A High-Performance Accelerator for
Super-Resolution Processing on Embedded GPU

Wengian Zhao!, Qi Sun?, Yang Bail, Wenbo Lil, Haisheng ZhengQ, Bei Yu!, Martin D.F. Wong1

!The Chinese University of Hong Kong

2SmartMore

{wgzhao, gsun, ybai,wbli,byu,mdfwong}@cse.cuhk.edu.hk, leo.zheng@smartmore.com

Abstract—Recent years have witnessed impressive progress
in super-resolution (SR) processing. However, its real-time in-
ference requirement sets a challenge not only for the model
design but also for the on-chip implementation. In this paper, we
implement a full-stack SR acceleration framework on embedded
GPU devices. The special dictionary learning algorithm used in
SR models was analyzed in detail and accelerated via a novel dic-
tionary selective strategy. Besides, the hardware programming
architecture together with the model structure is analyzed to
guide the optimal design of computation kernels to minimize
the inference latency under the resource constraints. With
these novel techniques, the communication and computation
bottlenecks in the deep dictionary learning-based SR models
are tackled perfectly. The experiments on the edge embedded
NVIDIA NX and 2080Ti show that our method outperforms the
state-of-the-art NVIDIA TensorRT significantly and can achieve
real-time performance.

I. INTRODUCTION

Super-resolution (SR), which refers to the process of recov-
ering or generating high-resolution (HR) video frames from
low-resolution (LR) frames, is an important class of graphical
processing techniques in computer vision. Among the existing
methods, the simplest one is to adopt basic spatially invariant
nearest-neighbor, bilinear, and bicubic interpolation. In the
past decade, with the fast developments of deep learning
algorithms, a large variety of deep learning models has also
been adopted to tackle the SR tasks, ranging from general
convolution neural networks [1] to generative adversarial
networks [2], [3]. Recently, by introducing dictionary learning
methods with pixel-level local feature fusion operations [4],
[5], the qualities of the generated high-resolution images or
videos are further improved, which recovered richer details.
Meanwhile, efficient deployments of these deep learning-
based SR models have attracted more and more attention
gradually.

Lots of previous arts have been proposed to deploy different
deep learning algorithms on a variety of hardware platforms
[6]-[9]. The deployed models are mostly for object classifi-
cation [10], detection [11], [12], neural language processing
[13], and etc. Although a wide range of application scenarios
are covered, the deep learning operators implemented by them
are so similar to each other that no explicit technique gaps
distinguish them. Typical operators include direct convolu-
tion, fully connected operation, pooling, softmax, and efc.
Due to the regularity of these operators, the commercial tools
achieve state-of-the-art performance on these operators by
using dedicatedly-optimized hardware codes. For example,

[CJ Overall @ Dictionary E Conv [J Others

PyTorch 44.69 ‘]L
TensorRT 18.87 | 13.37] .45 =
Ours | 3$.03 13.35 [D44 | i

0 15 30 45

Runtime on NVIDIA GeForce RTX 2080 Ti (ms)

T
78.91 |

I
TensorRT 54.54 | 10.89

Ours [17.62

54.63 | 10.82 |
|

|
0 80 160
Runtime on NVIDIA Jetson Xavier NX (ms)

Fig. 1 Runtime profiling results of deploying a state-of-
the-art super-resolution model with PyTorch, TensorRT, and
our accelerator. PyTorch is installed and evaluated only on
2080Ti. Time cost breaks into 3 separate components: (1)
dictionary query and filtering step (2) convolution operation;
(3) data reformatting, concatenation or other operations.

TensorRT [14] outperforms other tools on NVIDIA GPUs
and Intel MKL-DNN [15] has the dominating performance
on Intel CPUs.

Despite the achievements of these traditional model de-
ployments, the complexities and particularities of SR algo-
rithms hinder the models from following the optimization
strategies of the traditional DNN models to realize real-time
performance (i.e., more than 25 frames per second), under
demanding edge devices. Firstly, the algorithmic processing
logics of the traditional models and SR models are completely
opposite. The mainstream DNN models down-sample the
inputs to learn the embedded features, e.g., VGG, GoogleNet,
MobileNet, ResNet, Faster R-CNN, and efc. The down-
sampling characteristic eases the communication and com-
putation pressures on features and weights. In contrast, SR
models enlarge (up-sample) the inputs continuously to recover
more details. Much fewer weights are shared by much more
features. Therefore, the features instead of weights become
a crucial influence factor thus making the existing mem-
ory optimization techniques powerless. Similar phenomenons
have been discovered in [16]. Secondly, the newly used SR
operations, e.g., local pixel-shuffle and dictionary learning,

exacerbate these challenges. The traditionally widely-used
operations, e.g., direct convolutions and pooling, have been
solved through various techniques. Typical techniques include
loop unrolling, tiling, systolic array, and so forth [7], [17],
[18]. In comparison, as shown in Fig. 1, the novel operations
in SR are time-consuming and require special computation re-
organizations and parallelisms. Due to these challenges, the
existing solutions are unsatisfactory, even the state-of-the-art
commercial tool, e.g., TensorRT.

In this paper, several novel techniques are proposed to
handle these challenges. Firstly, we propose a fast model
sliming strategy for model sliming to handle the large models
and dense parameters of SR models. Structured pruning was
utilized to select and compress the SR dictionaries. Only
the most important dictionaries are reserved so that the
serial computation iterations can be accelerated remarkably
without degradations of result qualities. Secondly, to obtain
the optimal hardware implementation given the SR mod-
els, a novel constrained-based design searching algorithm is
proposed. The GPU architecture is analyzed in detail and
the resources and computational workloads are considered
as the constraints to restrict the candidate of feasible hard-
ware implementations. The illegal and non-optimal designs
are discarded and a Bayesian optimization-based searching
algorithm is proposed to find the optimal design efficiently.
As a result, the communication latencies are hidden and the
bandwidth usage is improved. Last but not least, the original
large task is re-organized to be smaller sub-tasks and then
these sub-tasks are run in parallel. Based on these efforts,
the overall system parallelism and resource utilization are
maximized aggressively to ameliorate the computation- and
communication-bounded issues. The main contributions of
this paper are listed as follows:

o Dictionary learning algorithms on extremely large data
frames are accelerated by a lot for the first time via our
specifically designed acceleration engine.

o Model Slimming for SR dictionaries and parallel execu-
tion techniques are proposed which can greatly relieve
the stress resulting from the large data frames. Both the
computation and communication workloads are reduced.

e Resources- and workloads-aware constraints dedicated
for GPUs are proposed for the first time to guide the
searching of optimal hardware implementations. The
optimal design can be achieved in a short time.

o Compared with the state-of-the-art tool TensorRT, on
edge embedded GPU NVIDIA Jetson Xavier NX and
server-level 2080Ti, our method achieves faster and real-
time SR processing. Runtime profiling results are shown
in Fig. 1.

The remainder of the paper is organized as the following.
Section II recaps the deep super-resolution models, dictio-
nary learning, and the background of GPU programming.
Section III illustrates our acceleration methods in detail.
Section IV demonstrates the experiments and results. Finally,
we conclude this paper in Section V.

II. PRELIMINARIES
A. Super-Resolution Algorithms and Dictionary Learning

Super-resolution algorithms aim at reconstructing a high-
resolution (HR) image from a low-resolution (LR) one. Due
to its wide applications, lots of efforts have been made in the
past few decades. Denote the height and width of the image as
H and W respectively, and the channel number of the image
as a squared value s2. For a given high-resolution vectorized
image y € REWs" s low-resolution counterpart & € R#W
can be obtained via down-sampling and blurring, as shown
in Equation (1).

x=SHy, (1)

where H € RHWs" represents the blurring operation and
S € RHWXHWS® ¢ the down-sampling operation. Corre-
spondingly, the SR processing can be regarded as the reverse
process of Equation (1), i.e., recovering y from x by up-
sampling and deblurring. However, solving Equation (1) is a
notoriously challenging ill-posed problem because a specific
x corresponds to a crop of possible y. Besides, in most
instances, the HR space that we intend to map the LR input
to is usually intractable.

To tackle these challenges, some basic linear interpolation
methods are adopted, e.g., bilinear, and bicubic interpola-
tions. In these methods, the strategies of mapping from the
LR space to the HR space are quite straightforward and
simple while neglecting some content varieties and local
structures. Further, to constrain the mapping, some dictionary
learning algorithms are proposed, which explicitly specify
the mapping relationships between the LR space and HR
space. Some pairs of dictionaries which map low-resolution
(LR) patches to high-resolution (HR) patches are learned and
used in inference. HR patches can be regarded as the spatial
combination of the LR patches and now the problem is to
learn the combination coefficients. Recently, with the fast
developments of deep learning algorithms, some advanced
methods have been proposed to learn better dictionaries and
combination coefficients and achieved optimal performance
(51, [19], [20].

Focusing on optimizing the deep dictionary learning-based
SR algorithms, the basic processing flow is explained as
follows. Firstly, the vectorized LR input x € R¥W is up-
sampled to a matrix B € RHWsXK* containing HW s
upsampled LR patches with size k2. Secondly, some transfor-
mation operations are conducted to transform the LR batches
to HR batches. The i-th pixel y; in the HR image vector
y € R Ws* is obtained via integrating the neighboring
pixels of batch B; (i.e., the ¢-th row of B) centered at the
coordinate of y;. This pixel-level operation can be formulated
as Equation (2).

yi = F,B]

70

with F; = ®;D,)

where F; € R1*F* s the integration coefficient vector (a.k.a.
a filter). F; can be further represented as the linear combina-
tion of a dictionary D € RY**" with combination coefficient

Stage 2

LaparNet R Dictionary D
\|
{1 -
. [‘4
X N Y e »
Residual Block . . [~ B
) - Coefficients \\\E .
i F
i

(D Concatenate & Multiply @ Add Filters

|

y Up-samplin,
_& =n—
LR —x Stage 1 Stage 4

HR -y

Fig. 2 The architecture of linearly-assembled pixel-adaptive
regression network (LAPAR) [5] with four basic stages, i.e.,
stage 1: up-sampling; stage 2: LaparNet; stage 3: dictionary
assembling; stage 4: filtering.

vector ®; € RI*L, During inference, the dictionary D is
pre-defined and can be directly used, while the coefficients ®;
need to be calculated in real-time. According to the pixel-level
operation in Equation (2), the image-level transformation can
be represented as Equation (3).

y=FB', with F = ®D, 3)

with F € RHWs* X} and & € REWS* XL Some techniques
have been proposed to learn the dictionary D and coefficient
matrix ® [21]-[23]. In LAPAR [5], D is a group of Gaussian
(@) and difference of Gaussians (DoG) filters which are pre-
defined to accelerate the computations. The coefficient matrix
® is predicted via a residual network (which will be explained
in detail in Section II-B).

Considering the communication patterns of Equation (3),
® and B usually occupy much more bandwidth compare with
D, ie.,

HWs? x L+ HWs? x k> L x k2. 4)

While considering the computation patterns, the dictionary D
plays the key role. Whether the data in ¢ and B are ought
to be computed is determined by D), since D is the bridge
connecting ® and B. According to D, if some computations
can be skipped with no harm to the performance, we shall
not load the data to on-chip memories, to save the precious
bandwidth. The role of D makes the dictionary learning
algorithm distinct from the traditional deep learning algo-
rithms which only rely on weights and features. By optimizing
the dictionary, it is believed that the communication and
computation bottlenecks can be eased simultaneously.

B. SR Model Architecture

Typically, the deep dictionary learning-based models are
composed of some residual units, convolutional layers, pixel-
shuffle layers, dictionary assembling, and etc.

The state-of-the-art SR model LAPAR [5] is taken as
an example to explain the model inference and the model
structure. As shown in Fig. 2, during inference, there are
four stages. Firstly, bilinear up-sampling is adopted to upscale
the input image x to get the patch matrix B. Secondly,

Host Device
L1 Cache _—
Control Bloc
\ e \ 1 1‘|__> Grid
\ . v Ke
— Block
— Thread | Thread | Thread
[L2 Cache] Thread | Thread | Thread
Thread | Thread | Thread
l DRAM l
GPU Structure Programming Arch.

Fig. 3 GPU memory hierarchy and communication mode

the coefficient matrix ® is predicted by a LaparNet with
the original = as the input. LaparNet is a stack of some
local fusion blocks (LFBs) [24], pixel-shuffle layers, and
several convolutional layers, while an LFB consists of some
residual blocks, concatenations, multiplications, and addition
operations. The third stage is dictionary assembling, in which
the transformation matrix F' is computed according to ¢ and
the pre-defined dictionary D. The final stage is filtering, in
which the output HR image y is obtained by applying F
to B, ie.,, y = FB'. To deploy the SR models on GPU
efficiently, the dictionary learning is ought to be analyzed in
detail which has not been considered in previous arts.

C. GPU Programming Architecture

The NVIDIA GPU architecture together with the CUDA
programming model provides a well-designed abstraction that
bridges the software applications and low-level hardware
implementations, as illustrated in Fig. 3. The hardware ar-
chitecture of a GPU is composed of some streaming multi-
processors (SMs). Each streaming multiprocessor consists of
several processing blocks, some shared memory units, control
logics, and efc. Each processing block contains a group of
computation cores (CUDA cores, Tensor Cores, and etc.),
register files, load/store units, and efc.

CUDA programming model is designed [25] to implement
the computation tasks on the NVIDIA GPU. The program-
ming model is composed of a host device (CPU) that controls
the executions, and a device (GPU) that runs the kernel code
to finish the computations, as shown in Fig. 3. Each kernel
contains a computation grid that can be further divided into
multiple blocks. Following the single instruction multiple
threads (SIMT) mechanism, each block is partitioned into a
group of threads that can run the same code on different data,
synchronously. Usually, a thread is assigned to a hardware
streaming processor. Once the kernel code is compiled, all
of the threads will execute the same program in parallel, and
thread blocks may execute in any order. These mechanisms
will be carefully considered in this paper to obtain the optimal
model deployments.

III. OPTIMIZATION OF DEPLOYMENTS ON GPU

A. Dictionary Compression

The state-of-the-art SR model LAPAR [5] shows outstand-
ing performance with a limited size of parameters (< 1M).
However, even using the state-of-the-art NVIDIA TensorRT
[14], the inference performance cannot meet the demanding
real-time requirement. The reason is that the high-resolution
feature maps play the key role instead of the parameters in the
SR models, as mentioned above in Section II-A. The running
time profiling is shown in Fig. 1. The time distribution demon-
strates that dictionary learning consumes the most time and
is obviously the bottleneck. Such analysis result comes from
the fact that the existing tools and methods, e.g., TensorRT,
as effective in acceleration for normal DNN kernels such as
convolution, ReLU. For certain layers in the computation
graph with less customized efficient implementation from
TensorRT, they will cost inevitably a large amount of time.

Compressing the dictionary can ease both the computation
and communication workloads, as has been analyzed in
Section II-A. Consequently, a structural dictionary selection
strategy is proposed in this paper to compress the dictionary.
On the one hand, an ideal dictionary D can provide sufficient
information for the restoration of image details. On the other
hand, the dictionary D is expected to be less bulky to perform
an inference within the required time limit, without degrada-
tion to the quality of results. A threshold value « € (0,1) is
set to specify the sparsity of the dictionary D € RL*F je.,
after compression, only the most representative « - L items
from L will be reserved. To avoid the greedy compression
which would fall into the local optimum, the dictionary items
are compressed iteratively until the sparsity threshold « is
reached. In step ¢, the compression ratio is set to be oy,
with oy < ay—1. The most representative oL items are
reserved while others are discarded. In the next step, we set
g1 = ap — A, to further prune more items. Meanwhile,
parameters W of the LaparNet is fine-tuned accordingly to
minimize the reconstruction error [26]-[29]. The problem can
be formulated as:

2
B, W = argming y % HY — ZiL:O ﬁi@DHQ ,
s.t. ® = LaparNet(X,W), (%)
1Bllo < aL,

where N is the size of input batch of images, ® is the
coefficient vector extracted from LaparNet with parameters
W and Y is the output matrix of this layer after dictionary
query. 3 is the selecting vector on filters of D where §; = 0
means the ¢-th item in the dictionary will be ignored during
the compression process.

Further, we improve Equation (5) by considering the loss
of the final results of the SR flow. In other words, the filtering
stage after the dictionary query stage is considered, to guaran-
tee the quality of results after compression. The reconstruction
error .Z of the dictionary compression is defined as the
difference between the ground truth high-resolution image

A

i G
Fw,p
v
N
%

i

=
I
o

}

————
—————

Z
!

!

|

|

!

!
L

/| /)j,///

Fig. 4 Visual illustration of dictionary compression, the upper
flow represents original dictionary query and filtering, namely
stage 3 + stage 4 in Fig. 2, The flow below demonstrates the
compression process of the dictionary query.

H ; and the images generated by the compressed model, as
shown in Equation (6).

B.W = argmingy + ||Hy — FvsB' |5,
st. Fwp=Yr, 88D,
® = LaparNet(X, W),
1Bllo < aL.

With two objectives W and 3, to solve this optimization
problem efficiently, an alternating method including two steps
is adopted. The first step is to search the suitable selecting
vector 3 corresponding to the required «;. The second step
is to tune the parameters W corresponding to the reserved
dictionary items with the minimization objective in Equa-
tion (6). The first step is actually an NP-hard problem. [27]
suggested to relax the problem to ¢; regulation. Therefore the
objective 3 can be solved by utilizing the LASSO regression
with parameter A, as shown in Equation (7).

, 2
B = argming + HHgt - FW’gBTH2 + |81,
s.t.]|8llo < aL.

The complete selection strategy is illustrated in Algorithm 1.

For channel selecting, we accumulated a batch of input
feature map from the LaparNet prior to the dictionary query
step as well as the ground-truth high-resolution images. The
LASSO regression feature will be randomly sampled from
the input feature map within width each plane. The A in
Equation (7) is carefully set to adjust the pruning ratio
for filters. We begin with a tiny A and increase the value
exponentially until the reduced filter fits the required number.
In lines 12-20 in Algorithm 1, a binary search is applied
on M¢41 within the range of last step size to adjust the
compression ratio close to ay4.

The second step is to update the parameters in line 21 of
Algorithm 1. The problem is formulated into:

(6)

)

o1
W:arg‘;mnﬁ HHgt—FWp/BTH;. (8)

Algorithm 1 Dictionary Selection Strategy

1: Input: D € RLX’“Z), small Ao, target «, tolerance ¢;

2: Input: pre-trained Wy , coefficient matrix ®;

3 640, ap + 1.0, Bo < 1 € RY, 70 1 € RE;

4: % <+ reconstruction error > Equation (6)

5: repeat

6: a1 — ar — Aa;

7. Att1 — Ags

8: while |ﬁt+1|o>at+1 - L do

9: Fix W, update fi11 < argming £ (W, BD)
+Xe+1 1815 > Equation (7)

10: Atg1 2 A1

11: end while
120 Niege < 0.5h41, Aright < Aet1s
13 while o y1 - L — [Bisa]y| >€- L do

14: A1 = 1/2(Niept + Aright)s

15: Fix Wy, update ft41 < argming £ (W3, BD)
+Xe+1 1815

16: if |ﬂt+1‘0 <at+1 - L then

17: Aleft < Aet1;

18: else if |Bt+1|0 >ai+1 - L then

19: Aright = At+1;

20: end if

21: end while
22: Fix ﬁt+1, update Wt+1 < arg minW f(W, ﬂtJrlD);
> Equation (8)
23: t=t+1;
24: until o; < «

To fine-tune the parameters of the whole model to fit the new
dictionary through training at each step is time-consuming. As
shown in Equation (8), The D’ is the Dictionary which is the
compressed dictionary with layers neglected in the previous
LASSO step. We can use linear regression in the iterative
steps to reconstruct the parameters of the dictionary query
layer which generates coefficient vector ® for fast tuning
requirement. We note parameters of this layer as Wp, and
parameters at ¢-th channel will be adjusted by the regression
coefficient «. The iterative tuning step of Equation (8) will
be re-written into Equation (9) where W37 is the updated
parameters. Note that ~ is actually a weight coefficient on
Wp: along channel dimension for update. The weighted co-
efficient matrix ®’ is the new query to the selected dictionary
D’. The whole modified dictionary query and filtering flow
are illustrated in Fig. 4.

L
Hy — Y viFw,p BT
Wi = ’)’WD/.

Hz’ C))

— : 1
Y =argmin, 4

As shown in Fig. 5, the pruning process sustains the SR
performance with barely no accuracy degradation. Essentially
the well trained backbone network is capable of extracting
sparse information for dictionary so the zero-out layers of
the dictionary will not incur information loss. We can shrink
to dictionary to size of 10% without noticeable accuracy loss.
Compared with other widely-used SR models, e.g., [30], [31]
, our performance is the optimal.

C_JSRCNN

0.96 |- C_JFSRCNN

1 VDSR

3 LapSRN

mm LAPAR-A
CILAPAR-A(75%)

38 |-

0.958 |-

PSNR

=
%]
5]

a7l 0.956 - == LAPAR-A(50%)
= LAPAR-A(25%)
0.954 . L APAR-A(10%)

Fig. 5 Single image super-resolution (SISR) performance
of our model with different dictionary compression ratios,
in comparison with other SR methods. LAPAR-A (Per.%)
represents our model with dictionary size shrunk to Per.%.
PSNR means peak signal-to-noise ratio. SSIM means struc-
tural similarity index measure. PSNR and SSIM are two
common metrics to measure the quality of images. The higher
the better.

a1 :\ |
(1,2) N
MM
Channel
0 el
a1 € Vn_ i
(1,2) Thread
'7‘",7*' Y= FB'
Channel
1
Block1

Fig. 6 An example of the proposed computation engine for
image filtering operation.

B. Constraint-Based Optimization of Deployments On GPU

After shrinking the volume of the dictionary, we success-
fully slim the volume of the model. Another bottleneck for ac-
celerating the computations is the filtering operation following
the dictionary query, which can be regarded as a Hadamard
product of matrices followed by a reducesum operation along
channel dimension. Such kind of computations are common
in SR tasks but ignored by the existing deployment tools. In
this section, we take advantage of the parallelizing mechanism
of GPU to improve the computation throughput from a low-
level perspective. An example of the proposed computation
engine is shown in Fig. 6.

The data (either images or filters) are stored in the NCHW
format in linear memory addresses continuously, as shown
in Fig. 6. The data with the same color are assigned to
the same block to conduct the computations, e.g., the data
in purple are assigned to block 0, and the data in orange
are assigned to block 1. The data with the same index but
from various channels are assigned to the same thread. For
example, the data at location (1,1) from these channels are
all assigned to thread O in block 0, while the data at (1, 2) are

assigned to thread 1 in block 0. Two values with the same
location index from F' and B are firstly multiplied. Then,
the products of the data with the same location index but
from various channels are summed up as the final result. In
other words, each thread in Fig. 6 computes the product of
two vectors, where each vector contains the data from all of
the channels. Note that in our implementation, each thread
directly adds each intermediate product to the final result.
With this implementation, all of the threads can execute the
same code segment and achieve parallel reduction perfectly
without falling into the paradox of thread divergence [25].
Moreover, frequent cache interaction with main memory is
avoided with our design. Blocks within an SM share same
shared memory/L1 cache as shown in Fig. 3. Thus cache miss
rate is reduced since data assigned to consecutive blocks in
each channel is carefully stored consequently on memory as
illustrated in Fig. 6.

The resources in GPU are limited, which concurrently
restricts the computation patterns with respect to the threads,
blocks, and etc. Different GPUs have distinct compute capa-
bilities. For clarity, the edge embedded GPU NVIDIA Jetson
Xavier NX which uses the Volta microarchitecture is taken as
an example to illustrate this. From the perspective of hardware
architectures, there are 6 streaming multiprocessors (SMs) in
it. Each SM occupies a 96 KB shared memory/L1 cache.
Each SM is further partitioned into 4 processing blocks.
Every processing block has 16 FP32 cores, 8 FP64 cores,
16 INT32 cores, 2 Tensor cores, and a 64 KB shared register
file. Besides, each processing block has a warp scheduler, to
schedule the threads assigned to this processing block. From
the perspective of the programming model, the computation
kernel is executed as a grid of thread blocks. Each thread
block (different from the processing block mentioned above)
is assigned to a single streaming multiprocessor. Once the
block is scheduled to an SM, threads in this block are further
partitioned into warps. Every warp consists of 32 consecutive
threads and all threads in a warp are executed in SIMT
fashion. While the warps within a thread block may be
scheduled in any order, the number of active warps is limited
by SM resources. Four processing blocks in every SM of NX
means there are at most four active warps in executing at the
same moment. Besides, the number of warps in a thread block
is constrained by the programming model to fit the sizes of
warp schedulers, instruction registers, and efc. Sharing data in
the shared register files among the parallel threads in the same
processing block, or sharing data among the processing blocks
in the same SM may cause a race condition: multiple threads
accessing the same data in the memory simultaneously. Once
a warp idles for the race conditions, the SM is free to schedule
other available warps. The number of warps for a thread block
can be determined as follows:

Threads Per Block
Warp Size

Warps Per Block = { -‘ , (10)

where Warp Size = 32 for mainstream NVIDIA GPUs.

Suitable choices of blocks usually strike a good balance
between the parallelism and resource race conditions and
therefore stimulating the computations. In summary, the sizes
of the blocks are constrained by the sizes of input data and
the available on-board resources. Meanwhile, to accelerate
the computations as much as possible, once the resources are
available, the tasks will be assigned to occupy the resources.
In other words, the parallelism is maximized so as to reach the
upper-bound value of the resource utilization. Assume that the
size of the three-dimensional input datais D = H x W x C,
corresponding to the three dimensions of the thread blocks.
Denote the number of SMs in GPU as S, the number of
processing blocks in each SM as P, the size of register file
in each processing block as R, the maximum number of
threads in each warp as W.S. The GPU compute capability
constrains the number of warps in each block as smaller than
T,,,. Denote the three dimensions of the thread block as
(nx, ny,nz). Therefore, we have the following equations and
constraints:

T, =(HxWxC)/(SxPxR),
T < min(T}, Topn), (11)
nrxnyxnz<WSxPxT,

where T is computed by distributing data evenly to different
SMs. The computational resources are implicitly organized
and scheduled by the processing blocks. Therefore constraints
on the computational resources are reflected in 7%,,, which
is a constant value determined by the compute capability.
Constrained by 7). and T%,,, T represents the upper bound
of the number of warps assigned to each processing block.
Besides, the sizes are also constrained by the size of input
data as follows:

1<nx<H,

L<ny<W, (12)

1<nz<C.

These constraints are usually ignored by designers, which
wastes lots of optimization workloads. For examples, for
T € [T,,Tsm), these T values are legal while on-board
resources are not fully utilized and the system parallelism
can be further improved. With the above constraints, the
feasible domain of the block sizes is shrunken significantly.
The visualization view of the constraints are shown in Fig. 7.
To the best of our knowledge, this is the first to consider
these constraints for deployments of DNN models on GPUs,
compared with previous arts, e.g., [32].

With the target of minimizing the inference latency, we
tend to build a regression model with respect to candidate
values of nx, ny, and nz. The key challenge is that the clear
form is the objective function is unknown because of the
invisible execution process of GPU and CUDA programming
model. Bayesian optimization is adopted in this paper as
the searching algorithm to search the optimal configuration
of the blocks with Gaussian process (GP) model utilized as
the surrogate model [33]. Firstly, several configurations are
randomly sampled from the design space to initialize the GP

TABLE I Inference Time (ms) and Acceleration ratios

Scale

NVIDIA GeForce RTX 2080 Ti

NVIDIA Jetson Xavier NX

i \
Input size [PyTorch

TensorRT Ours Acc. (PyTorch) Acc. (TensorRT) [TensorRT Ours Acc. (TensorRT)

X2 6.94 1.30 1.02 x680.39% x127.45% 12.37 9.04 x136.84%

64 x 64 X3 8.26 1.94 1.40 x590.00% x 138.57% 22.62 14.28 X 158.40%

x4 9.86 2.79 1.88 x524.46% % 148.40% 35.83 20.54 X 174.44%

X2 8.74 3.59 2.66 x328.57% %x134.96% 52.12 37.25 x139.92%

128 x 128 X3 13.04 6.19 4.16 x313.46% % 148.80% 90.33 54.26 %X 166.48%

x4 18.07 9.71 6.13 x294.78% x 158.40% 144.34 81.29 x177.56%

X2 17.12 12.40 9.25 x 185.08% x134.05% 177.57 124.12 x143.06%

180 x 320 X3 30.83 21.66 14.63 x210.73% % 148.05% 325.07 200.02 x162.52%

x4 44.69 34.69 22.12 x202.03% %x156.82% 534.99 318.60 x167.92%

X2 67.36 50.26 37.47 x179.77% x134.13% 748.72 530.23 x141.21%

360 x 640 X3 105.32 88.45 59.20 x 177.90% % 149.41% 1466.91 973.25 x150.72%
x4 406.93 141.08 91.09 x540.02% x154.88% - - -

Average \ - \ 61.43 31.17 20.91 %x352.27% x144.49 % \ 328.26 214.81 x156.28 %

Inference time on NVIDIA Jetson Xavier NX with input size 360 x 640 and scale 4 is not available due to the memory limit of the edge

device.

Fig. 7 The visualized solution space. The solution points
below the dotted points are legal configurations.

model. And then the Bayesian optimization is used to itera-
tively select new configurations which have higher predictive
performance reported by the GP model. The GP model is
further optimized with newly sampled configurations and their
on-chip inference latencies. Finally, the best configuration
selected by the Bayesian algorithm in this exploration process
is our optimal design.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Hardware Implementation: To validate the performance
of our accelerator with respect to the acceleration ratio and
quality of results, we deploy our proposed high-performance
accelerator on edge embedded GPU NVIDIA Jetson Xavier
NX, in comparison with the state-of-the-art tool NVIDIA
TensorRT. NX integrates an ARM v8.2 64-bit CPU processor
and a 384-core NVIDIA Volta GPU with 48 Tensor Cores.
To take full advantage of the Al workloads, we use 15W of
power to make it deliver up to 21 TOPS to compute. The clock
frequency of the ARM processor is 2-core 1900MHz, and 4/6
core 1400MHz. The clock frequency of the GPU processor is
1100MHz. We also test our accelerator on NVIDIA GeForce
RTX 2080 Ti with 4352 FP32 FPUs (CUDA cores) and 544
Tensor cores for accuracy evaluation. The results are also
compared with PyTorch.

Software Implementation: All the designs are imple-
mented by CUDA 11.0 and TensorRT 7.1.3. We use 32-bit
floating point precision data types for evaluation. The training
and evaluation of both original and our modified model are
implementation through PyTorch based on official LAPAR
code repository [42].

Dataset: The proposed accelerator is evaluated on common
single image super-resolution (SISR) Set5 [43], Setl4 [44],
B100 [45], Urban100 [46], MangalQ9 [47] dataset.

B. Performance Evaluation

To evaluate the acceleration performance of our proposed
accelerator, we compare it to the baseline designs on NVIDIA
Jetson Xavier NX and RTX 2080 Ti. The inference time is
measured with multiple input frame size and scale ratio. The
results are in 32-bit floating point precisions. The running
times are shown in TABLE 1. We successfully realize SR
with output of 540P quality to real-time inference. Compared
with the widely-used PyTorch on 2080 Ti, our accelerator
outperforms it by 352.27%. On average, our accelerator is
faster than TensorRT by 144.49% on 2080 Ti and by 156.28%
on Jetson Xavier NX, respectively. On various sizes of
inputs and scales, our accelerator achieves +27.45%~77.56%
remarkable acceleration to TensorRT. An exciting result is
that the acceleration ratios on Jetson Xavier NX are higher
than on 2080 Ti. This shows the outstanding performance
of our accelerator while handling the complex and difficult
dictionary learning algorithms on limited computation and
communication resources of edge embedded GPUs.

To demonstrate the high-quality results of our proposed ac-
celerator without quality degradation, we compare the output
images with other popular models, as shown in TABLE II.
The performance metrics are PSNR (peak signal-to-noise
ratio) and SSIM (structural similarity index measure), which
are widely used to measure the qualities of images and videos.
The higher values represent the better results. Note that our
framework compresses the models with dictionary shrunk to
10% of the original size, while all of the baselines are not

Time Cost (ms)

Time Cost (ms)

TABLE II Comparisons on multiple benchmark datasets of our model and other popular SR networks. The dictionary in our
model is compressed to 10% of original size for evaluation. Performance metrics are PSNR/SSIM. Bold: best results

Scale | Method | Set5 | Setl4 | B100 | Urbanl00 | Mangal09
SRCNN [34] 36.66/0.9542 | 32.42/0.9063 | 31.36/0.8879 | 29.50/0.8946 | 35.74/0.9661
FSRCNN [30] 37.00/0.9558 | 32.63/0.9088 | 31.53/0.8920 | 29.88/0.9020 | 36.67/0.9694

VDSR [31] 37.53/0.9587 | 33.03/0.9124 | 31.90/0.8960 | 30.76/0.9140 | 37.22/0.9729
DRRN [35] 37.74/0.9591 | 33.23/0.9136 | 32.05/0.8973 | 31.23/0.9188 | 37.92/0.9760
X2 LapSRN [36] 37.52/0.9590 | 33.08/0.9130 | 31.80/0.8950 | 30.41/0.9100 | 37.27/0.9740
SRFBN-S [37] | 37.78/0.9597 | 33.35/0.9156 | 32.00/0.8970 | 31.41/0.9207 | 38.06/0.9757
FALSR-A [38] | 37.82/0.9595 | 33.55/0.9168 | 32.12/0.8987 | 31.93/0.9256 -
SRMDNF [39] | 37.79/0.9600 | 33.32/0.9150 | 32.05/0.8980 | 31.33/0.9200 -
Ours 37.98/0.9604 | 33.59/0.9181 | 32.19/0.8999 | 32.09/0.9281 | 38.60/0.9771
SRCNN [34] 32.75/0.9090 | 29.28/0.8209 | 28.41/0.7863 | 26.24/0.7989 | 30.59/0.9107
FSRCNN [30] 33.16/0.9140 | 29.43/0.8242 | 28.53/0.7910 | 26.43/0.8080 | 30.98/0.9212
VDSR [31] 33.66/0.9213 | 29.77/0.8314 | 28.82/0.7976 | 27.14/0.8279 | 32.01/0.9310
%3 DRRN [35] 34.03/0.9244 | 29.96/0.8349 | 28.95/0.8004 | 27.53/0.8378 | 32.74/0.9390
SelNet [40] 34.27/0.9257 | 30.30/0.8399 | 28.97/0.8025 - -
CARN [41] 34.29/0.9255 | 30.29/0.8407 | 29.06/0.8034 | 28.06/0.8493 -
SRFBN-S [37] | 34.20/0.9255 | 30.10/0.8372 | 28.96/0.8010 | 27.66/0.8415 | 33.02/0.9404
Ours 34.35/0.9267 | 30.33/0.8420 | 29.11/0.8054 | 28.12/0.8523 | 33.48/0.9439
SRCNN [34] 30.48/0.8628 | 27.49/0.7503 | 26.90/0.7101 | 24.52/0.7221 | 27.66/0.8505
FSRCNN [30] 30.71/0.8657 | 27.59/0.7535 | 26.98/0.7150 | 24.62/0.7280 | 27.90/0.8517
VDSR [31] 31.35/0.8838 | 28.01/0.7674 | 27.29/0.7251 | 25.18/0.7524 | 28.83/0.8809
4 DRRN [35] 31.68/0.8888 | 28.21/0.7720 | 27.38/0.7284 | 25.44/0.7638 | 29.46/0.8960
LapSRN [36] 31.54/0.8850 | 28.19/0.7720 | 27.32/0.7280 | 25.21/0.7560 | 29.09/0.8845
CARN [41] 32.13/0.8937 | 28.60/0.7806 | 27.58/0.7349 | 26.07/0.7837 -
SRFBN-S [37] | 31.98/0.8923 | 28.45/0.7779 | 27.44/0.7313 | 25.71/0.7719 | 29.91/0.9008
Ours 32.15/0.8944 | 28.61/0.7817 | 27.59/0.7366 | 26.14/0.7873 | 30.39/0.9072
1.60 C. Discussions

B

£ 120 x3

z

S 0.80(]

[}

£ 040¢ §

& 0)) ‘ | | | |
075070 50 30 10

Compression Ratio (%)

Compression Ratio (%)

(a) Input Size 64x64 (b) Input Size 128x 128

5.60 — T T 24.00 —
4.20 x3 1 £ 18.00 x3 |
—— x4 2 ——
2.80 1 % 1200 x4]
I R
1.40 : % 6.00 i
0.00 ‘ | | | | ¥ = ‘ | | L I
90

0.00 70 50 30 10

Compression Ratio (%)

(d) Input Size 360x 640

Compression Ratio (%)
(c) Input Size 180%x320

Fig. 8 Time consumptions of the dictionary query and filtering
with different compression ratios. Different input image sizes
and scaling factors (from 2 to 4) are evaluated.

compressed. The results show that our method is superior to
all of the baselines on both of these two metrics.

Some ablation study results with respect to the compres-
sions of the dictionary learning are shown in Fig. 8. The
compression ratio of 100% represents the original dictionary
without compression. As the compression ratios shrink, the
time costs decrease continuously on all of these tests. When
the compression ratio reaches 10%, the dictionary query and
filtering flow is accelerated by up to nearly x20.

The results show the outstanding performance of our
high-performance SR accelerator, especially on the resource-
limited edge embedded GPU NVIDIA Jetson Xavier NX.
The difficulties are resulting from the special memory and
computation patterns of the dictionary learning algorithms,
which cannot be handle by the existing tools. Another im-
portant reason is the great memory pressures because of the
large scales of the super-resolution images. To the best of our
knowledge, our proposed accelerator is the first to achieve
superior performance on SR applications on edge embedded
GPUs.

V. CONCLUSION

In this paper, a high-performance accelerator is proposed
for the super-resolution model LAPAR. We introduce a
lightweight compression method to learn representative dic-
tionaries of the dictionary learning algorithm. A novel ac-
celeration engine is designed to get the best efficiency and
utilization of hardware resources. The evaluation results have
shown our system outperforms the state-of-the-art tool Ten-
sorRT, and PyTorch on edge embedded GPU NVIDIA Jetson
NX and 2080 Ti significantly, without quality degradation.

ACKNOWLEDGMENT

This work is partially supported by SmartMore and ITF
Partnership Research Programme (No. PRP/65/20FX).

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution
using deep convolutional networks,” IEEE TPAMI, vol. 38, no. 2, pp.
295-307, 2015.

C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single
image super-resolution using a generative adversarial network,” in
Proc. CVPR, 2017, pp. 4681-4690.

S. Y. Kim, J. Oh, and M. Kim, “JSI-GAN: GAN-based joint super-
resolution and inverse tone-mapping with pixel-wise task-specific filters
for UHD HDR video.” in Proc. AAAI, 2020, pp. 11287-11295.

W. Li, X. Tao, T. Guo, L. Qi, J. Lu, and J. Jia, “Mucan:
Multi-correspondence aggregation network for video super-resolution,”
Proc. ECCV, 2020.

L. Wenbo, Z. Kun, Q. Lu, J. Nianjuan, L. Jiangbo, and J. Jiaya,
“LAPAR: Linearly-assembled pixel-adaptive regression network for
single image super-resolution and beyond,” in Proc. NIPS, 2020.

C. Hao, X. Zhang, Y. Li, S. Huang, J. Xiong, K. Rupnow, W.-m.
Hwu, and D. Chen, “FPGA/DNN Co-Design: An efficient design
methodology for 10T intelligence on the edge,” in Proc. DAC. 1EEE,
2019, pp. 1-6.

C. Guo, Y. Zhou, J. Leng, Y. Zhu, Z. Du, Q. Chen, C. Li, B. Yao, and
M. Guo, “Balancing efficiency and flexibility for DNN acceleration via
temporal GPU-systolic array integration,” in Proc. DAC. IEEE, 2020,
pp. 1-6.

H. Li, M. Bhargav, P. N. Whatmough, and H.-S. P. Wong, “On-chip
memory technology design space explorations for mobile deep neural
network accelerators,” in Proc. DAC. 1EEE, 2019, pp. 1-6.

Q. Sun, C. Bai, H. Geng, and B. Yu, “Deep neural network hardware
deployment optimization via advanced active learning,” in 2021 Design,
Automation Test in Europe Conference Exhibition (DATE), 2021, pp.
1510-1515.

X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang,
and J. Cong, “Automated systolic array architecture synthesis for high
throughput CNN inference on FPGASs,” in Proc. DAC, 2017, pp. 29:1-
29:6.

R. Pinkham, S. Zeng, and Z. Zhang, “QuickNN: Memory and perfor-
mance optimization of k-d tree based nearest neighbor search for 3D
point clouds,” in Proc. HPCA. 1EEE, 2020, pp. 180-192.

Y. Bai and W. Wang, “ACPNet: Anchor-Center Based Person Net-
work for Human Pose Estimation and Instance Segmentation,” in
Proc. ICME, 2019, pp. 1072-1077.

S. Cao, C. Zhang, Z. Yao, W. Xiao, L. Nie, D. Zhan, Y. Liu, M. Wu,
and L. Zhang, “Efficient and effective sparse LSTM on FPGA with
bank-balanced sparsity,” in Proc. FPGA, 2019, pp. 63-72.

“NVIDIA TensorRT,” https://docs.nvidia.com/deeplearning/tensorrt/
index.html.

“Intel MKL-DNN,” https://github.com/oneapi-src/oneDNN.

Y. Jung, Y. Choi, J. Sim, and L.-S. Kim, “eSRCNN: A framework for
optimizing super-resolution tasks on diverse embedded CNN accelera-
tors,” in Proc. ICCAD. IEEE/ACM, 2019.

X. Wei, Y. Liang, and J. Cong, “Overcoming data transfer bottlenecks
in FPGA-based DNN accelerators via layer conscious memory man-
agement.” in Proc. DAC, 2019, pp. 125-1.

Q. Sun, T. Chen, J. Miao, and B. Yu, “Power-driven DNN dataflow
optimization on FPGA,” in Proc. ICCAD, 2019, pp. 1-7.

T. Dai, J. Cai, Y. Zhang, S.-T. Xia, and L. Zhang, “Second-order
attention network for single image super-resolution,” in Proc. CVPR,
2019, pp. 11065-11074.

Y. Huang, S. Li, L. Wang, T. Tan et al., “Unfolding the alternating
optimization for blind super resolution,” Proc. NIPS, vol. 33, 2020.

J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang, “Coupled dictionary
training for image super-resolution,” IEEE Transactions on Image
Processing, vol. 21, no. 8, pp. 3467-3478, 2012.

Y. Romano, J. Isidoro, and P. Milanfar, “RAISR: rapid and accurate
image super resolution,” IEEE Transactions on Computational Imaging,
vol. 3, no. 1, pp. 110-125, 2016.

P. Getreuer, I. Garcia-Dorado, J. Isidoro, S. Choi, F. Ong, and P. Mi-
lanfar, “BLADE: Filter learning for general purpose computational
photography,” in Proc. ICCP. 1EEE, 2018, pp. 1-11.

C. Wang, Z. Li, and J. Shi, “Lightweight image super-resolution with
adaptive weighted learning network,” arXiv preprint arXiv:1904.02358,
2019.

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

J. Cheng, M. Grossman, and T. McKercher, Professional CUDA C
programming. John Wiley & Sons, 2014.

Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via
geometric median for deep convolutional neural networks acceleration,”
in Proc. CVPR, 2019, pp. 4340-4349.

Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in Proc. ICCV, 2017.

Z. Huang and N. Wang, “Data-driven sparse structure selection for deep
neural networks,” in Proc. ECCV, 2018, pp. 304-320.

T. Chen, B. Duan, Q. Sun, M. Zhang, G. Li, H. Geng, Q. Zhang, and
B. Yu, “An efficient sharing grouped convolution via bayesian learning,”
in IEEE TNNLS, 2021, pp. 1-13.

C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution
convolutional neural network,” in Proc. ECCV. Springer, 2016, pp.
391-407.

J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution
using very deep convolutional networks,” in Proc. CVPR, 2016, pp.
1646-1654.

T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze et al., “TVM: An automated end-to-end
optimizing compiler for deep learning,” in Proc. OSDI, 2018, pp. 578—
594.

J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G.
Wilson, “Gpytorch: Blackbox matrix-matrix gaussian process inference
with GPU acceleration,” in Proc. NIPS, 2018.

C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolu-
tional network for image super-resolution,” in Proc. ECCV. Springer,
2014, pp. 184-199.

Y. Tai, J. Yang, and X. Liu, “Image super-resolution via deep recursive
residual network,” in Proc. CVPR, 2017, pp. 3147-3155.

W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep lapla-
cian pyramid networks for fast and accurate super-resolution,” in
Proc. CVPR, 2017, pp. 624-632.

Z.Li,J. Yang, Z. Liu, X. Yang, G. Jeon, and W. Wu, “Feedback network
for image super-resolution,” in Proc. CVPR, 2019, pp. 3867-3876.

X. Chu, B. Zhang, H. Ma, R. Xu, and Q. Li, “Fast, accurate
and lightweight super-resolution with neural architecture search,” in
Proc. ICPR. 1EEE, 2021, pp. 59-64.

K. Zhang, W. Zuo, and L. Zhang, “Learning a single convolutional
super-resolution network for multiple degradations,” in Proc. CVPR,
2018, pp. 3262-3271.

J.-S. Choi and M. Kim, “A deep convolutional neural network with
selection units for super-resolution,” in Proc. CVPR, 2017, pp. 154—
160.

N. Ahn, B. Kang, and K.-A. Sohn, “Fast, accurate, and lightweight
super-resolution with cascading residual network,” in Proc. ECCV,
2018, pp. 252-268.

“Simple-SR,” https://github.com/dvlab-research/Simple-SR.

M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel,
“Low-complexity single-image super-resolution based on nonnegative
neighbor embedding,” in Proc. BMVC, 2012.

C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single
image super-resolution using a generative adversarial network,” in
Proc. CVPR, 2017, pp. 4681-4690.

D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proc. ICCV, vol. 2,
2001, pp. 416-423.

C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single
image super-resolution using a generative adversarial network,” in
Proc. CVPR, 2017, pp. 4681-4690.

W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep lapla-
cian pyramid networks for fast and accurate super-resolution,” in
Proc. CVPR, 2017, pp. 624-632.

https://docs.nvidia.com/deeplearning/tensorrt/index.html
https://docs.nvidia.com/deeplearning/tensorrt/index.html
https://github.com/oneapi-src/oneDNN
https://github.com/dvlab-research/Simple-SR

