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Abstract—Due to advances in semiconductor processing technologies,
wafer failure pattern detection plays a key role in preventing yield
loss excursion events for semiconductor manufacturing. In the recent
semiconductor industry, visible surface defects are still mainly being
inspected manually, which may result in inevitably erroneous classi-
fication. Many machine learning techniques-based pioneered arts in
academia have been proposed to aid wafer failure pattern classification.
However, few of these attach importance to unlabeled information
and alleviate the data imbalanced issue. Based on these concerns, this
paper designs an end-to-end wafer defect classifier that unites the
few-shot learning and self-supervised learning algorithms. The aim of
applying the few-shot learning paradigm is to learn representations
that generalize well to the minority defect pattern classes where only a
few wafer images are available, while the self-supervision information
containing the intrinsic correlations of unlabeled wafer maps and
their augmentations is expected to enhance the few-shot learner. The
experimental results demonstrate the proposed framework has supe-
rior performance compared to cutting-edge wafer defect classification
methods.

[. INTRODUCTION

Continuous shrinkage of process technology nodes and the in-
creasingly complicated nature of integrated circuit (IC) designs make
IC manufacturing difficult, and the number of situations where yield
improvement exhibits vitally is soaring. On the other hand, as the
pressure for meeting high specifications increases, the probabilities
of manufacturing process-based defects appearing on the surface
of the wafers also increase. Wafer defects become the primary
obstacles affecting product yield in IC manufacturing. Hence, wafer
map defect classification and analysis, which locates defects at
early fabrication stages, has become essential. Specifically, defective
grains on a wafer map tend to converge into a certain distribution
pattern that includes critical information. Semiconductor engineers
need to identify these failure patterns in production processes to
improve yield. However, in actual manufacturing, wafer map failure
pattern classification and analysis are mainly carried out manually,
and the related researches remain in the theoretical stage.

In academia, quite a few efforts on automating wafer map defect
pattern classification have been made. The taxonomy of these
approaches has two branches: 1) model-based pattern recognition,
2) feature extraction-based pattern recognition. Concerning model-
based pattern recognition, a pre-defined probability distribution
function is used for each pattern and the best statistical model
is determined by comparing models using information criterion.
Regarding the feature extraction-based defect pattern recognition,
a large amount of pioneered arts [1]-[7] have been proposed, where
feature design or extraction has a significant impact on the accu-
racy of failure pattern classification. These feature extraction-based
works can be further divided into two categories: manually-crafted
feature-driven and automatic feature extraction-based. For example,
Wu et al. [1] develop radon-based and geometry-based features,
while Yu er al. [2] define geometrical, gray, texture, and projection
features, and merge the features by their proposed dimension re-
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Fig. 1 The proposed wafer failure pattern classifier.

duction and feature extraction methods. The domain knowledge of
expert engineers is in demand when manually designing the feature.
Notice that some of the manually-crafted feature-based methods
work in an unsupervised fashion. For instance, in [3], clusters
of wafer maps are first constructed, and then the failure pattern
labeling work is assigned to experienced engineers. Neither feature
design nor failure labeling for wafers is fully automatic with such
approaches. What’s worse, the feature design part separates from
the follow-up classifier, which leads the whole failure classification
framework to converge to the sub-optimality.

Recently, deep learning methods which get rid of manually-
crafted feature design have achieved notable success in many
areas, particularly in computer vision. Several works [4]-[7] have
introduced deep learning techniques and verified the potential of
deep convolutional neural networks (CNNs) in the field of wafer
failure pattern classification. For example, in [4], an 8-layer CNN
model is constructed, which achieves high recognition accuracy
after calibration on synthetic wafer dataset. Yu et al. [5] propose a
defect pattern classification model and a classification model based
on CNN. Alawieh et al. [7] present a wafer map defect pattern
classification framework using deep selective learning, featuring
an integrated reject option which can further improve the model
accuracy by abstaining from providing predictions for samples
with high misclassification risk. Yet these arts exploit the deep
learning schemes at a coarse level and seldom utilize the unlabeled
information which is in the majority of available wafer map data in
practice.

It could be plainly viewed that two main issues exist in previous
works and the broadly used industrial benchmark for wafer map de-
fect classification. One is that the real industry data (e.g. WM-811K
dataset [8]) is haunted with the imbalanced distribution issue (some



minority failure pattern types are dominated by other majority ones),
posing great challenges for wafer defect classification models. In
other words, defect classes have different frequencies of occurrence
and many categories lack sufficient associated wafter maps. It results
in a biased classifier where the decision boundary can be drastically
altered by the majority classes. Finally, an inaccurate defect clas-
sification result would be reported by the poorly calibrated model.
Although some works like [7] exploit some deep learning-based
technique to generate synthetic wafer patterns, they separate the
generation process from the classifier calibration, and even worse,
synthesis may lead to the label perturbation. The other problem
is many unlabeled wafer maps are idle in most previous arts. For
the former issue, recently investigated few-shot learning techniques
which are related to imbalanced learning [9] can alleviate. The goal
of few-shot learning is to learn representations that generalize well
to the minority defect pattern classes where only a few wafer images
are available. In the setting of few-shot learning, a small amount of
data from different classes are sampled evenly in one training batch,
which is equivalent to the resampling tactics to combat imbalanced
training data. By leveraging the self-supervised learning, the unla-
beled wafer maps can come in handy. Besides, it has been revealed
that self-supervised learning can be used to improve other supervised
counterpart visual tasks [10]. To some extent, the wafer image
itself already contains structural information that can be utilized.
Therefore, the self-supervised learning technique which explores the
correlations between each wafer map and augmentations of itself
would have a promise. Note that the augmented versions can be
acquired by applying rotation and flipping on the original wafer
maps.

Based on the above discoveries, in this work, we combine the few-
shot learning and self-supervised learning algorithms, and design
an end-to-end wafer failure pattern classifier (visualized in Fig. 1).
Apart from achieving superior performance compared to previous
approaches, our proposed flow are tailored to address aforemen-
tioned challenges accompanying the task. Our main contributions
are summarized as follows:

o An end-to-end wafer map defect pattern classification flow is
proposed.

o The self-supervised learning technique is embedded into the
developed flow to make full use of the tremendous unlabeled
wafer maps, so as to reduce the human labour efforts.

o The few-shot learning paradigm is incorporated to overcome
the data imbalanced issue.

o The experimental results comprehensively demonstrate the su-
periority of the proposed wafer defect pattern classification
framework.

The rest of the paper is organized as follows. Section II introduces
some prior knowledge, and then gives the problem formulation.
Section III describes the detailed techniques in proposed failure
pattern classification flow and sketches its whole view. Section IV
presents the experimental results, followed by the conclusion in
Section V.

II. PRELIMINARIES

In this section, we first introduce some related works about the
few-shot learning and the self-supervised learning. Then we describe
the wafer map defect classification and the problem formulation.

A. The few-shot learning

The few-shot learning method [11]-[17] can be roughly classified
into three categories [9]. The first class of methodologies include

optimization-based meta-learners, like model-agnostic meta-learner
[11], gradient unrolling [12], closed-form solvers [13], and convex
learners [14]. The second category relies on metric-based classifiers
such as matching networks [15] and prototypical networks [16]. The
rest type of approaches [17] model the mapping between training
data and classifier weights using a feed-forward network.

B. The self-supervised learning

The self-supervised learning [18]-[22] can be viewed as a branch
of unsupervised learning since there is no manual label involved.
This kind of approaches targets at learning useful representations
of the input data without relying on human annotations. The
recent pace of progress has increased dramatically and led to self-
supervised deep representations that even surpass that of fully-
supervised representations. Chen et al. [18] provide a contrastive
self-supervised learning method (e.g., “SimCLR”) which defines
“positive” and “negative” sample pairs and treats them differently
in the loss function. He et.al [19] further treat the contrastive
self-supervised learning as a dictionary look-up task and design
momentum encoders to get tremendous “negative” samples. In
another recent line of arts, [20] and [21], still use the contrastive
learning paradigm but both the network architecture and parameter
updates are modified to introduce asymmetry.

C. Wafer failure pattern classification

Generally, in semiconductor manufacturing, engineers use wafer
defect maps to visualize failure patterns distributed by a large
number of contaminated dies and identify potential process and tool
issues. By nature, wafer failure patterns are spatial patterns that
can be classified visually when treating the wafer maps as images.
Therefore, keeping the wafer maps in their image representation
can best preserve the defect information. A potential approach to
classifying different spatial wafer defect patterns is through casting
the problem as a multi-class image classification task and leveraging
convolutional neural networks to handle it. Hence, our objective is
to train a deep learning based-model capable of categorizing wafer
defect pattern types. To this end, we propose a wafer map defect
pattern classification framework using few-shot learning and self-
contrastive learning strategies, which feature an end-to-end flow.
With the aforementioned knowledge, our problem can be formulated
as follows.

Problem 1 (Wafer Map Defect Pattern Classification). Given a
collection of wafer maps containing distinct patterns, the objective
of our wafer failure pattern classification flow is to train a model
in the scenario of data imbalance and lacking human annotations,
and classify all wafer failure patterns as accurately as possible.

III. THE DEVELOPED DETECTION FLOW

Wafer failure pattern classification acts an instrumental role in
boosting the yield. Our main interest is not only to identify the
failure patterns for a single wafer, but also provides insights and
potential solutions to alleviate the real industrial dilemma with rare
labeled data and imbalanced data distribution. Towards this goal, we
aim at classifying the wafer failure patterns in the absence of any
prior information from wafer engineers and fab. In the proposed
design, there is two data source: the labeled and unlabeled wafer
map sources. The proposed learning model is comprised of a shared
backbone working as a wafer map feature extractor and two learning
tasks. One task is for few-shot classification which targets alleviating
the wafer data imbalanced issue, and the other is self-supervised
learning on unlabeled wafer images.



Wafer Map Feature
Embeddings
Prototype C;
o ¥

Prototype C, \O Embeddings

© o

Fig. 2 The illustration of the Prototypical network-based 8-shot
learner.

A. The few-shot learner

The few-shot learning learns representations that generalize well
to the minority failure pattern types where few wafer images are
available. This kind of property is naturally compatible with our
case.

Before describing the proposed few-shot learner, we first clarify
some definitions. Assume a small training set of NV labeled examples
Dirain = {(®1,y1),...,(xN,yn)} consisting of pairs of wafer
images «; and y; € {1,..., K} the corresponding defect type. In
the few-shot learning setting, a support set D, and a query set D,
are sampled from the Dy,qip per training batch (or called episode).
Particularly, support subset Dy, denotes the subset of D, labeled
with wafer defect type k. Nc < K is the number of classes per
batch with Ns the number of support wafer examples per class ([Ns
is usually small) and N¢g the number of query examples for each
class. In one training batch, the wafer map embeddings are trained
to predict the labels of Ng X N¢ query wafer maps conditioned
on Ns x N¢ support wafer maps using a certain classifier. As
is observed, the few-shot learner is built upon the balanced data,
which is analogous to the resampling strategy to resolve imbalanced
training data issue.

Generally, we exploit the Prototypical few-shot learning flow
which comprises the backbone f(-;¢) parameterized by learnable
¢ and the classifier g as our few shot learner. The overall mapping
from the input wafer map space to the label space is defined as
h(-;0) =g o f(x; ¢p), where o stands for functional composition.
The Prototypical network computes a vector representation ¢, €
RM, termed as prototype, of the central of each class through
the backbone network f(-; ¢). Specifically, after the vector-based
features are extracted for the support examples, each prototype
is computed by taking the mean of the embedded support wafer map
vectors belonging to the associated defect type:

1
cwi=rm >, f@ig) (1)
|Dk| ,
(z;,y;) €Dy,

Then, given a distance function d : R™ x RM — [0,4+00), the
empirical loss function ¢(g,y) in Equation (2) is minimizing the
negative log-probability of the generated distribution over pattern
types for a query wafer image o with corresponding label y.

g,y) == —logp(y =k | =, )
exp (=d (f(z;¢),cr)) 2
S exp (—d (f(x; @), exr))

The query wafer defect map is classified based on p(y = k | x, ¢)
which is the softmax function over certain distances to the prototypes

= —log

Augmentation Embedding A

Correlation

% MatrixM
ing

ackboneTMapp . <:>
‘ l

Target M

A

ssl

(0]

Fig. 3 The visualization of the self-supervised learning.

in the embedding space. The squared Euclidean distance is adopted
as the distance metric, which is defined as:

d (f(@; ), cr) = ||f(a; $) — cxll3- 3

We visualize the mathematical principle of the Prototypical network
in Fig. 2 where Ng = 8 and N¢ = 3.

The loss of few-shot learning #¢.,, for one batch is minimizing
the empirical loss £(4;,y;) on the whole query set along with a
suitable regularization r:

NgXN¢g

Lpew = Z

Jj=1,
(=5,y5)€Dq

(G, y5) + “

A commonly used regularizer is the {2 norm of the parameters of
the functions.

B. The self-supervised learner

The categories of wafer defect collected via IC engineers’ expe-
rience are expensive and hard to scale up. To this end, making full
use of unlabeled wafer images is expected. Consequently, we embed
the self-supervised learning paradigm into our wafer failure pattern
classification flow.

The self-supervision method operates on joint embeddings of in-
put wafer image and its augmentation. More specifically, it produces
two augmented views for all wafer images in a batch sampled from
a wafer dataset. The two kinds of representations are projected into
an embedding space where self-supervised loss is applied. For a
better understanding, we sketch the diagram of the self-supervised
learning in Fig. 3. The architecture consists of three components.
First is the data augmentation module in which any given wafer
map is transformed into two correlated views of itself. For wafer
map detection, we can apply the following simple augmentations:
rotation, top-bottom and left-right flipping. These augmentations
would not change the latent categories of failure patterns. The
second part is the backbone network with its replication as its
counterpart. They extract representation vectors from an original
wafer map and its augmented pattern. The rest module is the self-
supervised loss function denoted as £s5; where “ssl” stands for “self-
supervised”. The mathematical expression of loss function is written
in Equation (5).

bt =Y (1= M)+ X > > M, ®)

i i J#]
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Fig. 4 The network architecture of the proposed wafer failure pattern classification framework.

where A\ is a positive constant trading off the importance of the
first and second terms of the loss, and M stands for the correlation
matrix which computes the correlations between the outputs of the
two identical networks along the batch dimension. Assuming the
latent embeddings of two input views are ¢° and e“, the element
M;; in M is computed via Equation (6).

Z eg,izl?,’
M;; = b - J -
NACORIACH

By trying to force the diagonal elements of the correlation matrix
to equal to 1 (i.e. perfect correlation), the first term of the objective
function in Equation (5) makes the representation invariant to the
augmentations applied. The second term, attempting to equate the
off-diagonal elements of the correlation matrix to 0, de-correlates
the different vector components of the representation. This de-
correlation removes the redundancy between output units. As a
result, the outputs contain non-redundant information about the
input wafer map. Mathematically, Equation (5) can be treated as
an instantiation of the information bottleneck principle [23].

(©)

In a netshell, the self-supervised learning flow first produces
augmented views for all wafer maps of a batch sampled from
training dataset. Then, the batches of augmented views are fed
into the proposed backbone, producing batches of latent wafer
map embeddings of two views respectively. Ultimately, the self-
supervised learning loss is computed and back-propagated.

C. The overall architecture design

Our framework consists of a shared backbone and two branches
for the few-shot learner and self-supervised learner. During training,
two sources of wafer maps (i.e. labelled and unlabeled) are fed
into the defect classifier for calibration. The backbone is expected
to project the labeled wafer map to an embedding space in which
the few-shot learner calculates softmax function for classification
and maps another input from the unlabeled source to space where
the self-supervised loss is computed. Thereby, the shared backbone
plays a critical role in the framework.

Considering that different kinds of defect patterns on the wafer
maps have different geometrical properties including size, shape,
etc., a single-sized kernel is inflexible to capture such rich feature
information. On the other hand, the success of applying inception
mechanism into the layout hotspot detection [24] has been wit-
nessed. The Inception-v4 [25] deep convolutional neural network
(i.e. f(; @)) is adopted by us as the shared backbone. By using the
Inception blocks, the backbone goes wider and deeper. It has the
potential to achieve a more robust wafer map feature expression and
a higher classifier accuracy comparing to a shallow one. We show the
whole network architecture in Fig. 4. Besides, we supplement Fig. 4
with some explanations to improve the readability. For example, the
rectangle with 3(V') stands for the convolutional operator with a
kernel sized 3 and a “valid” padding style (input patch of each unit
is fully contained in the previous layer and the grid size of the
output activation map is reduced accordingly), while the one with
3(S) denotes that the convolutional computing is performed via a
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Fig. 5 The 9 kinds of wafer map pattens in the benchmark [8]: (a)
Center; (b) Donut; (c¢) Edge-Loc; (d) Edge-Ring; (e) Location; (f)
Near-Full; (g) Random; (h) Scratch; (i) None (the defect-free wafer
pattern).

3 kernel in a “same” padding fashion, meaning their output grid
matches the size of the corresponding input. It is worth mentioning
that the expression 3(2V) has the similar meaning with 3(V') except
for the stride value. The former refers to a 2 stride value, whilst the
latter indicates the stride value of 1.

As aforementioned, our end-to-end failure pattern classification
framework has two jointly performed tasks sharing the same wafer
pattern feature extractor. We combine the few-shot learner loss
Equation (4) and self-supervised loss /55 constituting a total loss
function:

Li=Liew + lsg. 7

In our case, the trade-off coefficient « is simply set to be 1. To
some extent, the self-supervised losses act as a data independent
regularizer for representation learning. Via back-propagation, the
gradient summation of two tasks, Vgliew(-; @) + Velsa(:; @),
updates the backbone collectively. It is expected that the wafer
pattern extraction by backbone is guided by a joint learning and
in turn, the two branches benefit from the sharing backbone.
Our flow is associated with multi-task learning which is a class
of techniques that train on multiple task objectives together to
improve each one. Previous arts in representation learning [26]
and computer vision [27] literature have demonstrated moderate
benefits by combining tasks mathematically and experimentally
(e. L(f(59)) < Sof, Lemi(fi(+; i) with T tasks and ¢; the
exclusive model parameters of ¢-th task).

IV. EXPERIMENTAL RESULTS
A. Experimental Settings and Benchmark

The implementation of our framework is in Python with the
TensorFlow library [28], and we test it on a platform with the
Xeon Silver 4114 CPU processor and Nvidia TITAN Xp Graphic
card. To verify the effectiveness and efficiency of our failure
pattern classifier, one open industrial benchmark, WM-811K [8],
is employed. There are 811457 wafer images from 46293 lots
covering 9 categories of patterns in this industrial dataset where only
172950 images are with expert annotations. Analogous to wafer map
translating schemes in the stat-of-the-art work [7], we use single-
channel, grey-scale images to represent wafer maps. Towards a better
understanding, we exemplify 9 wafer map visualizations containing
8 kinds of wafer failure patterns and defect-free wafer pattern in
Fig. 5. As can be seen, each wafer image has 256 x 256 pixels
with 3 pixel levels: 0, 127 and 255. Locations with pixel level 0
(i.e., the black pixels in wafer images) are those not part of the

TABLE I Benchmark Statistics

Categories Training Set Testing Set
# [ Percent (%) # | Percent (%)

Center 2576 2.48 1718 2.48
Donut 333 0.32 222 0.32
Edge-Loc 3113 2.99 2076 3.00
Edge-Ring 5808 5.60 3872 5.60
Location 2155 2.08 1438 2.08
Near-Full 89 0.09 60 0.09
Random 519 0.50 347 0.50
Scratch 715 0.69 478 0.69
None 88459 85.25 58972 85.25
Total \ 103767 \ 100 \ 69183 \ 100

wafer. Grey pixels with pixel level 127 indicate die locations with a
passing label, while white pixels represent those with a fail label. It
is conspicuous that wafer defects of distinct categories have different
defect distribution patterns. For example, the defects in the Center
category are concentrated around or near the center of the wafer in
circular or ring-like patterns, and the defects in the Locat ion class
are clustered on the edge of the wafer but do not behave linear or
curvy characteristics, and the contaminants in the Random type are
almost randomly distributed across the entire surface of the wafer.
In general, these classes of defects have known possible causations.
For instance, the Center class is caused due to abnormality of RF
(radio frequency) power, abnormality in liquid flow, or abnormality
in liquid pressure, while the Location type is generated by
silt valve leak, abnormality during robot handoffs or abnormality
in the pump. The Random category is likely brought about by
contaminated pipes, abnormality in showerhead or abnormality in
control wafers.

We re-arrange the WM-811K dataset as per the requests of the
problem formulation and our classification flow. Note that full
labeled wafer maps are used and 50000 unlabelled wafer maps are
also exploited for training. We summarize the statistics of the dataset
in TABLE I where unlabelled training wafer maps are not listed. The
whole labeled wafer maps is split into 0.6 : 0.4 for training and
testing. Additionally, it is manifest that the number of defect data
in the “Training Set” and “Testing Set” utilized in our work differs
from those in prior arts. Because it is important to keep the inherent
imbalanced data distribution in the training and testing dataset (e.g.,
dominated by the None class) so that the real industrial scenario can
be mimicked.

This is natural that the classical accuracy (i.e. micro-average
accuracy) is not proper for the imbalanced multi-label classification
problem. In view of that a model that is competent to learn a majority
class (i.e. None pattern) can achieve very high accuracy, while
may still behave poorly on the failure pattern classes which are
more important for yield analysis. We adopt the confusion matrix
to fully evaluate the true states of the model performance. Besides,
we also further calculated precision, recall, F; score to quantitatively
estimate the performance. The definitions of the three metrics are
written as follows. Precision is the ratio between the number of
wafer defects of one defect type being correctly classified and all
wafer defect patterns identified in this type. Recall (a.k.a. hit rate)
is the fractional measure of the number of wafer defects of one
defect type being accurately classified and all wafer failure patterns
belonging to this type. The F} score is a trade-off between the above
two metrics. When the predicted results and the actual results are
close to each other, F} score uplifts.



TABLE II Comparison with state of the arts

Defect Pattern TSM’15 [1] DAC’20 [7] Ours
Precision  Recall Fy Precision  Recall Fr Precision  Recall F1

Center 0.661 0.861 0.748 0.949 0.942  0.945 0.736 0.950 0.830
Donut 0.729 0.459  0.564 0.798 0.748  0.772 0.806 0.842 0.824
Edge-Loc 0.453 0.577  0.507 0.739 0.690 0.714 0.647 0.802 0.716
Edge-Ring 0.611 0.908  0.731 0.992 0.950  0.970 0.992 0.921 0.955
Location 0.533 0.346  0.420 0.191 0.627  0.293 0.605 0.720 0.658
Near-Full 0.254 0.867 0.392 0.697 0.383  0.495 0.810 0.867 0.840
Random 0.412 0.101 0.162 0.608 0.553  0.579 0.816 0.652 0.724
Scratch 0.835 0.339 0482 0.127 0.287  0.176 0.474 0.701 0.565
None 0.973 0.940  0.956 0.985 0.927  0.955 0.986 0.967 0.977
Macro-average 0.607 0.600  0.551 0.676 0.679  0.656 0.764 0.825 0.788
Ratio 0.795 0.727  0.700 0.885 0.823  0.832 1.000 1.000 1.000

TABLE III The performance of the defect classifier proposed by [1] in a confusion matrix.

Defect Pattern ‘ Center Donut Edge-Loc Edge-Ring Location Near-Full Random Scratch None
Center 1479 11 45 0 74 2 10 8 89
Donut 35 102 5 0 29 1 26 3 21
Edge-Loc 56 0 1198 187 16 44 3 7 565
Edge-Ring 0 0 128 3516 0 0 5 3 220
Location 190 4 291 6 498 0 0 11 438
Near-Full 3 0 0 0 0 52 5 0 0
Random 0 5 12 67 14 8 35 0 206
Scratch 147 3 23 0 27 98 1 162 17
None 327 15 945 1977 277 0 0 0 55431
TABLE IV The performance of the defect classifier proposed by [7] in a confusion matrix.
Defect Pattern ‘ Center Donut Edge-Loc Edge-Ring Location Near-Full Random Scratch None
Center 1618 11 7 0 30 2 0 8 42
Donut 6 166 5 0 27 0 3 6 9
Edge-Loc 9 0 1433 23 241 0 3 90 277
Edge-Ring 0 6 105 3679 37 0 8 21 16
Location 20 12 61 1 902 0 7 89 346
Near-Full 2 0 7 0 0 23 26 0 2
Random 5 8 52 3 40 5 192 7 35
Scratch 3 3 22 0 206 3 0 137 104
None 42 2 246 4 3241 0 77 719 54641
TABLE V The performance of our classifier in a confusion matrix.
Defect Pattern ‘ Center Donut Edge-Loc Edge-Ring Location Near-Full Random Scratch None
Center 1632 13 2 0 21 0 1 3 46
Donut 2 187 2 0 6 0 6 7 12
Edge-Loc 5 1 1664 16 67 2 18 26 277
Edge-Ring 3 0 145 3566 10 0 13 9 126
Location 31 18 58 1 1036 0 7 72 215
Near-Full 0 2 1 0 0 52 4 0 1
Random 4 7 29 0 25 10 226 3 43
Scratch 0 0 5 0 67 0 0 335 71
None 539 4 667 10 479 0 2 252 57019

B. Experimental Results and Analyses

We compare our proposed classifier against one classical machine
learning techniques-based work [1] (refers to “TSM’15”) and one
cutting-edge convolutional neural network-based art [7] (denoted as
“DAC’20”) with the same labeled training and testing dataset in
TABLE 1. In [1], Radon-based features and geometry features are
used in a support vector machine classification framework. Addi-
tionally, domain experts’ intervention is used to relabel misclassified
support vectors to further improve the accuracy. In [7], deep selective
learning is exploited with distinct coverage on testing dataset for the
defect pattern classification. In the absence of such expertise and to
ensure fair comparison with our proposed approach, all methods are

implemented without human intervention. To validate the proposed
classifier, we first compare the classification performance of our
model to those of “TSM’15” [1] and [7] under full coverage setting.
TABLE 1I records the results of three methods with precision,
recall and F score and their corresponding macro-averaged values
(i.e. arithmetic means). We can see that our method macro-averagely
outperforms TSM’15 with 25.9% and 37.5% improvement on
precision and recall rate and 43.0% rise on F; score. Moreover,
it surpasses DAC’20 with a macro-averaged precision, recall and
Fy score of 11.5%, 21.5% and 20.1%, respectively. Overall, our
approach achieves 82.5% macro-averaged recall rate (shown in
TABLE II), which exceeds those of the counterparts (i.e. 60.0%
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Fig. 6 The heat maps of normalized confusion matrixes of three
algorithms. The labels on x-axis represent the predicted wafer defect
categories, while the annotations on y-axis refer to the real wafer
defect classes. The diagonal elements are the recall rates. The unit
for each element in the cell of the heat map is %.

of TSM’15 and 67.9% of DAC’20). It also behaves better on the
actual failure pattern inspection (excluding None pattern) where

—w/o. FSLCJw/o. SSLCJFull
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Fig. 7 The comparisons among different configurations on macro-
averaged precision, recall and F score.

80.7% macro-averaged recall rate for defect categories is attained
compared to 64.8% for TSM’15 and 55.7% for DAC’20.

For a detailed demonstration, the confusion matrices of three
works on the testing data are reported in Tables III to V. As a visual
supplementary, the heat maps of associated normalized confusion
matrixes of three algorithms are illustrated in Fig. 6. The diagram
suggests that the diagonal cells of our algorithm have much darker
colors than those of existing flows, whilst the off-diagonal elements
of the proposed classification flow are light-colored. The above
experimental results comprehensively demonstrate the superiority of
our wafer failure pattern classification flow against the state-of-the-
art works.

We also investigate how different configurations affect the macro-
averaged classification performance. Fig. 7 outlines the contributions
of few-shot learning and self-supervised learning paradigm to our
flow. “w/o. FSL” refers to the flow trained with a typical cross-
entropy loss module as a replacement to the few-shot learning loss,
and “w/o. SSL” stands for the flow trained without self-supervised
learning loss, while “Full” is our wafer failure pattern classifier
with entire techniques. The histogram depicts that with the few-shot
learning loss be replaced, the precision is slightly affected, while a
noticeable drop emerges on the recall rate as well as on the F; score.
We have good reason to believe that some minority failure pattern
classes are poorly classified. As the bar graph expresses, without
trained by self-supervised learning loss, each macro-averaged metric
suffers a considerable decline. The result supports the argument that
the classification flow gains from the self-supervised learning.

V. CONCLUSION

In this paper, we have proposed an end-to-end, CNN-based wafer
failure pattern classification framework where incorporates the few-
shot learning and self-supervised learning methods. It alleviates the
imbalanced distribution issue in real industrial benchmark and takes
full advantage of the massive unlabeled wafer data. Experimental
results demonstrate that with surpassing a well-known machine
learning-based method and a cutting-edge deep learning-based clas-
sification flow, our classifier has the potential to be a feasible
alternative to manual inspection. In the future, we expect to apply
and extend our flow to more complicated wafer inspection problems
like mixed wafer failure pattern classification.
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