

DAMO: Deep Agile Mask Optimization for Full Chip Scale

Guojin Chen, Wanli Chen, Yuzhe Ma, Haoyu Yang, Bei Yu

The Chinese University of Hong Kong

Short bio of Guojin Chen

Guojin Chen The Chinese University of Hong Kong.

I am an MSc student at The Chinese University of Hong Kong (CUHK) and broadly study foundational topics and applications in machine (sometimes deep) learning in VLSI and optimization, including reinforcement learning, computer vision. I am advised by Prof. Bei Yu. I received my Bachelor Degree of Computer Science from Huazhong University of Science and Technology.

Outline

Introduction and Background

Previous work

DAMO

Dataset Generation DCGAN-HD DLS DMG Full-chip Splitting Algo.

Results

On our datasets On ISPD 2019 full-chip datasets

Outline

Introduction and Background

Previous work

DAMO

Dataset Generation DCGAN-HD DLS DMG Full-chip Splitting Algo.

Results

On our datasets On ISPD 2019 full-chip datasets

Background and problem formulation

2020 MTERNATIONAL CONFERENCE ON COMPUTER-NATIONAL DESIGN 2021 Edition

Project backgroud

Optical proximity correction (OPC) is a photolithography enhancement technique commonly used to compensate for image errors due to diffraction or process effects.

PRELIMINARIES of OPC: DESIGN, SRAF, MASK, WAFE

Problem definition: Given a design image \vec{w} , the objective of mask optimization is generating the corresponding mask \vec{x} such that remaining patterns \vec{y} after lithography process is as close as \vec{w} or, in other words, minimizing PV Band and squared L_2 error of lithography images.

Two main step

OPC and Litho : DMG and DLS

Outline

Introduction and Background

Previous work

DAMO

Dataset Generation DCGAN-HD DLS DMG Full-chip Splitting Algo.

Results

On our datasets On ISPD 2019 full-chip datasets cGAN

Objective function

 $\mathcal{L}_{cGAN}(G, D)$ = $\mathbb{E}_{x,y}[\log D(x, y)]$ + $\mathbb{E}_{x,z}[\log(1 - D(x, G(x, z)))].$ (1)

OPC stage previous work: GAN-OPC

GAN-OPC flow: generator inference and ILT refinement.

Litho stage previous work: LithoGAN

LithoGAN Framework.

Issues of previous work.

- Only initial solution, relie on the traditional ILT-model, time-consuming.
- Only targets a single shape within a clip, limited usage in general OPC tasks.
- Only small single clip, low resolution (256 \times 256 pixels).

Outline

Introduction and Background

Previous work

DAMO

Dataset Generation DCGAN-HD DLS DMG Full-chip Splitting Algo.

Results

On our datasets On ISPD 2019 full-chip datasets

Solution

Solution: DAMO

- DAMO: End-to-end mask optimization framework without using traditional model.
- DCGAN-HD: High resolution cGAN model.
- Full-chip splitting algorithm for large layout.

Generate Training set

DCGAN-HD: solution for higher resolution

- High-resolution Generator
- Multi-scale discriminator
- Perceptual Loss

High-resolution Generator of DCGAN-HD

DCUNet++

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - の Q ()

Multi Scale discriminator

DCUNet++

Arch.

- Two discriminators at different input size, D_1, D_2 .
- High resolution of 1024 \times 1024 and 512 \times 512. \blacktriangleright
- Helps the training of high-resolution model easier. \blacktriangleright

Perceptual Loss

$$\mathcal{L}_{L_{P}}^{G,\Phi}(\vec{x},\vec{\hat{x}}) = \mathcal{L}_{L_{1}}(\Phi(\vec{x}),\Phi(\vec{\hat{x}})) = \mathbb{E}_{\vec{x},\vec{\hat{x}}}\left[\|\Phi(\vec{x}) - \Phi(\vec{\hat{x}})\|_{1}\right],$$
(2)

DLS training

(3)

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ ○ ○ ○

DMG training

(4)

$$\mathcal{L}_{DMG} = \sum_{k=1,2} \mathcal{L}_{cGAN}(G_{DMG}, (D_{DMG})_k) + \lambda_1 \mathcal{L}_{L_P}^{G_{DMG}, \Phi}(x, \hat{x}).$$

$$\mathcal{L}_{DAMO} = \mathcal{L}_{DMG} + \mathcal{L}_{DLS} + \lambda_2 \mathcal{L}_{L_1}(\hat{y}, w_r).$$
(5)

(a)

Full-chip Splitting Algo: Coarse to Fine, DBSCAN to KMeans

Algo. detail

- 1. DBSCAN then KMeans++
- Initialize the number of centroids from 1 to V to run KMeans++.
- 3. Every cluster contains no more than *K* via patterns.
- 4. Every via pattern must be contained in a window.
- 5. If (3) or (4) is not satisfied, increase the centroid number.

Coarse step, DBSCAN

DBSCAN clusters

Algo. detail

DBSCAN algorithm is used to initially detect the clusters of via patterns. After the coarse step, the via patterns in a large layout will be assigned into different DBSCAN clusters.

Fine step, KMeans++

KMeans clusters

Algo. detail

Then we search every coarse cluster and run KMeans++ algorithm to find the best splitting windows.

The split chips.

The split chips

Every KMeans cluster belongs to a $1024 \times 1024nm^2$ chip, whose center locates at the centroid of the KMeans cluster.

Main Contribution

- DCGAN-HD: we extend cGANs model by redesign the generator and discriminator for high resolution input (1024*1024), combined with a novel window-splitting algorithm, our model can handle input layout of any size with high accuracy.
- DLS: We build up a deep lithography simulator (DLS) based on our DCGAN-HD. Thanks to the express power of stack convolution layers, DLS is expected to conduct lithography simulation faster with similar contour quality compared to legacy lithography simulation process.
- DAMO: We present DAMO, a unified end-to-end trainable OPC engine that employs both DLS and DMG to conduct full-chip scale mask optimization without further fine-tune with legacy OPC engines.
- Experimental results show that the proposed DAMO framework is able to output high quality lithography contours more efficiently than Calibre, which also derives ~ 4× speed-up in OPC tasks while generating masks with even better printability.

Outline

Introduction and Background

Previous work

DAMO

Dataset Generation DCGAN-HD DLS DMG Full-chip Splitting Algo.

Results

On our datasets On ISPD 2019 full-chip datasets

Results on self-generated datasets

Layouts

<mark>Design</mark>

<mark>Mask</mark>

Results on self-generated datasets

Bench	case#	GAN-OPC			Calibre			DAMO		
		$L_2 (nm^2)$	PV Band (nm^2)	runtime (s)	$L_2 (nm^2)$	PV Band (nm^2)	runtime (s)	$L_2 (nm^2)$	PV Band (nm^2)	runtime (s)
1-via	500	1464	3064	321	1084	2918	1417	1080	2917	284
2-via	500	4447	6964	336	2161	5595	1406	2129	5576	281
3-via	500	8171	11426	317	3350	8286	1435	3244	8271	285
4-via	500	11659	14958	327	4331	10975	1477	4263	10946	291
5-via	500	15773	18976	318	5410	13663	1423	5396	13640	279
6-via	500	18904	22371	320	6647	15572	1419	5981	15543	284
Average		10069	12960	323	3831	9502	1430	3682	9482	284
Ratio		2.735	1.367	1.138	1.040	1.002	4.427	1.00	1.00	1.00

Table 2: Comparison with State-of-the-art on validation set

Results on ISPD 2019 datasets

Results on ISPD 2019 datasets

Domoh	case#	GAN-OPC			Calibre			DAMO		
Bench		$L_2 (nm^2)$	PV Band (nm^2)	runtime (s)	$L_2 (nm^2)$	PV Band (nm^2)	runtime (s)	$L_2 (nm^2)$	PV Band (nm^2)	runtime (s)
ISPD-1-via	6116	2367	3492	3963	1073	2857	18959	1056	2848	3669
ISPD-2-via	2652	5412	7126	1742	2232	5670	7537	2172	5654	1591
ISPD-3-via	1582	8792	13047	1021	3602	8276	4494	3196	8127	949
ISPD-4-via	522	12395	15015	341	4395	11051	1692	4361	10987	313
ISPD-5-via	777	16526	19147	495	5526	12305	2537	4542	12251	466
Average		9098	11565	1512	3365	8031	7043	3065	7973	1397
Ratio		2.968	1.451	1.082	1.098	1.007	5.041	1.00	1.00	1.00

Table 3: Comparison on ISPD 2019 full-chip splitting windows

Results Visualization

Visualization of DAMO model advancement on via layer: (c) Epoch 20; (d) Epoch 40; (e) Epoch 60; (f) Epoch 80; (g) Epoch 100. Thanks

Thank you.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ⊙