. Preliminaries
DNN layers can be represented as several for-loops. Typ-

ically, convolutional operations can be represented as a

for o in range(0, M):

for h in range(0, H):
for w in range(0, W):

for i in range(0, N):

for kh in range(0, KH):
for kw in range(0, KW):

Out[b][o][h][w] += W[o][i][kh][kw]
⇥

<latexit sha1_base64="S8fEYyO32q/PyIaGQOLFJBshd6s=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bjw4jGCeUCyhNnJbDJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdop7+7tHxxWjo5bVmeG8SbTUptORC2XQvEmCpS8kxpOk0jydjS+nfntJ26s0OoBJykPEzpUIhaMopNaPRQJt/1K1a/5c5BVEhSkCgUa/cpXb6BZlnCFTFJru4GfYphTg4JJPi33MstTysZ0yLuOKuqWhPn82ik5d8qAxNq4Ukjm6u+JnCbWTpLIdSYUR3bZm4n/ed0M45swFyrNkCu2WBRnkqAms9fJQBjOUE4cocwIdythI2ooQxdQ2YUQLL+8SlqXtcCvBfdX1bpfxFGCUziDCwjgGupwBw1oAoNHeIZXePO09+K9ex+L1jWvmDmBP/A+fwCwwY8i</latexit><latexit sha1_base64="S8fEYyO32q/PyIaGQOLFJBshd6s=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bjw4jGCeUCyhNnJbDJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdop7+7tHxxWjo5bVmeG8SbTUptORC2XQvEmCpS8kxpOk0jydjS+nfntJ26s0OoBJykPEzpUIhaMopNaPRQJt/1K1a/5c5BVEhSkCgUa/cpXb6BZlnCFTFJru4GfYphTg4JJPi33MstTysZ0yLuOKuqWhPn82ik5d8qAxNq4Ukjm6u+JnCbWTpLIdSYUR3bZm4n/ed0M45swFyrNkCu2WBRnkqAms9fJQBjOUE4cocwIdythI2ooQxdQ2YUQLL+8SlqXtcCvBfdX1bpfxFGCUziDCwjgGupwBw1oAoNHeIZXePO09+K9ex+L1jWvmDmBP/A+fwCwwY8i</latexit><latexit sha1_base64="S8fEYyO32q/PyIaGQOLFJBshd6s=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bjw4jGCeUCyhNnJbDJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdop7+7tHxxWjo5bVmeG8SbTUptORC2XQvEmCpS8kxpOk0jydjS+nfntJ26s0OoBJykPEzpUIhaMopNaPRQJt/1K1a/5c5BVEhSkCgUa/cpXb6BZlnCFTFJru4GfYphTg4JJPi33MstTysZ0yLuOKuqWhPn82ik5d8qAxNq4Ukjm6u+JnCbWTpLIdSYUR3bZm4n/ed0M45swFyrNkCu2WBRnkqAms9fJQBjOUE4cocwIdythI2ooQxdQ2YUQLL+8SlqXtcCvBfdX1bpfxFGCUziDCwjgGupwBw1oAoNHeIZXePO09+K9ex+L1jWvmDmBP/A+fwCwwY8i</latexit><latexit sha1_base64="S8fEYyO32q/PyIaGQOLFJBshd6s=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bjw4jGCeUCyhNnJbDJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdop7+7tHxxWjo5bVmeG8SbTUptORC2XQvEmCpS8kxpOk0jydjS+nfntJ26s0OoBJykPEzpUIhaMopNaPRQJt/1K1a/5c5BVEhSkCgUa/cpXb6BZlnCFTFJru4GfYphTg4JJPi33MstTysZ0yLuOKuqWhPn82ik5d8qAxNq4Ukjm6u+JnCbWTpLIdSYUR3bZm4n/ed0M45swFyrNkCu2WBRnkqAms9fJQBjOUE4cocwIdythI2ooQxdQ2YUQLL+8SlqXtcCvBfdX1bpfxFGCUziDCwjgGupwBw1oAoNHeIZXePO09+K9ex+L1jWvmDmBP/A+fwCwwY8i</latexit>

⇥
<latexit sha1_base64="S8fEYyO32q/PyIaGQOLFJBshd6s=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bjw4jGCeUCyhNnJbDJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdop7+7tHxxWjo5bVmeG8SbTUptORC2XQvEmCpS8kxpOk0jydjS+nfntJ26s0OoBJykPEzpUIhaMopNaPRQJt/1K1a/5c5BVEhSkCgUa/cpXb6BZlnCFTFJru4GfYphTg4JJPi33MstTysZ0yLuOKuqWhPn82ik5d8qAxNq4Ukjm6u+JnCbWTpLIdSYUR3bZm4n/ed0M45swFyrNkCu2WBRnkqAms9fJQBjOUE4cocwIdythI2ooQxdQ2YUQLL+8SlqXtcCvBfdX1bpfxFGCUziDCwjgGupwBw1oAoNHeIZXePO09+K9ex+L1jWvmDmBP/A+fwCwwY8i</latexit><latexit sha1_base64="S8fEYyO32q/PyIaGQOLFJBshd6s=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bjw4jGCeUCyhNnJbDJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdop7+7tHxxWjo5bVmeG8SbTUptORC2XQvEmCpS8kxpOk0jydjS+nfntJ26s0OoBJykPEzpUIhaMopNaPRQJt/1K1a/5c5BVEhSkCgUa/cpXb6BZlnCFTFJru4GfYphTg4JJPi33MstTysZ0yLuOKuqWhPn82ik5d8qAxNq4Ukjm6u+JnCbWTpLIdSYUR3bZm4n/ed0M45swFyrNkCu2WBRnkqAms9fJQBjOUE4cocwIdythI2ooQxdQ2YUQLL+8SlqXtcCvBfdX1bpfxFGCUziDCwjgGupwBw1oAoNHeIZXePO09+K9ex+L1jWvmDmBP/A+fwCwwY8i</latexit><latexit sha1_base64="S8fEYyO32q/PyIaGQOLFJBshd6s=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bjw4jGCeUCyhNnJbDJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdop7+7tHxxWjo5bVmeG8SbTUptORC2XQvEmCpS8kxpOk0jydjS+nfntJ26s0OoBJykPEzpUIhaMopNaPRQJt/1K1a/5c5BVEhSkCgUa/cpXb6BZlnCFTFJru4GfYphTg4JJPi33MstTysZ0yLuOKuqWhPn82ik5d8qAxNq4Ukjm6u+JnCbWTpLIdSYUR3bZm4n/ed0M45swFyrNkCu2WBRnkqAms9fJQBjOUE4cocwIdythI2ooQxdQ2YUQLL+8SlqXtcCvBfdX1bpfxFGCUziDCwjgGupwBw1oAoNHeIZXePO09+K9ex+L1jWvmDmBP/A+fwCwwY8i</latexit><latexit sha1_base64="S8fEYyO32q/PyIaGQOLFJBshd6s=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9Bjw4jGCeUCyhNnJbDJmdmaZ6RXCkn/w4kERr/6PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdop7+7tHxxWjo5bVmeG8SbTUptORC2XQvEmCpS8kxpOk0jydjS+nfntJ26s0OoBJykPEzpUIhaMopNaPRQJt/1K1a/5c5BVEhSkCgUa/cpXb6BZlnCFTFJru4GfYphTg4JJPi33MstTysZ0yLuOKuqWhPn82ik5d8qAxNq4Ukjm6u+JnCbWTpLIdSYUR3bZm4n/ed0M45swFyrNkCu2WBRnkqAms9fJQBjOUE4cocwIdythI2ooQxdQ2YUQLL+8SlqXtcCvBfdX1bpfxFGCUziDCwjgGupwBw1oAoNHeIZXePO09+K9ex+L1jWvmDmBP/A+fwCwwY8i</latexit> In[b][i][h+kh][w+kw]

for b in range(0, B):

Figure 1: A seven-level for-loop of a direct convolutional
operation. B: batch size, M : number of output channels,
N : number of input channels, H: height of features, W :
width of features, KH: height of kernels, KW : width of
kernels. The size of weight tensor is [M , N , KH , KW]
and the size of input tensor is [B, N , H , W].

seven-level for-loop, as shown in Figure 1. It is important
to organize the hardware resources to conduct communi-
cations and computations and schedule these loops, i.e., to
determine an optimal deployment configuration.

2.1. Deployment of DNN models

The NVIDIA CUDA [30] is taken as an example to ex-
plain the programming abstraction architecture on GPU, as
shown in Figure 2. The programming architecture is com-
posed of grids, blocks, and threads, and some memories. It
provides fine-grained data parallelism, thread parallelism,
nested within coarse-grained data parallelism, and task par-
allelism. The dense computational task is partitioned into
smaller sub-tasks that can be conducted independently in
parallel in these blocks. Following the single instruction
multiple threads (SIMT) mechanism, each block is parti-
tioned into a group of threads that can run the same code
on different data synchronously. Except for GPU, other
platforms including FPGA and ASIC have similar process-
ing engines to conduct the DNN computations. Figure 3 is
taken as an example to illustrate how to partition the work-
loads of DNN models and map them to hardware. For sim-
plicity, the input tensor and weight tensor are represented as
matrices with sizes N×B and M×N , respectively. Firstly,
the input and weight are split into small rectangles, with
sizes step × block-factor and block-factor × step. The size
of the corresponding outputs is block-factor × block-factor.
To get the result of each output rectangle, its corresponding
input and weight rectangles are assigned to a CUDA block
to conduct the computations. Secondly, the computations
are further split into block-factor × block-factor threads.
Then these threads are assigned into some virtual groups to
be scheduled by the CUDA runtime system.

For clearness, all of the deployment settings (e.g., bind-
ings of blocks, and threads) to be determined are encoded
as the attributes of a feature vector which is termed as de-
ployment configuration. A deployment configuration can be

Shared MemoryGrid
GPU

Block Shared Memory

Shared
Memory

Block Block Block
Block Block Block

Block Block Block

Block Block Block
Block Block Block

Block Block Block

Thread Local Memory

Thread Local Memory

Thread Local Memory

Thread Local Memory

Shared MemoryGrid

Block Block Block
Block Block Block

Block Block Block

Block Block Block
Block Block Block

Block Block Block

Figure 2: A brief CUDA programming architecture [30],
composed of grids, blocks, threads, and some memories.

M<latexit sha1_base64="dUsH+zrMWrX3s/zoldid+dmUmUM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRixehBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvp357SdUmsfywUwS9CM6lDzkjBorNe775Ypbdecgq8TLSQVy1Pvlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC6qnlv1GpeV2k0eRxFO4BTOwYMrqMEd1KEJDBCe4RXenEfnxXl3PhatBSefOYY/cD5/AKUNjNE=</latexit><latexit sha1_base64="dUsH+zrMWrX3s/zoldid+dmUmUM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRixehBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvp357SdUmsfywUwS9CM6lDzkjBorNe775Ypbdecgq8TLSQVy1Pvlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC6qnlv1GpeV2k0eRxFO4BTOwYMrqMEd1KEJDBCe4RXenEfnxXl3PhatBSefOYY/cD5/AKUNjNE=</latexit><latexit sha1_base64="dUsH+zrMWrX3s/zoldid+dmUmUM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRixehBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvp357SdUmsfywUwS9CM6lDzkjBorNe775Ypbdecgq8TLSQVy1Pvlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC6qnlv1GpeV2k0eRxFO4BTOwYMrqMEd1KEJDBCe4RXenEfnxXl3PhatBSefOYY/cD5/AKUNjNE=</latexit><latexit sha1_base64="dUsH+zrMWrX3s/zoldid+dmUmUM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRixehBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvp357SdUmsfywUwS9CM6lDzkjBorNe775Ypbdecgq8TLSQVy1Pvlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtC6qnlv1GpeV2k0eRxFO4BTOwYMrqMEd1KEJDBCe4RXenEfnxXl3PhatBSefOYY/cD5/AKUNjNE=</latexit>

N<latexit sha1_base64="FsFohXQjc3OA/BBAi7JXP9TMCN0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiydpwX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia89jMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrYuq51a9xmWldpPHUYQTOIVz8OAKanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fppGM0g==</latexit><latexit sha1_base64="FsFohXQjc3OA/BBAi7JXP9TMCN0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiydpwX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia89jMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrYuq51a9xmWldpPHUYQTOIVz8OAKanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fppGM0g==</latexit><latexit sha1_base64="FsFohXQjc3OA/BBAi7JXP9TMCN0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiydpwX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia89jMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrYuq51a9xmWldpPHUYQTOIVz8OAKanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fppGM0g==</latexit><latexit sha1_base64="FsFohXQjc3OA/BBAi7JXP9TMCN0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiydpwX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia89jMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrYuq51a9xmWldpPHUYQTOIVz8OAKanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fppGM0g==</latexit>

B<latexit sha1_base64="omio59kvEVQ455XgB3RHdtTRWpI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOpF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWR+UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXldq9TyOIpzBOVyCBzdQg3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AlGGMxg==</latexit><latexit sha1_base64="omio59kvEVQ455XgB3RHdtTRWpI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOpF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWR+UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXldq9TyOIpzBOVyCBzdQg3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AlGGMxg==</latexit><latexit sha1_base64="omio59kvEVQ455XgB3RHdtTRWpI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOpF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWR+UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXldq9TyOIpzBOVyCBzdQg3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AlGGMxg==</latexit><latexit sha1_base64="omio59kvEVQ455XgB3RHdtTRWpI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOpF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWR+UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXldq9TyOIpzBOVyCBzdQg3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AlGGMxg==</latexit>

N<latexit sha1_base64="FsFohXQjc3OA/BBAi7JXP9TMCN0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiydpwX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia89jMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrYuq51a9xmWldpPHUYQTOIVz8OAKanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fppGM0g==</latexit><latexit sha1_base64="FsFohXQjc3OA/BBAi7JXP9TMCN0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiydpwX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia89jMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrYuq51a9xmWldpPHUYQTOIVz8OAKanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fppGM0g==</latexit><latexit sha1_base64="FsFohXQjc3OA/BBAi7JXP9TMCN0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiydpwX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia89jMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrYuq51a9xmWldpPHUYQTOIVz8OAKanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fppGM0g==</latexit><latexit sha1_base64="FsFohXQjc3OA/BBAi7JXP9TMCN0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRiydpwX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2d++wmV5rF8MJME/YgOJQ85o8ZKjft+ueJW3TnIKvFyUoEc9X75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia89jMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14lrYuq51a9xmWldpPHUYQTOIVz8OAKanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fppGM0g==</latexit>

block-factor

step

step
block-factor

split
virtual split
thread 0
thread 1

weights outputs

inputs

block

Figure 3: The computation workloads are partitioned into
blocks and then further split to threads and virtual threads.

denoted as a feature vector x.

2.2. General Automatic Deployment Flow

To determine the optimal deployment configuration,
some automatic flows are developed, among which TVM
[13] is widely used. In TVM, deployment configurations of
layers in a DNN model are optimized layer by layer. Each of
the for-loops on M , H , and W is split into four sub-loops.
These four sub-loops are mapped to blocks, virtual threads,
threads, and in-thread-for-loops, respectively. The bound of
each sub-loop reflects the number of the allocated hardware
resources. Each of the for-loops on N , KH , and KW is
split into two sub-loops. These two sub-loops are mapped
to threads, and in-thread-for-loops, respectively. The de-
tailed information of deployment configurations is in the
appendix. To determine the number of resources allocated
to these sub-loops, i.e., the bounds of these sub-loops, a
comprehensive search space is defined, in which all of the
possible configurations to the resource allocations are con-
tained. The search space is usually composed of millions of
configurations.

3. Transfer Learning Based on Deep Gaussian
Processes

To avoid confusion, in the following, the model refers to
our proposed DGP model, and the DNN model to be de-

ployed on hardware is named as a task.

3.1. Motivations

In our problem, there are some great challenges, includ-
ing the undersized available dataset resulting from the time-
consuming design flow, and the uncertainties with respect to
the characteristics of hardware and models which are hard
to measure. Deep learning methods achieve outstanding re-
sults on many regression problems, but they are prone to be
overfitted with a lack of large training dataset in our prob-
lem and be overconfident. Previous researches have shown
that as the width of a one-hidden-layer neural network in-
creases to infinity, the network converges to a Gaussian pro-
cess (GP) model [31, 32, 33], which is a powerful nonpara-
metric distribution and has wide applications [34, 35, 36].
GP method grows in complexity to suit the data and is ro-
bust enough to the overfitting on small datasets while pro-
viding reasonable predictions as well as uncertainty estima-
tions. However, the GP models are limited by the expres-
siveness of kernel functions. Learning on a large and richly
parameterized space of kernels is expensive, and approxi-
mations are at risk of overfitting [37, 38]. A deep Gaus-
sian process (DGP) is a hierarchical composition of GPs
that can overcome the limitations of GPs while retaining the
advantages [39]. It can be regarded as a multi-layer neural
network with multiple, infinitely wide hidden layers [40].
The mapping between layers is parameterized by a GP, and
consequently, DGP can provide powerful uncertainty esti-
mations. It performs input warping or dimensionality com-
pression or expansion and automatically learns to construct
a kernel that works well on the data. With these advantages,
the DGP model is adopted in this paper, as the performance
estimator in the optimization process of deployment config-
urations.

Considering the diversities and relationships between de-
ployment tasks, it is imperative to transfer the knowledge
learned in the source domain (historical task) to the target
domain (new task). Some kernel learning methods are used
as transfer learning approaches to learn scalable, expressive,
and flexible kernels [41, 42, 43]. These methods rely on re-
training or joint learning on a large number of tuning points
of the new tasks. Note that we want to accelerate the search-
ing process, therefore the slow joint learning and data col-
lections are infeasible in our situation. These transfer learn-
ing approaches are also highly coupled with their regression
or classification methods, which hinders flexibility. Tradi-
tionally, Gaussian process models are fitted from scratch via
maximum likelihood estimation. In this paper, we propose
a novel transfer learning algorithm based on the maximum-
a-posteriori (MAP) estimation. The knowledge learned on
history is used as the prior of DGP. Then DGP is tuned via
MAP. This has similar philosophies with [44, 45], which
also introduce a prior in the model and then calibrate it via

posterior. Thanks to the knowledge learned on history, our
method does not require much data on the new task. MAP is
also easy to be solved with low workloads, so as to acceler-
ate the search of optimums and improve the quality simul-
taneously. With these advantages, MAP has been widely
used recently, e.g., reinforcement learning [46], structured
prediction [47], and statistical inference [48].

3.2. Our Automatic Optimization Framework

The overall optimization framework is shown in Fig-
ure 4. The DNN tasks are optimized layer by layer, follow-
ing previous arts [13, 15, 16]. Before starting to optimize a
new task, a deep Gaussian process model is built on the his-
torical optimization data. The DGP preparation step is task-
independent, i.e., the pre-trained DGP model can be used to
deploy other tasks. In Figure 4, the DNN task is represented
as a graph, in which each node is a layer. For each layer, a
searching space D containing all of the configurations of
this layer is generated. In the tuning stage, the pre-trained
DGP model is utilized as the criterion to sample some ef-
ficient initial configurations from D. These initial config-
urations are then compiled and deployed to get their on-
board performance values. These configurations and per-
formance values are denoted as a tuning set. The hyper-
parameters of the pre-trained DGP model are introduced as
the prior. Maximum-a-posteriori (MAP) estimation is used
to tune the pre-trained DGP model under the guidance of
the tuning set. The tuned DGP model is then adopted as the
performance estimator in the third stage (i.e., the optimum
searching stage). Various algorithms can be applied here
as the searching algorithm to find optimal configurations.
In experiments, we use simulated annealing as the search-
ing algorithm. The previous arts [13, 15, 16] interact with
hardware iteratively in the searching process to obtain the
real on-board performance. By contrast, our tuned DGP can
take the place of the real hardware and report the predicted
performance, so as to accelerate the searching remarkably.
All of the configurations found by the searching algorithm
are recorded and the final optimal deployment configuration
for this layer is selected from the record. The pseudo-code
of our framework is provided in the appendix.

3.3. Deep Gaussian Processes with Stochastic Vari-
ational Inference

Denote our task as f : x → y, with the deploy-
ment configuration vector x and its performance value y.
The historical optimization record is D = {X,y}, with
X = {x1, . . . ,xN} and y = {y1, . . . , yN}. For a sin-
gle layer Gaussian process, the non-parametric Gaussian
process places a GP prior over the value function f as
f(x) ∼ GP(µ(x), k(x,x′)), where µ(·) is the mean func-
tion and k(x,x′) is the kernel function. K(X,X) denotes
the kernel matrix, i.e., K(X,X)i,j = k(xi,xj). Given the

History
Conf.

DNN
Task

DGP Model

Conf.
Space D<latexit sha1_base64="5sMW8UQDSAIyKJuDhSkkUWi562k=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVZIi6LKgC5cV7APaUCbTSTt0MhNmboQS+hluXCji1q9x5984abPQ1gMDh3PuZc49YSK4Qc/7dkobm1vbO+Xdyt7+weFR9fikY1SqKWtTJZTuhcQwwSVrI0fBeolmJA4F64bT29zvPjFtuJKPOEtYEJOx5BGnBK3UH8QEJ5SI7G4+rNa8ureAu078gtSgQGtY/RqMFE1jJpEKYkzf9xIMMqKRU8HmlUFqWELolIxZ31JJYmaCbBF57l5YZeRGStsn0V2ovzcyEhszi0M7mUc0q14u/uf1U4xugozLJEUm6fKjKBUuKje/3x1xzSiKmSWEam6zunRCNKFoW6rYEvzVk9dJp1H3vbr/cFVrNoo6ynAG53AJPlxDE+6hBW2goOAZXuHNQefFeXc+lqMlp9g5hT9wPn8AcA2RSg==</latexit><latexit sha1_base64="5sMW8UQDSAIyKJuDhSkkUWi562k=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVZIi6LKgC5cV7APaUCbTSTt0MhNmboQS+hluXCji1q9x5984abPQ1gMDh3PuZc49YSK4Qc/7dkobm1vbO+Xdyt7+weFR9fikY1SqKWtTJZTuhcQwwSVrI0fBeolmJA4F64bT29zvPjFtuJKPOEtYEJOx5BGnBK3UH8QEJ5SI7G4+rNa8ureAu078gtSgQGtY/RqMFE1jJpEKYkzf9xIMMqKRU8HmlUFqWELolIxZ31JJYmaCbBF57l5YZeRGStsn0V2ovzcyEhszi0M7mUc0q14u/uf1U4xugozLJEUm6fKjKBUuKje/3x1xzSiKmSWEam6zunRCNKFoW6rYEvzVk9dJp1H3vbr/cFVrNoo6ynAG53AJPlxDE+6hBW2goOAZXuHNQefFeXc+lqMlp9g5hT9wPn8AcA2RSg==</latexit><latexit sha1_base64="5sMW8UQDSAIyKJuDhSkkUWi562k=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVZIi6LKgC5cV7APaUCbTSTt0MhNmboQS+hluXCji1q9x5984abPQ1gMDh3PuZc49YSK4Qc/7dkobm1vbO+Xdyt7+weFR9fikY1SqKWtTJZTuhcQwwSVrI0fBeolmJA4F64bT29zvPjFtuJKPOEtYEJOx5BGnBK3UH8QEJ5SI7G4+rNa8ureAu078gtSgQGtY/RqMFE1jJpEKYkzf9xIMMqKRU8HmlUFqWELolIxZ31JJYmaCbBF57l5YZeRGStsn0V2ovzcyEhszi0M7mUc0q14u/uf1U4xugozLJEUm6fKjKBUuKje/3x1xzSiKmSWEam6zunRCNKFoW6rYEvzVk9dJp1H3vbr/cFVrNoo6ynAG53AJPlxDE+6hBW2goOAZXuHNQefFeXc+lqMlp9g5hT9wPn8AcA2RSg==</latexit><latexit sha1_base64="5sMW8UQDSAIyKJuDhSkkUWi562k=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVZIi6LKgC5cV7APaUCbTSTt0MhNmboQS+hluXCji1q9x5984abPQ1gMDh3PuZc49YSK4Qc/7dkobm1vbO+Xdyt7+weFR9fikY1SqKWtTJZTuhcQwwSVrI0fBeolmJA4F64bT29zvPjFtuJKPOEtYEJOx5BGnBK3UH8QEJ5SI7G4+rNa8ureAu078gtSgQGtY/RqMFE1jJpEKYkzf9xIMMqKRU8HmlUFqWELolIxZ31JJYmaCbBF57l5YZeRGStsn0V2ovzcyEhszi0M7mUc0q14u/uf1U4xugozLJEUm6fKjKBUuKje/3x1xzSiKmSWEam6zunRCNKFoW6rYEvzVk9dJp1H3vbr/cFVrNoo6ynAG53AJPlxDE+6hBW2goOAZXuHNQefFeXc+lqMlp9g5hT9wPn8AcA2RSg==</latexit>D<latexit sha1_base64="5sMW8UQDSAIyKJuDhSkkUWi562k=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVZIi6LKgC5cV7APaUCbTSTt0MhNmboQS+hluXCji1q9x5984abPQ1gMDh3PuZc49YSK4Qc/7dkobm1vbO+Xdyt7+weFR9fikY1SqKWtTJZTuhcQwwSVrI0fBeolmJA4F64bT29zvPjFtuJKPOEtYEJOx5BGnBK3UH8QEJ5SI7G4+rNa8ureAu078gtSgQGtY/RqMFE1jJpEKYkzf9xIMMqKRU8HmlUFqWELolIxZ31JJYmaCbBF57l5YZeRGStsn0V2ovzcyEhszi0M7mUc0q14u/uf1U4xugozLJEUm6fKjKBUuKje/3x1xzSiKmSWEam6zunRCNKFoW6rYEvzVk9dJp1H3vbr/cFVrNoo6ynAG53AJPlxDE+6hBW2goOAZXuHNQefFeXc+lqMlp9g5hT9wPn8AcA2RSg==</latexit><latexit sha1_base64="5sMW8UQDSAIyKJuDhSkkUWi562k=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVZIi6LKgC5cV7APaUCbTSTt0MhNmboQS+hluXCji1q9x5984abPQ1gMDh3PuZc49YSK4Qc/7dkobm1vbO+Xdyt7+weFR9fikY1SqKWtTJZTuhcQwwSVrI0fBeolmJA4F64bT29zvPjFtuJKPOEtYEJOx5BGnBK3UH8QEJ5SI7G4+rNa8ureAu078gtSgQGtY/RqMFE1jJpEKYkzf9xIMMqKRU8HmlUFqWELolIxZ31JJYmaCbBF57l5YZeRGStsn0V2ovzcyEhszi0M7mUc0q14u/uf1U4xugozLJEUm6fKjKBUuKje/3x1xzSiKmSWEam6zunRCNKFoW6rYEvzVk9dJp1H3vbr/cFVrNoo6ynAG53AJPlxDE+6hBW2goOAZXuHNQefFeXc+lqMlp9g5hT9wPn8AcA2RSg==</latexit><latexit sha1_base64="5sMW8UQDSAIyKJuDhSkkUWi562k=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVZIi6LKgC5cV7APaUCbTSTt0MhNmboQS+hluXCji1q9x5984abPQ1gMDh3PuZc49YSK4Qc/7dkobm1vbO+Xdyt7+weFR9fikY1SqKWtTJZTuhcQwwSVrI0fBeolmJA4F64bT29zvPjFtuJKPOEtYEJOx5BGnBK3UH8QEJ5SI7G4+rNa8ureAu078gtSgQGtY/RqMFE1jJpEKYkzf9xIMMqKRU8HmlUFqWELolIxZ31JJYmaCbBF57l5YZeRGStsn0V2ovzcyEhszi0M7mUc0q14u/uf1U4xugozLJEUm6fKjKBUuKje/3x1xzSiKmSWEam6zunRCNKFoW6rYEvzVk9dJp1H3vbr/cFVrNoo6ynAG53AJPlxDE+6hBW2goOAZXuHNQefFeXc+lqMlp9g5hT9wPn8AcA2RSg==</latexit><latexit sha1_base64="5sMW8UQDSAIyKJuDhSkkUWi562k=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVZIi6LKgC5cV7APaUCbTSTt0MhNmboQS+hluXCji1q9x5984abPQ1gMDh3PuZc49YSK4Qc/7dkobm1vbO+Xdyt7+weFR9fikY1SqKWtTJZTuhcQwwSVrI0fBeolmJA4F64bT29zvPjFtuJKPOEtYEJOx5BGnBK3UH8QEJ5SI7G4+rNa8ureAu078gtSgQGtY/RqMFE1jJpEKYkzf9xIMMqKRU8HmlUFqWELolIxZ31JJYmaCbBF57l5YZeRGStsn0V2ovzcyEhszi0M7mUc0q14u/uf1U4xugozLJEUm6fKjKBUuKje/3x1xzSiKmSWEam6zunRCNKFoW6rYEvzVk9dJp1H3vbr/cFVrNoo6ynAG53AJPlxDE+6hBW2goOAZXuHNQefFeXc+lqMlp9g5hT9wPn8AcA2RSg==</latexit>

Figure 1: (Left): Deep Gaussian Process illustration1. (Middle): Histograms of a random selection of
inducing outputs. The best-fit Gaussian distribution is denoted with a dashed line. Some of them
exhibit a clear multimodal behaviour. (Right): P-values for 100 randomly selected inducing outputs
per dataset. The null hypotheses are that their distributions are Gaussian.

resulting in a Bayesian ‘self-tuning’ covariance function that fits the data without any human input
[Damianou, 2015].

The deep hierarchical generalization of GPs is done in a fully connected, feed-forward manner. The
outputs of the previous layer serve as an input to the next. However, a significant difference from
neural networks is that the layer outputs are probabilistic rather than exact values so the uncertainty is
propagated through the network. The left part of Figure 1 illustrates the concept with a single hidden
layer. The input to the hidden layer is the input data x and the output of the hidden layer f1 serves as
the input data to the output layer, which itself is formed by GPs.

Exact inference is infeasible in GPs for large datasets due to the high computational cost of working
with the inverse covariance matrix. Instead, the posterior is approximated using a small set of pseudo
datapoints (⇠100) also referred to as inducing points [Snelson and Ghahramani, 2006, Titsias, 2009,
Quiñonero-Candela and Rasmussen, 2005]. We assume this inducing point framework throughout
the paper. Predictions are made using the inducing points to avoid computing the covariance matrix
of the whole dataset. Both in GPs and DGPs, the inducing outputs are treated as latent variables that
need to be marginalized.

The current state-of-the-art inference method in DGPs is Doubly Stochastic Variation Inference
(DSVI) [Salimbeni and Deisenroth, 2017] which has been shown to outperform Expectation Prop-
agation [Minka, 2001, Bui et al., 2016] and it also has better performance than Bayesian Neural
Networks with Probabilistic Backpropagation [Hernández-Lobato and Adams, 2015] and Bayesian
Neural Networks with earlier inference methods such as Variation Inference [Graves, 2011], Stochas-
tic Gradient Langevin Dynamics [Welling and Teh, 2011] and Hybrid Monte Carlo [Neal, 1993].
However, a drawback of DSVI is that it approximates the posterior distribution with a Gaussian. We
show, with high confidence, that the posterior distribution is non-Gaussian for every dataset that
we examine in this work. This finding motivates the use of inference methods with a more flexible
posterior approximations.

In this work, we apply an inference method new to DGPs, Stochastic Gradient Hamiltonian Monte
Carlo (SGHMC), a sampling method that accurately and efficiently captures the posterior distribution.
In order to apply a sampling-based inference method to DGPs, we have to tackle the problem of
optimizing the large number of hyperparameters. To address this problem, we propose Moving
Window Monte Carlo Expectation Maximization, a novel method for obtaining the Maximum
Likelihood (ML) estimate of the hyperparameters. This method is fast, efficient and generally
applicable to any probabilistic model and MCMC sampler.

One might expect a sampling method such as SGHMC to be more computationally intensive than a
variational method such as DSVI. However, in DGPs, sampling from the posterior is inexpensive,
since it does not require the recomputation of the inverse covariance matrix, which only depends on

1Image source: Daniel Hernández-Lobato

2

Figure 1: (Left): Deep Gaussian Process illustration1. (Middle): Histograms of a random selection of
inducing outputs. The best-fit Gaussian distribution is denoted with a dashed line. Some of them
exhibit a clear multimodal behaviour. (Right): P-values for 100 randomly selected inducing outputs
per dataset. The null hypotheses are that their distributions are Gaussian.

resulting in a Bayesian ‘self-tuning’ covariance function that fits the data without any human input
[Damianou, 2015].

The deep hierarchical generalization of GPs is done in a fully connected, feed-forward manner. The
outputs of the previous layer serve as an input to the next. However, a significant difference from
neural networks is that the layer outputs are probabilistic rather than exact values so the uncertainty is
propagated through the network. The left part of Figure 1 illustrates the concept with a single hidden
layer. The input to the hidden layer is the input data x and the output of the hidden layer f1 serves as
the input data to the output layer, which itself is formed by GPs.

Exact inference is infeasible in GPs for large datasets due to the high computational cost of working
with the inverse covariance matrix. Instead, the posterior is approximated using a small set of pseudo
datapoints (⇠100) also referred to as inducing points [Snelson and Ghahramani, 2006, Titsias, 2009,
Quiñonero-Candela and Rasmussen, 2005]. We assume this inducing point framework throughout
the paper. Predictions are made using the inducing points to avoid computing the covariance matrix
of the whole dataset. Both in GPs and DGPs, the inducing outputs are treated as latent variables that
need to be marginalized.

The current state-of-the-art inference method in DGPs is Doubly Stochastic Variation Inference
(DSVI) [Salimbeni and Deisenroth, 2017] which has been shown to outperform Expectation Prop-
agation [Minka, 2001, Bui et al., 2016] and it also has better performance than Bayesian Neural
Networks with Probabilistic Backpropagation [Hernández-Lobato and Adams, 2015] and Bayesian
Neural Networks with earlier inference methods such as Variation Inference [Graves, 2011], Stochas-
tic Gradient Langevin Dynamics [Welling and Teh, 2011] and Hybrid Monte Carlo [Neal, 1993].
However, a drawback of DSVI is that it approximates the posterior distribution with a Gaussian. We
show, with high confidence, that the posterior distribution is non-Gaussian for every dataset that
we examine in this work. This finding motivates the use of inference methods with a more flexible
posterior approximations.

In this work, we apply an inference method new to DGPs, Stochastic Gradient Hamiltonian Monte
Carlo (SGHMC), a sampling method that accurately and efficiently captures the posterior distribution.
In order to apply a sampling-based inference method to DGPs, we have to tackle the problem of
optimizing the large number of hyperparameters. To address this problem, we propose Moving
Window Monte Carlo Expectation Maximization, a novel method for obtaining the Maximum
Likelihood (ML) estimate of the hyperparameters. This method is fast, efficient and generally
applicable to any probabilistic model and MCMC sampler.

One might expect a sampling method such as SGHMC to be more computationally intensive than a
variational method such as DSVI. However, in DGPs, sampling from the posterior is inexpensive,
since it does not require the recomputation of the inverse covariance matrix, which only depends on

1Image source: Daniel Hernández-Lobato

2

Figure 1: (Left): Deep Gaussian Process illustration1. (Middle): Histograms of a random selection of
inducing outputs. The best-fit Gaussian distribution is denoted with a dashed line. Some of them
exhibit a clear multimodal behaviour. (Right): P-values for 100 randomly selected inducing outputs
per dataset. The null hypotheses are that their distributions are Gaussian.

resulting in a Bayesian ‘self-tuning’ covariance function that fits the data without any human input
[Damianou, 2015].

The deep hierarchical generalization of GPs is done in a fully connected, feed-forward manner. The
outputs of the previous layer serve as an input to the next. However, a significant difference from
neural networks is that the layer outputs are probabilistic rather than exact values so the uncertainty is
propagated through the network. The left part of Figure 1 illustrates the concept with a single hidden
layer. The input to the hidden layer is the input data x and the output of the hidden layer f1 serves as
the input data to the output layer, which itself is formed by GPs.

Exact inference is infeasible in GPs for large datasets due to the high computational cost of working
with the inverse covariance matrix. Instead, the posterior is approximated using a small set of pseudo
datapoints (⇠100) also referred to as inducing points [Snelson and Ghahramani, 2006, Titsias, 2009,
Quiñonero-Candela and Rasmussen, 2005]. We assume this inducing point framework throughout
the paper. Predictions are made using the inducing points to avoid computing the covariance matrix
of the whole dataset. Both in GPs and DGPs, the inducing outputs are treated as latent variables that
need to be marginalized.

The current state-of-the-art inference method in DGPs is Doubly Stochastic Variation Inference
(DSVI) [Salimbeni and Deisenroth, 2017] which has been shown to outperform Expectation Prop-
agation [Minka, 2001, Bui et al., 2016] and it also has better performance than Bayesian Neural
Networks with Probabilistic Backpropagation [Hernández-Lobato and Adams, 2015] and Bayesian
Neural Networks with earlier inference methods such as Variation Inference [Graves, 2011], Stochas-
tic Gradient Langevin Dynamics [Welling and Teh, 2011] and Hybrid Monte Carlo [Neal, 1993].
However, a drawback of DSVI is that it approximates the posterior distribution with a Gaussian. We
show, with high confidence, that the posterior distribution is non-Gaussian for every dataset that
we examine in this work. This finding motivates the use of inference methods with a more flexible
posterior approximations.

In this work, we apply an inference method new to DGPs, Stochastic Gradient Hamiltonian Monte
Carlo (SGHMC), a sampling method that accurately and efficiently captures the posterior distribution.
In order to apply a sampling-based inference method to DGPs, we have to tackle the problem of
optimizing the large number of hyperparameters. To address this problem, we propose Moving
Window Monte Carlo Expectation Maximization, a novel method for obtaining the Maximum
Likelihood (ML) estimate of the hyperparameters. This method is fast, efficient and generally
applicable to any probabilistic model and MCMC sampler.

One might expect a sampling method such as SGHMC to be more computationally intensive than a
variational method such as DSVI. However, in DGPs, sampling from the posterior is inexpensive,
since it does not require the recomputation of the inverse covariance matrix, which only depends on

1Image source: Daniel Hernández-Lobato

2

x1
<latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="lQF12WdvvQAE1KZm/06Asv1PPko=">AAAB33icbZDNSgMxFIXv1L9aq1a3boJFcFVm3OhScOOyom2FdiiZ9E4bmskMyR2xDH0ENy4U8a3c+TamPwttPRD4OCch954oU9KS7397pY3Nre2d8m5lr7p/cFg7qrZtmhuBLZGq1DxG3KKSGlskSeFjZpAnkcJONL6Z5Z0nNFam+oEmGYYJH2oZS8HJWffP/aBfq/sNfy62DsES6rBUs1/76g1SkSeoSShubTfwMwoLbkgKhdNKL7eYcTHmQ+w61DxBGxbzUafszDkDFqfGHU1s7v5+UfDE2kkSuZsJp5FdzWbmf1k3p/gqLKTOckItFh/FuWKUstnebCANClITB1wY6WZlYsQNF+TaqbgSgtWV16F90Qj8RnDnQxlO4BTOIYBLuIZbaEILBAzhBd7g3VPeq/exqKvkLXs7hj/yPn8A8EuMSw==</latexit><latexit sha1_base64="lQF12WdvvQAE1KZm/06Asv1PPko=">AAAB33icbZDNSgMxFIXv1L9aq1a3boJFcFVm3OhScOOyom2FdiiZ9E4bmskMyR2xDH0ENy4U8a3c+TamPwttPRD4OCch954oU9KS7397pY3Nre2d8m5lr7p/cFg7qrZtmhuBLZGq1DxG3KKSGlskSeFjZpAnkcJONL6Z5Z0nNFam+oEmGYYJH2oZS8HJWffP/aBfq/sNfy62DsES6rBUs1/76g1SkSeoSShubTfwMwoLbkgKhdNKL7eYcTHmQ+w61DxBGxbzUafszDkDFqfGHU1s7v5+UfDE2kkSuZsJp5FdzWbmf1k3p/gqLKTOckItFh/FuWKUstnebCANClITB1wY6WZlYsQNF+TaqbgSgtWV16F90Qj8RnDnQxlO4BTOIYBLuIZbaEILBAzhBd7g3VPeq/exqKvkLXs7hj/yPn8A8EuMSw==</latexit><latexit sha1_base64="lM3U3/kNLPkw72KFGSwMYh5Kzog=">AAAB6nicbVBNT8JAEJ3iF+IX6tHLRmLiibRe9Ej04hGjBRJoyHbZwobtttmdGknDT/DiQWO8+ou8+W9coAcFXzLJy3szmZkXplIYdN1vp7S2vrG5Vd6u7Ozu7R9UD49aJsk04z5LZKI7ITVcCsV9FCh5J9WcxqHk7XB8M/Pbj1wbkagHnKQ8iOlQiUgwila6f+p7/WrNrbtzkFXiFaQGBZr96ldvkLAs5gqZpMZ0PTfFIKcaBZN8WullhqeUjemQdy1VNOYmyOenTsmZVQYkSrQthWSu/p7IaWzMJA5tZ0xxZJa9mfif180wugpyodIMuWKLRVEmCSZk9jcZCM0ZyokllGlhbyVsRDVlaNOp2BC85ZdXSeui7rl1786tNa6LOMpwAqdwDh5cQgNuoQk+MBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQpwjZw=</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit>

x2
<latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit>

Figure 1: (Left): Deep Gaussian Process illustration1. (Middle): Histograms of a random selection of
inducing outputs. The best-fit Gaussian distribution is denoted with a dashed line. Some of them
exhibit a clear multimodal behaviour. (Right): P-values for 100 randomly selected inducing outputs
per dataset. The null hypotheses are that their distributions are Gaussian.

resulting in a Bayesian ‘self-tuning’ covariance function that fits the data without any human input
[Damianou, 2015].

The deep hierarchical generalization of GPs is done in a fully connected, feed-forward manner. The
outputs of the previous layer serve as an input to the next. However, a significant difference from
neural networks is that the layer outputs are probabilistic rather than exact values so the uncertainty is
propagated through the network. The left part of Figure 1 illustrates the concept with a single hidden
layer. The input to the hidden layer is the input data x and the output of the hidden layer f1 serves as
the input data to the output layer, which itself is formed by GPs.

Exact inference is infeasible in GPs for large datasets due to the high computational cost of working
with the inverse covariance matrix. Instead, the posterior is approximated using a small set of pseudo
datapoints (⇠100) also referred to as inducing points [Snelson and Ghahramani, 2006, Titsias, 2009,
Quiñonero-Candela and Rasmussen, 2005]. We assume this inducing point framework throughout
the paper. Predictions are made using the inducing points to avoid computing the covariance matrix
of the whole dataset. Both in GPs and DGPs, the inducing outputs are treated as latent variables that
need to be marginalized.

The current state-of-the-art inference method in DGPs is Doubly Stochastic Variation Inference
(DSVI) [Salimbeni and Deisenroth, 2017] which has been shown to outperform Expectation Prop-
agation [Minka, 2001, Bui et al., 2016] and it also has better performance than Bayesian Neural
Networks with Probabilistic Backpropagation [Hernández-Lobato and Adams, 2015] and Bayesian
Neural Networks with earlier inference methods such as Variation Inference [Graves, 2011], Stochas-
tic Gradient Langevin Dynamics [Welling and Teh, 2011] and Hybrid Monte Carlo [Neal, 1993].
However, a drawback of DSVI is that it approximates the posterior distribution with a Gaussian. We
show, with high confidence, that the posterior distribution is non-Gaussian for every dataset that
we examine in this work. This finding motivates the use of inference methods with a more flexible
posterior approximations.

In this work, we apply an inference method new to DGPs, Stochastic Gradient Hamiltonian Monte
Carlo (SGHMC), a sampling method that accurately and efficiently captures the posterior distribution.
In order to apply a sampling-based inference method to DGPs, we have to tackle the problem of
optimizing the large number of hyperparameters. To address this problem, we propose Moving
Window Monte Carlo Expectation Maximization, a novel method for obtaining the Maximum
Likelihood (ML) estimate of the hyperparameters. This method is fast, efficient and generally
applicable to any probabilistic model and MCMC sampler.

One might expect a sampling method such as SGHMC to be more computationally intensive than a
variational method such as DSVI. However, in DGPs, sampling from the posterior is inexpensive,
since it does not require the recomputation of the inverse covariance matrix, which only depends on

1Image source: Daniel Hernández-Lobato

2

Figure 1: (Left): Deep Gaussian Process illustration1. (Middle): Histograms of a random selection of
inducing outputs. The best-fit Gaussian distribution is denoted with a dashed line. Some of them
exhibit a clear multimodal behaviour. (Right): P-values for 100 randomly selected inducing outputs
per dataset. The null hypotheses are that their distributions are Gaussian.

resulting in a Bayesian ‘self-tuning’ covariance function that fits the data without any human input
[Damianou, 2015].

The deep hierarchical generalization of GPs is done in a fully connected, feed-forward manner. The
outputs of the previous layer serve as an input to the next. However, a significant difference from
neural networks is that the layer outputs are probabilistic rather than exact values so the uncertainty is
propagated through the network. The left part of Figure 1 illustrates the concept with a single hidden
layer. The input to the hidden layer is the input data x and the output of the hidden layer f1 serves as
the input data to the output layer, which itself is formed by GPs.

Exact inference is infeasible in GPs for large datasets due to the high computational cost of working
with the inverse covariance matrix. Instead, the posterior is approximated using a small set of pseudo
datapoints (⇠100) also referred to as inducing points [Snelson and Ghahramani, 2006, Titsias, 2009,
Quiñonero-Candela and Rasmussen, 2005]. We assume this inducing point framework throughout
the paper. Predictions are made using the inducing points to avoid computing the covariance matrix
of the whole dataset. Both in GPs and DGPs, the inducing outputs are treated as latent variables that
need to be marginalized.

The current state-of-the-art inference method in DGPs is Doubly Stochastic Variation Inference
(DSVI) [Salimbeni and Deisenroth, 2017] which has been shown to outperform Expectation Prop-
agation [Minka, 2001, Bui et al., 2016] and it also has better performance than Bayesian Neural
Networks with Probabilistic Backpropagation [Hernández-Lobato and Adams, 2015] and Bayesian
Neural Networks with earlier inference methods such as Variation Inference [Graves, 2011], Stochas-
tic Gradient Langevin Dynamics [Welling and Teh, 2011] and Hybrid Monte Carlo [Neal, 1993].
However, a drawback of DSVI is that it approximates the posterior distribution with a Gaussian. We
show, with high confidence, that the posterior distribution is non-Gaussian for every dataset that
we examine in this work. This finding motivates the use of inference methods with a more flexible
posterior approximations.

In this work, we apply an inference method new to DGPs, Stochastic Gradient Hamiltonian Monte
Carlo (SGHMC), a sampling method that accurately and efficiently captures the posterior distribution.
In order to apply a sampling-based inference method to DGPs, we have to tackle the problem of
optimizing the large number of hyperparameters. To address this problem, we propose Moving
Window Monte Carlo Expectation Maximization, a novel method for obtaining the Maximum
Likelihood (ML) estimate of the hyperparameters. This method is fast, efficient and generally
applicable to any probabilistic model and MCMC sampler.

One might expect a sampling method such as SGHMC to be more computationally intensive than a
variational method such as DSVI. However, in DGPs, sampling from the posterior is inexpensive,
since it does not require the recomputation of the inverse covariance matrix, which only depends on

1Image source: Daniel Hernández-Lobato

2

Figure 1: (Left): Deep Gaussian Process illustration1. (Middle): Histograms of a random selection of
inducing outputs. The best-fit Gaussian distribution is denoted with a dashed line. Some of them
exhibit a clear multimodal behaviour. (Right): P-values for 100 randomly selected inducing outputs
per dataset. The null hypotheses are that their distributions are Gaussian.

resulting in a Bayesian ‘self-tuning’ covariance function that fits the data without any human input
[Damianou, 2015].

The deep hierarchical generalization of GPs is done in a fully connected, feed-forward manner. The
outputs of the previous layer serve as an input to the next. However, a significant difference from
neural networks is that the layer outputs are probabilistic rather than exact values so the uncertainty is
propagated through the network. The left part of Figure 1 illustrates the concept with a single hidden
layer. The input to the hidden layer is the input data x and the output of the hidden layer f1 serves as
the input data to the output layer, which itself is formed by GPs.

Exact inference is infeasible in GPs for large datasets due to the high computational cost of working
with the inverse covariance matrix. Instead, the posterior is approximated using a small set of pseudo
datapoints (⇠100) also referred to as inducing points [Snelson and Ghahramani, 2006, Titsias, 2009,
Quiñonero-Candela and Rasmussen, 2005]. We assume this inducing point framework throughout
the paper. Predictions are made using the inducing points to avoid computing the covariance matrix
of the whole dataset. Both in GPs and DGPs, the inducing outputs are treated as latent variables that
need to be marginalized.

The current state-of-the-art inference method in DGPs is Doubly Stochastic Variation Inference
(DSVI) [Salimbeni and Deisenroth, 2017] which has been shown to outperform Expectation Prop-
agation [Minka, 2001, Bui et al., 2016] and it also has better performance than Bayesian Neural
Networks with Probabilistic Backpropagation [Hernández-Lobato and Adams, 2015] and Bayesian
Neural Networks with earlier inference methods such as Variation Inference [Graves, 2011], Stochas-
tic Gradient Langevin Dynamics [Welling and Teh, 2011] and Hybrid Monte Carlo [Neal, 1993].
However, a drawback of DSVI is that it approximates the posterior distribution with a Gaussian. We
show, with high confidence, that the posterior distribution is non-Gaussian for every dataset that
we examine in this work. This finding motivates the use of inference methods with a more flexible
posterior approximations.

In this work, we apply an inference method new to DGPs, Stochastic Gradient Hamiltonian Monte
Carlo (SGHMC), a sampling method that accurately and efficiently captures the posterior distribution.
In order to apply a sampling-based inference method to DGPs, we have to tackle the problem of
optimizing the large number of hyperparameters. To address this problem, we propose Moving
Window Monte Carlo Expectation Maximization, a novel method for obtaining the Maximum
Likelihood (ML) estimate of the hyperparameters. This method is fast, efficient and generally
applicable to any probabilistic model and MCMC sampler.

One might expect a sampling method such as SGHMC to be more computationally intensive than a
variational method such as DSVI. However, in DGPs, sampling from the posterior is inexpensive,
since it does not require the recomputation of the inverse covariance matrix, which only depends on

1Image source: Daniel Hernández-Lobato

2

x1
<latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="lQF12WdvvQAE1KZm/06Asv1PPko=">AAAB33icbZDNSgMxFIXv1L9aq1a3boJFcFVm3OhScOOyom2FdiiZ9E4bmskMyR2xDH0ENy4U8a3c+TamPwttPRD4OCch954oU9KS7397pY3Nre2d8m5lr7p/cFg7qrZtmhuBLZGq1DxG3KKSGlskSeFjZpAnkcJONL6Z5Z0nNFam+oEmGYYJH2oZS8HJWffP/aBfq/sNfy62DsES6rBUs1/76g1SkSeoSShubTfwMwoLbkgKhdNKL7eYcTHmQ+w61DxBGxbzUafszDkDFqfGHU1s7v5+UfDE2kkSuZsJp5FdzWbmf1k3p/gqLKTOckItFh/FuWKUstnebCANClITB1wY6WZlYsQNF+TaqbgSgtWV16F90Qj8RnDnQxlO4BTOIYBLuIZbaEILBAzhBd7g3VPeq/exqKvkLXs7hj/yPn8A8EuMSw==</latexit><latexit sha1_base64="lQF12WdvvQAE1KZm/06Asv1PPko=">AAAB33icbZDNSgMxFIXv1L9aq1a3boJFcFVm3OhScOOyom2FdiiZ9E4bmskMyR2xDH0ENy4U8a3c+TamPwttPRD4OCch954oU9KS7397pY3Nre2d8m5lr7p/cFg7qrZtmhuBLZGq1DxG3KKSGlskSeFjZpAnkcJONL6Z5Z0nNFam+oEmGYYJH2oZS8HJWffP/aBfq/sNfy62DsES6rBUs1/76g1SkSeoSShubTfwMwoLbkgKhdNKL7eYcTHmQ+w61DxBGxbzUafszDkDFqfGHU1s7v5+UfDE2kkSuZsJp5FdzWbmf1k3p/gqLKTOckItFh/FuWKUstnebCANClITB1wY6WZlYsQNF+TaqbgSgtWV16F90Qj8RnDnQxlO4BTOIYBLuIZbaEILBAzhBd7g3VPeq/exqKvkLXs7hj/yPn8A8EuMSw==</latexit><latexit sha1_base64="lM3U3/kNLPkw72KFGSwMYh5Kzog=">AAAB6nicbVBNT8JAEJ3iF+IX6tHLRmLiibRe9Ej04hGjBRJoyHbZwobtttmdGknDT/DiQWO8+ou8+W9coAcFXzLJy3szmZkXplIYdN1vp7S2vrG5Vd6u7Ozu7R9UD49aJsk04z5LZKI7ITVcCsV9FCh5J9WcxqHk7XB8M/Pbj1wbkagHnKQ8iOlQiUgwila6f+p7/WrNrbtzkFXiFaQGBZr96ldvkLAs5gqZpMZ0PTfFIKcaBZN8WullhqeUjemQdy1VNOYmyOenTsmZVQYkSrQthWSu/p7IaWzMJA5tZ0xxZJa9mfif180wugpyodIMuWKLRVEmCSZk9jcZCM0ZyokllGlhbyVsRDVlaNOp2BC85ZdXSeui7rl1786tNa6LOMpwAqdwDh5cQgNuoQk+MBjCM7zCmyOdF+fd+Vi0lpxi5hj+wPn8AQpwjZw=</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit><latexit sha1_base64="9Ebez7AsyXnUS7K0KmzSc78bSSE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9T3+uWKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8MrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbQuqp5b9e4uK/XrPI4inMApnIMHNajDLTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwALsI2g</latexit>

x2
<latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit><latexit sha1_base64="sU5hbPAK+kK9DlSNNuLNHNxer84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Sv9csVt+rOQVaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnVqp5b9e4uKvXrPI4inMApnIMHl1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gANNI2h</latexit>

Tuning
Set

Generate
Tuning Set

Tuned DGP

Transfer
Learning
via MAP

Opt.
Record

Searching
Alg.

1. Preparation 2. Transfer

3. Optimum Searching

Figure 4: Our automatic optimization framework, consists
of three stages, i.e., stage 1: DGP model preparation based
on the history data, stage 2: transfer knowledge to new
DNN layers, and stage 3: optimal configuration searching.

historical data D, y is assumed to be influenced by the zero-
mean Gaussian noise ϵ ∼ N (0, σ2

e), i.e., yi = f(xi) + ϵ.
The noise is indispensable to characterize the hardware un-
certainties which may be caused by real-time workloads,
temperature fluctuation, and etc. The function values with
respect to X are denoted as a vector f . Denote the hyper-
parameters as θ, including noises and parameters in the ker-
nel function. The marginal likelihood takes the form shown
in Equation (1).

P(y|θ) =
N∏
i=1

∫
p(yi|fi)p(fi)dfi = N (µ, K̃), (1)

where µ is the mean vector, K̃ = K(X,X) + σ2
eIN , and

IN is the identity matrix.
A DGP model stacks multiple single-layer Gaussian pro-

cesses. The outputs of the previous GP layer are the in-
puts of the next GP layer. For a DGP model comprised
of L layers, denote the value functions of these L layers
as {f1, · · · , fL}. Correspondingly, the function values on
inputs X are {f1, · · · ,fL}. Here f0 is defined as X .
The hyper-parameters in the l-th layer are represented as
θl. Based on the definitions of the single-layer Gaussian
process, the prior of a DGP model comprising L layers can
be written as Equation (2).

P(f l) = N (µl,Kl), l = 1, · · · , L,

P(y, {f1, · · · ,fL}) =
N∏
i=1

P(yi|fL
i ;θ

L)

L∏
l=1

P(f l|f l−1;θl),

(2)
where the hyper-parameters θl are solved via maximum
likelihood estimation which is computationally expensive.
For the training set with N configurations, the computa-
tion complexity of the gradients of K̃ with respect to θl

is O(N3). Besides, the marginal density is unavailable in

closed form or requires exponential time to compute [49],
thus making the inference hard.

Inspired by recent works on posterior approximations of
sparse Gaussian approximations, the stochastic variational
inference [49] is employed to accelerate the computations
of DGPs in this paper. The key technique is to introduce an
inducing configuration set Z = {z1, · · · , zL} with |zl| ≪
N and z1 ⊂ X . Denote the function values at configura-
tions zl as ul in the l-th layer. The basic assumption is that
{ul}Ll=1 is a sufficient statistic for {f l}Ll=1, so that the real
posterior P({f l,ul;θl}Ll=1|y) can be approximated given
a Gaussian distribution Q({ul}Ll=1). To achieve the best
{ul}Ll=1, KL divergence between P({f l,ul;θl}Ll=1|y) and
Q({f l,ul}Ll=1) is minimized with respect to the selection
of {zl,θl}Ll=1, as shown in Formulation (3).

min
{zl,θl}L

l=1

KL
(
Q({f l,ul}Ll=1)∥P({f l,ul;θl}Ll=1|y)

)
.

(3)
Formulation (3) can be transferred to be the equivalent for-
mulation as follows:

max
{zl,θl}L

l=1

logP(y|{zl,θl}Ll=1)

= max
{zl,θl}L

l=1

[
N∑
i=1

EQ(fL
i |u;xi,Z)[logP(yi|fL

i ;θ
L)]

]

−
L∑

l=1

KL[Q(ul)∥P(ul;θl)],

(4)

where P(y|{zl,θl}Ll=1) is the likelihood function. The
model hyper-parameters {zl,θl}Ll=1 are solved via Formu-
lation (4). For simplicity, denote {zl,θl} as θ̃l. Until now,
we have finished the training of our DGP model based on
the historical data D = {X,y}.

In this paper, the DGP model together with stochastic
variational inference grows in complexity to suit the his-
torical data and is robust enough to provide reasonable er-
rors that would result from hardware or system uncertainties
[40, 39, 49]. It also has a greater capacity to generalize and
contains more hidden information compared with previous
arts. The experimental results show us an outstanding per-
formance by using our DGP and its high transferability.

3.4. Transfer Knowledge to New Tasks

To transfer the hidden knowledge and empirics from the
known historical tasks (a.k.a., source tasks) to new tasks
(a.k.a., target tasks), two steps are required, i.e., finding a
good initial tuning data set and choosing a fast and efficient
transfer learning algorithm.

Firstly, to guarantee that adequate knowledge is learned
for the new task, it is crucial to find a good tuning data
set. Randomly picking some initial configurations from the
extremely large design space would introduce some ille-
gal configurations (i.e., with performance values equal to

zero) which cannot help us but wastes lots of time to com-
pile them. Besides, there is no guarantee that the histori-
cal data set is large enough to cover the data distribution of
the target task. The target task would also possibly have
a higher upper bound of performance values, which means
the mean value of the historical data might be smaller than
the mean value of the target task. Therefore, the tuning data
set should contain configurations with performance values
as higher as possible, to calibrate the mean function.

To handle these, the DGP model learned from the histor-
ical data is used as the empirical criterion to select suitable
initial configurations for the new task. A set which is large
enough is randomly sampled from the search space and then
fed into the DGP model to get the predicted performance.
We sort these initial configurations according to their pre-
dicted performance values and the configurations with top
s performance values are chosen as the tuning points, i.e.,
Xt = {xt

1, · · · ,xt
s}. The configurations in Xt are com-

piled and deployed on real hardware to get the real perfor-
mance set yt = {yt1, · · · , yts}. Denote {Xt,yt} as Dt, and
then Dt is used as the tuning set to calibrate the empirical
DGP model. Intuitively, a tuning set with high diversities is
better. However, in our context, the configuration space is
too large and only small parts have good performance. Our
target is to find the optimal configurations instead of char-
acterizing the whole configuration space. In other words,
we are interested in a small part of the solution space with
high performance. Besides, compared with the large space,
the size of the randomly sampled set and the number of the
sorted configurations are small, a basic situation is that these
sampled configurations will always scatter with high diver-
sities in the space. Therefore, finding a better initial tuning
set via our DGP is wise with no harm to the diversities.

Secondly, a fast and efficient transfer learning algorithm
based on MAP is proposed to tune the DGP model with
Dt. As mentioned above, the widely-used transfer learning
algorithms [41, 42, 43] are unsuitable in our situations for
several reasons. For the target task, with the help of MAP,
the model parameters are optimally determined by combin-
ing the hidden knowledge (in the form of the parameters
θ̃l) and Dt. For the convenience of explanation, we omit
the layer indices to lighten the notations. Denote all of the
parameters in the source task DGP model as θ̃ and the pa-
rameters for target task as θ̂. According to the Bayes’ theo-
rem, MAP is to find the optimal value of θ̂ (i.e., most likely
to occur) to maximize the posterior distribution P(θ̂|yt).
Specifically, P(θ̂|yt) follows Formulation (5).

P(θ̂|yt) ∝ P(θ̂) · P(yt|θ̂), (5)

where P(yt|θ̂) is the likelihood function in Formulation
(4). The prior of θ̂ is assumed to follow a Gaussian dis-
tribution with θ̃ as the mean value [45]. To accelerate the
computation, the MAP is implemented as an L2 regulariza-

tion term of θ̂ and θ̃, i.e., ∥θ̂ − θ̃∥22. The objective function
to tune the parameters is defined as Formulation (6).

max
θ̂

logP(yt|θ̂)− λ∥θ̂ − θ̃∥22, (6)

where λ is a hyper-parameter. Theoretically, L2 regulariza-
tion is equivalent to MAP inference with a Gaussian prior
on the parameters [50]. Compared with the traditional GP
methods which are fitted from scratch, our method with
prior θ̃ does not require too much data and saves time.

An important characteristic of deployment is that var-
ious computation operations would have a non-negligible
influence on the communication modes, resource alloca-
tions, and etc. For example, depthwise convolutions and di-
rect convolutions have distinct computation patterns. These
characteristics are hard to be summarized as a unified rule
even for senior engineers. To guarantee the performance of
our flow, DNN layers are categorized into some groups ac-
cording to their types. The knowledge is learned and trans-
ferred within each group.

4. Experiments
We implement our flow based on GPyTorch [51] and em-

bed it into TVM to validate the performance. Some ablation
studies are conducted. Layer-wise and model-wise perfor-
mance are analyzed and compared with the state-of-the-art.
Due to space limitations, we present some important set-
tings and representative results in the paper, and more de-
tails and results can be referred to the appendix.

4.1. Experimental Settings

Our experiments are running on an Intel(R) Xeon(R) E5-
2680 v4 CPU@ 2.40GHz. The hardware platform is an
NVIDIA GeForce GTX 1080Ti GPU and the CUDA ver-
sion is 9.0.176. For fair comparisons, models tested in pre-
vious work [14, 15, 16] are tested, including AlexNet [52],
ResNet-18 [53], and VGG-16 [54]. Further, MobileNet-
v1 [55] is tested. Note that the current deployment flows
[14, 15, 16] optimize the DNN models layer by layer. The
optimization algorithms and processes are independent of
the model structure, therefore simple model structures are
enough to validate our method with no need of using more
complicated DNN models. The representative DNN layers
widely used in both industries and academia are covered
in these models, including convolutional layers, residual
blocks, depthwise separable convolutional layers, and etc.
For the layers with the same structures, only the first of them
will be optimized and others directly use the same config-
uration for this layer. Besides, same with [14, 15, 16], we
focus on the optimizations of various convolutional layers,
and other types of layers are skipped, e.g., fully connected
layers and pooling layers. These other layers directly use
the settings provided by TVM.

AutoTVM [14], integrating XGBoost, simulated anneal-
ing, and etc., is used as the baseline. Besides, two outstand-
ing baselines are also compared, including DAC’20 GGA
[16] which uses a well-designed heuristic guided genetic al-
gorithm, and ICLR’20 CHAMELEON [15] which is based
on reinforcement learning and adaptive sampling algorithm.
In our method, we use the simulated annealing in TVM as
the searching algorithm and follow the same settings as Au-
toTVM and CHAMELEON. Our DGP is used as the per-
formance estimator and a replacement to GPU during con-
figuration searching, as mentioned in Section 3.2. The ra-
dial basis function is adopted as the kernel function. The
number of inducing points in variational inference is 128.
Notably, the experimental platforms and software versions
are distinct compared with other works, which would have
a significant effect on the search time and the performance
of the final deployments. For fairness, the results are ex-
pressed as ratios to the results of AutoTVM.

To illustrate the performance, three metrics are used, i.e.,
Giga floating operations per second (GFLOPS), the reduc-
tion of the inference latency, and the reduction of the search
time to find the optimal configuration. GFLOPS measures
the number of floating-point operations conducted by the
hardware per second during executing the model. It is used
as the optimization objective for each layer in our method
and the baselines. Inference latency is the final end-to-end
on-board inference time of the whole model. Search time
is the overall time cost to optimize the deployment of the
whole DNN model, including the interactions with hard-
ware and model tuning.

4.2. Layer Groups and Historical Data

As mentioned above, to guarantee the transferability of
prior knowledge, the DNN layers are categorized into some
groups. In this paper, we choose three criteria, including
layer type (e.g., direct convolution, or depthwise separable
convolution), kernel size (e.g., 3× 3, or 7× 7), and padding
type (e.g., no padding, or padding size = 1). These criteria
are fundamental factors that would have a great influence
on the deployment performance and usually bother engi-
neers. According to these criteria, VGG-16 has 1 group,
while ResNet-18, AlexNet, and MobileNet-v1 have 4, 3,
and 4 groups, respectively. The first layer of each group is
deployed via AutoTVM and the configurations explored by
AutoTVM in this process are collected as the historical data
for this group. This makes our method more practical in
demanding application scenarios.

4.3. Ablation Studies on the Proposed DGP

We perform ablation studies on our pre-trained DGP
model, i.e., evaluate the results of stage 1 in Figure 4. The
accuracies of directly using DGP trained on the historical
data to predict the performance of configurations of new

cv1 sp1-dp1sp1-cv1sp2-dp1sp2-cv2sp3-dp1sp3-cv2sp4-dp1sp4-cv2sp5-dp1sp5-cv2sp6-dp1sp6-cv2sp7-dp1sp7-cv2sp12-dp1sp12-cv2sp13-dp1sp13-cv2 AVG
0

100
160

R
M

SE
(%

) Ours AutoTVM

(a) MobileNet-v1

cv1cv2cv3cv4cv5AVG
20
50

100

R
M

SE
(%

)

(b) AlexNet

cv1-1cv1-2cv2-1cv2-2cv3-1cv3-2cv4-1cv4-2cv4-3AVG
20
50

100

(c) VGG-16

rb4-scrb3-scrb2-scrb1-sc cv0
rb1-cv1

rb2-cv1
rb2-cv2

rb3-cv1
rb3-cv2

rb4-cv1
rb4-cv2AVG

20
50

100

(d) ResNet-18

Figure 5: RMSE of our predicted GFLOPS, the data are expressed as the ratios to the results of XGBoost in AutoTVM.
Here, our DGP is directly used to predict the GFLOPS of new tasks without tuning. cv: convolution, rb: residual block, sc:
shortcut, sp: separable convolution, dp: depthwise convolution.

0 100 200 300
0

900

1,800

G
FL

O
PS

Random Our DGP

(a) cv1 of AlexNet

0 100 200 300
0

900

1,800

(b) sp-13-dp1 of MobileNet-v1

0 100 200 300
0

800

1,600

(c) rb4-conv2 of ResNet-18

0 100 200 300
0

3,500

7,000

(d) conv2-1 of VGG-16

Figure 6: The randomly sampled tuning set and the set selected according to DGP. The data are in descending order. There
are 300 configurations in each tuning set, and the X-axis is the index of the configuration.

layers are plotted, in comparison with the prediction perfor-
mance of the XGBoost used by AutoTVM. For fair com-
parisons, these two methods use the same training data, as
mentioned in Section 4.2. After training, they are directly
used to predict the performance without tuning. The root-
mean-square error (RMSE) of the predicted GFLOPS val-
ues is to characterize the prediction error. The results are
shown in Figure 5. The prediction accuracy of our DGP on
direct convolutional layers outperforms XGBoost remark-
ably, no matter whether with padding or not, or with vari-
ous sizes of kernels, or different sizes of strides. Our DGP
wins on most of the depthwise convolutional layers. As to
the performance of residual blocks, our method is also the
superior one. On these four models, our average results are
the best. It is demonstrated that our DGP models are able to
learn enough prior knowledge of the hidden characteristics
of the hardware architecture, model structures, and etc.

As mentioned above, the pre-trained DGP is used as the
empirical criterion to select a suitable initial configuration
set for the subsequent tuning stage. Note that our target is to
learn the good configurations instead of the whole configu-
ration space. Using our DGP will help choose the useful
configurations and will teach the model to learn more about
the characteristic of this layer. Examples of the sampled
configurations and their on-board GFLOPS values are plot-

AlexNet
ResNet

VGG
MobileNet

0

16

32

Se
ar

ch
(h

)

AutoTVM Selected

(a) Search Time

AlexNet
ResNet

VGG
MobileNet

2

9

L
at

en
cy

(m
s)

Random

(b) Inference Latency

Figure 7: Comparisons between AutoTVM and ours. “Se-
lected” means the tuning configurations are selected by us-
ing our pre-trained DGP as the criterion. “Random” means
the tuning configurations are randomly sampled from the
configuration space without any prior knowledge.

ted in Figure 6. In experiments, the tuning set contains 300
configurations. Most of the configurations sampled via our
DGP model are feasible and have continuous GFLOPS val-
ues. In comparison, most of the randomly sampled config-
urations are infeasible on hardware. Besides, the maximum
GFLOPS of the random method is lower than ours which
means the DGP tuned on the random set is unable to give
higher prediction values for good configurations.

Table 1: Comparisons of Search Time and End-to-end Model Inference Latency

Model
AutoTVM [14] ICLR’20 [15] Ours

Search Inference Search Inference HV Search Search Inference Inference HV(h) (ms) Redu. (%) Redu. (%) (h) Redu. (%) (ms) Redu. (%)

MobileNet-v1 31.14 0.8980 - - - 10.06 67.69 0.7664 14.65 9.9168
AlexNet 6.28 1.3467 72.16 5.88 4.2409 2.14 65.96 1.2537 6.91 4.5573
VGG-16 19.92 6.7847 82.56 3.44 2.8418 4.61 76.83 6.4972 4.24 3.2556

ResNet-18 32.04 1.8248 76.67 4.16 3.1915 9.47 70.43 1.7305 5.17 3.6423

4.4. Ablation Studies on the Transfer Learning

To prove the effectiveness of our transfer learning
method, we compare the results of using the randomly sam-
pled tuning set with the results of using the tuning set se-
lected by our DGP (as mentioned in Section 3.4). The re-
sults are shown in Figure 7. The randomly sampled tuning
sets increase the inference latencies significantly because
the performance of most of the sampled configurations is
unsatisfying. Randomly sampling a small number of con-
figurations cannot introduce enough knowledge about the
optimal configurations, but confuses the pre-trained DGPs.

4.5. Performance of the Whole framework

Some results with respect to the reduction of search time
of the whole optimization process and reduction of model
inference latency are analyzed here, compared with the
state-of-the-art baselines. The detailed results are listed in
Table 1. The reported latency is the average of latencies
from 1800 on-board inference trials and is believed to be ac-
curate enough. Usually, there is a trade-off between search
time and model inference latency. To improve the model in-
ference performance, more configurations are sampled and
analyzed in the searching process. Consequently, the search
time increases, and vice versa. For fair comparisons be-
tween these two closely related and interacting metrics, we
introduce the concept of hypervolume (HV) [56]. Hyper-
volume is commonly adopted to measure the solutions of
multi-objective optimization problems. The reduction ra-
tios of inference latency and search time are multiplied, to
measure the overall performance, as shown in Equation (7).

HV = Redu. of Latency×Redu. of Search Time× 100.
(7)

Here the HV value is multiplied by 100 to adjust the order
of magnitude. The solution with a higher HV value is the
better one. The results prove the superior performance of
our method. Compared with ICLR’20 CHAMELEON [15],
though our reductions in search times are not optimal, the
reductions of the inference latencies are much better. Our
overall results are much better than CHAMELEON, with
respect to the HV values. In GGA [16], the authors reduce
the search time of ResNet-18 by 93.17% and reduce the in-
ference latency by 3.26%. Although they have the fastest

co
nv

1-1

co
nv

1-2

co
nv

2-1

co
nv

2-2

co
nv

3-1

co
nv

3-2

co
nv

4-1

co
nv

4-2

co
nv

4-3
ave

rag
e

0

100

180

G
FL

O
PS

(%
) Ours AutoTVM

Figure 8: The ratios of the GFLOPS values of VGG-16.

search speed, the inference latency is the worst. The HV
value of their method is 3.037, which is also worse than [15]
and ours. Accelerating the search speed too aggressively
does not worth the loss of the quality of results. The precise
search times and inference latencies of VGG-16, AlexNet,
and MobileNet-v1 are not provided in GGA [16]. For sup-
plementary, the GFLOPS values of VGG-16 are plotted in
Figure 8. Compared with AutoTVM, our method wins on
most layers and has a better average GFLOPS value.

Despite the existing trade-off between the searching time
and the inference latency, on-chip inference latency is ac-
tually the most critical metric since the model deployment
is “once for all”, which means no matter how much time
we spent to optimize the deployment, the faster on-chip in-
ference is more important than the faster optimization pro-
cess. From this perspective, our method also outperforms
the baselines significantly.

5. Conclusion

In this paper, a transfer learning algorithm based on a
deep Gaussian process (DGP) is proposed to optimize the
deployment of DNN models, by using the historical infor-
mation efficiently. The representative DNN layers and mod-
els are tested. Both the search time and inference latency
are reduced simultaneously. The experiments show that our
method outperforms the baselines remarkably.

Acknowledgment

This work is partially supported by SmartMore and ITF
Partnership Research Programme (No. PRP/65/20FX).

References
[1] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-

CNN: Towards real-time object detection with region
proposal networks,” in Proc. NIPS, 2015, pp. 91–99.
1

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“BERT: Pre-training of deep bidirectional trans-
formers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018. 1

[3] Y. Bai and W. Wang, “ACPNet: Anchor-Center Based
Person Network for Human Pose Estimation and
Instance Segmentation,” in Proc. ICME, 2019, pp.
1072–1077. 1

[4] Q. Sun, A. A. Rao, X. Yao, B. Yu, and S. Hu, “Coun-
teracting adversarial attacks in autonomous driving,”
in Proc. ICCAD, 2020, pp. 1–7. 1

[5] Z. Dong, Z. Yao, A. Gholami, M. W. Mahoney,
and K. Keutzer, “HAWQ: Hessian aware quantiza-
tion of neural networks with mixed-precision,” in
Proc. ICCV, 2019, pp. 293–302. 1

[6] T. Ajanthan, P. K. Dokania, R. Hartley, and P. H.
Torr, “Proximal mean-field for neural network quan-
tization,” in Proc. ICCV, 2019, pp. 4871–4880. 1

[7] J. Fang, A. Shafiee, H. Abdel-Aziz, D. Thorsley,
G. Georgiadis, and J. H. Hassoun, “Post-training
piecewise linear quantization for deep neural net-
works,” in Proc. ECCV, 2020, pp. 69–86. 1

[8] Y. Zhou, Y. Zhang, Y. Wang, and Q. Tian, “Accelerate
CNN via recursive Bayesian pruning,” in Proc. ICCV,
2019, pp. 3306–3315. 1

[9] Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, K.-
T. Cheng, and J. Sun, “Metapruning: Meta learn-
ing for automatic neural network channel pruning,” in
Proc. ICCV, 2019, pp. 3296–3305. 1

[10] H. Tian, B. Liu, X.-T. Yuan, and Q. Liu, “Meta-
learning with network pruning,” in Proc. ECCV, 2020,
pp. 675–700. 1

[11] T. Chen, B. Duan, Q. Sun, M. Zhang, G. Li, H. Geng,
Q. Zhang, and B. Yu, “An efficient sharing grouped
convolution via bayesian learning,” in IEEE TNNLS,
2021, pp. 1–13. 1

[12] T.-M. Li, M. Gharbi, A. Adams, F. Durand, and
J. Ragan-Kelley, “Differentiable programming for im-
age processing and deep learning in Halide,” ACM
SIGGRAPH, vol. 37, no. 4, pp. 139:1–139:13, 2018.
1

[13] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan,
H. Shen, M. Cowan, L. Wang, Y. Hu, L. Ceze et al.,
“TVM: An automated end-to-end optimizing compiler
for deep learning,” in Proc. OSDI, 2018, pp. 578–594.
1, 3, 4

[14] T. Chen, L. Zheng, E. Yan, Z. Jiang, T. Moreau,
L. Ceze, C. Guestrin, and A. Krishnamurthy, “Learn-
ing to optimize tensor programs,” in Proc. NIPS, 2018,
pp. 3389–3400. 1, 6, 8

[15] B. H. Ahn, P. Pilligundla, A. Yazdanbakhsh, and
H. Esmaeilzadeh, “CHAMELEON: Adaptive code
optimization for expedited deep neural network com-
pilation,” in Proc. ICLR, 2020. 1, 2, 4, 6, 8

[16] J. Mu, M. Wang, L. Li, J. Yang, W. Lin, and
W. Zhang, “A history-based auto-tuning framework
for fast and high-performance DNN design on GPU,”
in Proc. DAC. IEEE, 2020, pp. 1–6. 1, 2, 4, 6, 8

[17] C. Li, T. Chen, H. You, Z. Wang, and Y. Lin,
“HALO: Hardware-aware learning to optimize,” in
Proc. ECCV, 2020, pp. 500–518. 1

[18] E. Park and S. Yoo, “Profit: A novel training method
for sub-4-bit MobileNet models,” in Proc. ECCV,
2020, pp. 430–446. 1

[19] C. Gong, Z. Jiang, D. Wang, Y. Lin, Q. Liu, and
D. Z. Pan, “Mixed precision neural architecture search
for energy efficient deep learning,” in Proc. ICCAD.
IEEE, 2019, pp. 1–7. 1

[20] Z. Yuan, B. Wu, G. Sun, Z. Liang, S. Zhao, and
W. Bi, “S2DNAS: Transforming static CNN model for
dynamic inference via neural architecture search,” in
Proc. ECCV, 2020, pp. 175–192. 1

[21] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han,
“AMC: AutoML for model compression and acceler-
ation on mobile devices,” in Proc. ECCV, 2018, pp.
784–800. 1

[22] X. Ma, W. Niu, T. Zhang, S. Liu, S. Lin, H. Li,
W. Wen, X. Chen, J. Tang, K. Ma et al., “An image
enhancing pattern-based sparsity for real-time infer-
ence on mobile devices,” in Proc. ECCV, 2020, pp.
629–645. 1

[23] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ:
Hardware-aware automated quantization with mixed
precision,” in Proc. CVPR, 2019, pp. 8612–8620. 1

[24] H. Ye, X. Zhang, Z. Huang, G. Chen, and D. Chen,
“HybridDNN: A framework for high-performance hy-
brid DNN accelerator design and implementation,” in
Proc. DAC. IEEE, 2020, pp. 1–6. 1

[25] W. Kwon, G.-I. Yu, E. Jeong, and B.-G. Chun, “Nim-
ble: Lightweight and parallel GPU task scheduling for
deep learning,” Proc. NIPS, 2020. 1

[26] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu,
Y. Liang, and J. Cong, “Automated systolic array ar-
chitecture synthesis for high throughput CNN infer-
ence on FPGAs,” in Proc. DAC, 2017, pp. 29:1–29:6.
1

[27] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m.
Hwu, and D. Chen, “DNNBuilder: an automated tool
for building high-performance DNN hardware accel-
erators for FPGAs,” in Proc. ICCAD, 2018, pp. 56:1–
56:8. 1

[28] Q. Sun, T. Chen, J. Miao, and B. Yu, “Power-driven
DNN dataflow optimization on FPGA,” in Proc. IC-
CAD, 2019, pp. 1–7. 1

[29] T. Chen and C. Guestrin, “XGBoost: A scalable tree
boosting system,” in Proc. KDD, 2016, pp. 785–794.
1

[30] D. Kirk et al., “NVIDIA CUDA software and GPU
parallel computing architecture,” in ISMM, vol. 7,
2007, pp. 103–104. 2, 3

[31] L. Jaehoon, B. Yasaman, N. Roman, S. S. Samuel,
P. Jeffrey, and S. Jascha, “Deep neural networks as
gaussian processes,” in Proc. ICLR, 2018. 3

[32] A. G. d. G. Matthews, M. Rowland, J. Hron, R. E.
Turner, and Z. Ghahramani, “Gaussian process be-
haviour in wide deep neural networks,” in Proc. ICLR,
2018. 3

[33] M. E. E. Khan, A. Immer, E. Abedi, and M. Ko-
rzepa, “Approximate inference turns deep networks
into gaussian processes,” in Proc. NIPS, 2019. 3

[34] D. Amodei, C. Olah, J. Steinhardt, P. Christiano,
J. Schulman, and D. Mané, “Concrete problems in ai
safety,” arXiv preprint arXiv:1606.06565, 2016. 3

[35] W. Lyu, F. Yang, C. Yan, D. Zhou, and X. Zeng,
“Batch Bayesian optimization via multi-objective ac-
quisition ensemble for automated analog circuit de-
sign,” in Proc. ICML, 2018, pp. 3306–3314. 3

[36] C. Lo and P. Chow, “Multi-fidelity optimization for
high-level synthesis directives,” in Proc. FPL, 2018,
pp. 272–2727. 3

[37] D. Duvenaud, J. Lloyd, R. Grosse, J. Tenenbaum,
and G. Zoubin, “Structure discovery in nonparamet-
ric regression through compositional kernel search,”
in Proc. ICML, 2013, pp. 1166–1174. 3

[38] R. Calandra, J. Peters, C. E. Rasmussen, and M. P.
Deisenroth, “Manifold Gaussian processes for regres-
sion,” in Proc. IJCNN. IEEE, 2016, pp. 3338–3345.
3

[39] H. Salimbeni and M. Deisenroth, “Doubly stochastic
variational inference for deep Gaussian processes,” in
Proc. NIPS, 2017, pp. 4588–4599. 3, 5

[40] T. Bui, D. Hernández-Lobato, J. Hernandez-Lobato,
Y. Li, and R. Turner, “Deep Gaussian processes for re-
gression using approximate expectation propagation,”
in Proc. ICML, 2016, pp. 1472–1481. 3, 5

[41] M. Kandemir, “Asymmetric transfer learning with
deep Gaussian processes,” in Proc. ICML, 2015, pp.
730–738. 3, 5

[42] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing,
“Deep kernel learning,” in Proc. AISTATS, 2016, pp.
370–378. 3, 5

[43] M. Patacchiola, J. Turner, E. J. Crowley, M. O’Boyle,
and A. Storkey, “Deep kernel transfer in Gaus-
sian processes for few-shot learning,” arXiv preprint
arXiv:1910.05199, 2019. 3, 5

[44] C. Louizos, K. Ullrich, and M. Welling, “Bayesian
compression for deep learning,” in Proc. NIPS,
vol. 30, 2017. 3

[45] F. Wang, P. Cachecho, W. Zhang, S. Sun, X. Li,
R. Kanj, and C. Gu, “Bayesian model fusion: large-
scale performance modeling of analog and mixed-
signal circuits by reusing early-stage data,” IEEE
TCAD, vol. 35, no. 8, pp. 1255–1268, 2016. 3, 5

[46] H. F. Song, A. Abdolmaleki, J. T. Springenberg,
A. Clark, H. Soyer, J. W. Rae, S. Noury, A. Ahuja,
S. Liu, D. Tirumala, N. Heess, D. Belov, M. Ried-
miller, and M. M. Botvinick, “V-mpo: On-policy max-
imum a posteriori policy optimization for discrete and
continuous control,” in Proc. ICLR, 2020. 4

[47] A. Ghoshal and J. Honorio, “Learning maximum-a-
posteriori perturbation models for structured predic-
tion in polynomial time,” in Proc. ICML. PMLR,
2018, pp. 1754–1762. 4

[48] T. Hazan, F. Orabona, A. D. Sarwate, S. Maji, and T. S.
Jaakkola, “High dimensional inference with random
maximum a-posteriori perturbations,” IEEE Transac-
tions on Information Theory (TIT), vol. 65, no. 10, pp.
6539–6560, 2019. 4

[49] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Vari-
ational inference: A review for statisticians,” Journal

of the American Statistical Association, vol. 112, no.
518, pp. 859–877, 2017. 5

[50] I. Goodfelow, Y. Bengio, and A. Courville, “Deep
learning (adaptive computation and machine learning
series),” 2016. 6

[51] J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel,
and A. G. Wilson, “GPyTorch: Blackbox matrix-
matrix Gaussian process inference with GPU acceler-
ation,” in Proc. NIPS, 2018. 6

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Im-
agenet classification with deep convolutional neural
networks,” in Proc. NIPS, 2012, pp. 1097–1105. 6

[53] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proc. CVPR, 2016,
pp. 770–778. 6

[54] K. Simonyan and A. Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,”
Proc. ICLR, 2015. 6

[55] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,
W. Wang, T. Weyand, M. Andreetto, and H. Adam,
“Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017. 6

[56] L. While, P. Hingston, L. Barone, and S. Huband, “A
faster algorithm for calculating Hypervolume,” IEEE
Transactions on Evolutionary Computation, vol. 10,
no. 1, pp. 29–38, 2006. 8

