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Background and problem formulation

Project backgroud

Optical proximity correction (OPC) is a photolithography enhancement technique commonly
used to compensate for image errors due to diffraction or process effects.
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PRELIMINARIES of OPC: DESIGN, SRAF, MASK, WAFER

Problem definition: Given a design image ~w, the objective of mask optimization is
generating the corresponding mask~x such that remaining patterns~y after lithography
process is as close as ~w or, in other words, minimizing PV Band and squared L2 error of
lithography images.
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Our DAMO: Deep Agile Mask Optimization forFull Chip Scale

Two main step

OPC and Litho : DMG and DLS

Design Mask Wafer

DMG DLS

Inverse CorrectionFeed-forward
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cGAN

Objective function

LcGAN(G,D)

=Ex,y[log D(x, y)]

+Ex,z[log(1− D(x,G(x, z))].
(1)

In the generator the prior input noise pz(z), and y are combined in joint hidden representation, and
the adversarial training framework allows for considerable flexibility in how this hidden representa-
tion is composed. 1

In the discriminator x and y are presented as inputs and to a discriminative function (embodied
again by a MLP in this case).

The objective function of a two-player minimax game would be as Eq 2

min
G

max
D

V (D, G) = Ex⇠pdata(x)[log D(x|y)] + Ez⇠pz(z)[log(1 � D(G(z|y)))]. (2)

Fig 1 illustrates the structure of a simple conditional adversarial net.

Figure 1: Conditional adversarial net

4 Experimental Results

4.1 Unimodal

We trained a conditional adversarial net on MNIST images conditioned on their class labels, encoded
as one-hot vectors.

In the generator net, a noise prior z with dimensionality 100 was drawn from a uniform distribution
within the unit hypercube. Both z and y are mapped to hidden layers with Rectified Linear Unit
(ReLu) activation [4, 11], with layer sizes 200 and 1000 respectively, before both being mapped to
second, combined hidden ReLu layer of dimensionality 1200. We then have a final sigmoid unit
layer as our output for generating the 784-dimensional MNIST samples.

1For now we simply have the conditioning input and prior noise as inputs to a single hidden layer of a MLP,
but one could imagine using higher order interactions allowing for complex generation mechanisms that would
be extremely difficult to work with in a traditional generative framework.

3
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OPC stage previous work: GAN-OPC
Table 1: The design rules used.

Item Min Size (nm)
M1 Critical Dimension 80

Pitch 140
Tip to tip distance 60

ILT
Engine

Generator

Figure 6: GAN-OPC �ow: generator inference and ILT re�ne-
ment.

4 EXPERIMENTAL RESULTS
The generative adversarial network for mask optimization is imple-
mented based on Tensorflow [22] library and tested on single Nvidia
Titan X. The lithography engine is based on the lithosim_v4 pack-
age from ICCAD 2013 CAD Contest [23], which also provides ten
industrial M1 designs on 32nm design node.

As a type of deep neural networks, GAN can be hardly well trained
with only ten instances. To verify our framework, we synthesize a train-
ing layout library with 4000 instances based on the design speci�cations
from existing 32nm M1 layout topologies. We adjust the wire sizes to
make sure the shapes in synthesized layouts are similar to those in
the given benchmark. To generate experimental cells, all the shapes
are randomly placed together based on simple design rules, as detailed
in Table 1. In addition, most generative models have shown obvious
weakness in image details, which makes it extremely hard to optimize
images with size 2048⇥2048. Therefore, we perform 8 ⇥ 8 average pool-
ing on layout images before feeding them into the neural networks. In
the generation stage we adopt simple linear interpolation to convert
the layout images back to their original resolution.

The proposed GAN-OPC �ow is illustrated in Figure 6, where we
�rst feed target patterns into the generator and obtain the quasi-optimal
masks, followed by re�nement through an ILT engine. To verify the
e�ectiveness of ILT-guided pre-training algorithm, we record training
behaviors of two GANs which are denoted by GAN-OPC and PGAN-
OPC. Here “GAN-OPC” and “PGAN-OPC” denote GAN-OPC �ow with-
out generator pre-training and GAN-OPC �ow with ILT-guided pre-
training, respectively. The training procedure is depicted in Figure 7,
where x-axis indicates training steps and y-axis is L2 loss between
generator outputs and ground truth masks, as in Equation (9).

The training time for both GAN and PGAN are around 10 hours on
our platform. Although L2 loss of GAN-OPC drops slightly faster before
3000 iterations, the training curve shows that PGAN-OPC is a more
stable training procedure and converges to a lower loss. Besides, it takes
much more e�orts for GAN-OPC to search a direction to descending
the gradient fast, while the training loss of PGAN-OPC drops smoothly
and converges at a lower L2 loss than GAN-OPC, which indicates ILT-
guided pre-training indeed facilitates mask-optimization-oriented GAN
training �ow. We will also show that PGAN-OPC exhibits better mask
optimization results in the following section.

In the second experiment, we optimize the ten layout masks in
ICCAD 2013 contest benchmark [23] and compare the results with
previous work. Figure 8 depicts mask optimization results in compar-
ison with an ILT engine [7], and the quantitative results are listed in
Table 2. Here the wafer images are calculated from the simulation tool
(lithosim_v4) in the contest [23]. Note that all the GAN-OPC and
PGAN-OPC results are re�ned by an ILT engine which generates �nal
masks to obtain wafer images. Column “L2” is the squared L2 error

Figure 7: Training curves of GAN-OPC and PGAN-OPC.

between the wafer image and the target image under nominal condi-
tion. Column “PVB” denotes the contour area variations under ± 2%
dose error. It is notable that GAN-OPC signi�cantly reduces squared L2
error of wafer images under the nominal condition by 9% and with the
ILT-guided pre-training, squared L2 error is slightly improved and PVB
is further reduced by 1%. Because we only focus on the optimization
�ow under the nominal condition and no PVB factors are considered,
our method only achieves comparable PVB areas among ten test cases.
Additionally, feed-forward computation of GAN only takes 0.2s for
each image which is ignorable, therefore runtime of our �ow is almost
determined by ILT re�nements. Columns “RT (s)” lists the total mask
optimization time of [7], GAN-OPC and PGAN-OPC. For most bench-
mark cases, GAN-OPC and PGAN-OPC show a earlier stop at a smaller
L2 error and, on average, reduce the optimization runtime by more than
50%. For most test cases, [7] exhibits a smaller PV band area possibly
because the printed images are more likely to have large wafer image
CD and shorter wire length, which makes masks su�er less proximity
e�ects while inducing bridge or line-end pull back defects, as shown in
Figure 9.

5 CONCLUSION
In this paper, we have proposed a GAN based mask optimization �ow
that takes target circuit patterns as input and generates quasi-optimal
masks for further ILT re�nement. We analyze the specialty of mask opti-
mization problem and design OPC-oriented training objectives of GAN.
Inspired by the observation that ILT procedure resembles gradient de-
scent in back-propagation, we also develop an ILT-guided pre-training
algorithm that initializes the generator with intermediate ILT results,
which signi�cantly facilitates the training procedure. Experimental
results show that our framework not only accelerates ILT but also has
the potential to generate better masks through o�ering better starting
points in ILT �ow.
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Litho stage previous work: LithoGAN

following objective function for CGAN,
min

G
max

D
Ex,y[logD(x, y)] + Ex,z[log(1 � D(x,G(x, z)))]
+ � · Ex,y,z[ky �G(x, z)k1].

(3)

The details of the CGAN architecture are summarized in Ta-
ble 1. The problem that we consider maps a high-resolution in-
put (256 ⇥ 256) to a high-resolution output (256 ⇥ 256), and a com-
mon approach to design such a generator is the use of an encoder-
decoder network [14–16, 22]. The encoder passes the input through
a series of layers that progressively downsample the input until a
bottleneck layer; then the decoder reverses the process by progres-
sively upsampling. In Table 1, column “Filter” gives the size and
stride of the �lter. All convolutional (Conv) and deconvolutional
(Deconv) layers have 5 ⇥ 5 �lters with a stride of 2. Batch normaliza-
tion (BN) [23] is selectively applied on certain convolutional layers.
The encoder uses leaky ReLU (LReLU) as the activation function,
whereas the decoder uses ReLU. The discriminator is a convolu-
tional neural network that performs classi�cation to distinguish
between the real image pairs and fake image pairs.

The standard approach to train GANs alternates between one
step of optimizing D and one step of optimizing G [14]. In this
way, we train both the generator and the discriminator to improve
simultaneously, thus avoiding the case where one network is sig-
ni�cantly more mature than the other. Here we use mini-batch
stochastic gradient descent (SGD) for gradient update and apply
the Adam solver [24] during the training stage.

3.3 LithoGAN
CGAN has demonstrated proven success in image generation tasks
[15, 16] where generated images follow the distribution of the train-
ing data conditioned on the input images. However, for traditional
computer vision tasks, locations of the objects in the generated
image are not a major concern. For example, when trained to gen-
erate car images, the output of the GAN is judged upon based on
the quality of an image as seen by a human while neglecting the
exact location of the car in the image. However, for the lithogra-
phy modeling task, the center of the generated resist pattern is as
important as the shape of the pattern. Here the center refers to the
center of the bounding box enclosing the resist pattern. In fact, we
are interested in predicting a resist pattern which is accurate in
both the shape and center.

With these two objectives in mind, and based on our experiments
shown in Section 4, it is evident that CGAN falls short of predicting
the correct center location of the resist pattern while demonstrating
excellent results predicting the shape of the pattern. Hence, we
propose a dual learning framework, referred to as LithoGAN, which
splits the modeling task into two objectives:

• Resist shape modeling: a CGAN model is used to predict the
shape of the resist pattern while neglecting the center;

• Resist center prediction: a CNN model is used to predict the
center location of the resist pattern.

The application of the proposed LithoGAN framework is illus-
trated in Figure 5 where two data paths are shown. In the �rst path,
a trained CGAN model is utilized to predict the shape of the resist
pattern. During training, the golden pattern is re-centered at the
center of the image, and the coordinates of the original center are
saved for CNN training. In other words, the model is trained to

CGAN

CNN

Generated
Image

Predicted
Center

(ch, cv)
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Pre-adjustment

Post-adjustment 
(Final)

Figure 5: The proposed LithoGAN Framework.

predict resist patterns that are always centered at the center of the
images. On the other hand, the second path is composed of a CNN
trained to predict the center of the resist pattern based on the mask
image. The CNN architecture for the resist center prediction task is
shown in Table 2, where max-pooling (P) with �lter size 2 ⇥ 2 and
stride 2 is applied after each convolutional layer.

In such a way, the shape and the center of the resist pattern
are predicted separately. They are combined in the last step before
output. As shown in Figure 5, the image generated by CGAN is
adjusted by recentering the resist shape based on center the coordi-
nates predicted from the CNN. The resulting adjusted image is the
�nal output of the LithoGAN framework.

4 EXPERIMENTAL RESULTS
The proposed framework for lithography modeling is implemented
in Python with the TensorFlow library [25] and validated on a Linux
server with 3.3GHz Intel i9 CPU and Nvidia TITAN Xp GPU. The
experiments are performed on two benchmarks obtained from [12],
where 982 and 979 mask clips are generated at 10nm technology
node (N10) and 7nm node (N7) respectively. [12] performed SRAF
insertion and OPC using Mentor Calibre [26], and then ran rigorous
simulation to generate resist patterns using Synopsys Sentaurus
Lithography [27] calibrated from manufactured data. In this work,
the resist patterns generated by rigorous simulation are considered
as the golden results. To guarantee highly accurate resist patterns,
the pattern corresponding to the center contact in a clip is the only
one adopted after each simulation. In other words, obtaining the
golden resist pattern for each contact in a mask layout requires
one rigorous simulation [28], and similarly, predicting this pattern
using LithoGAN requires one model evaluation.

Each data sample for model training is a pair of the mask pattern
image and the resist pattern image created using the color encoding
scheme presented in Section 3.1. We randomly sample 75% of the
data for training di�erent models for N10 and N7 respectively, and
the remaining 25% clips are for testing. In our experiments, we set
the batch size to 4 and the number of maximum training epochs to
80. The weight parameter � in Equation (3) is set to 100. The learning
rate and the momentum parameters in the Adam optimizer are set
to 0.0002 and (0.5, 0.999). The training time for each of CGAN and
LithoGAN is around 2 hours. Note that we train the CGAN and
LithoGAN models �ve times each with di�erent random seeds to
eliminate random performance variation. The results reported in
this section are the average of the �ve runs.

LithoGAN Framework.
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Issues of previous work.

I Only initial solution, relie on the traditional ILT-model, time-consuming.
I Only targets a single shape within a clip, limited usage in general OPC tasks.
I Only small single clip, low resolution (256 × 256 pixels).
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Solution

Solution: DAMO
I DAMO: End-to-end mask optimization framework without using traditional model.
I DCGAN-HD: High resolution cGAN model.
I Full-chip splitting algorithm for large layout.
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Generate Training set
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DCGAN-HD: solution for higher resolution

I High-resolution Generator
I Multi-scale discriminator
I Perceptual Loss
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High-resolution Generator of DCGAN-HD

Arch.
I UNet++ with Residual

blocks.
I High resolution of

1024 × 1024.

DCUNet++

…

DeconvolutionConvolution Residual

DecoderEncoder
Residual Blocks

UNet++ Backbone

High-resolution Generator
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Multi Scale discriminator

Arch.
I Two discriminators at different input size, D1, D2.
I High resolution of 1024 × 1024 and 512 × 512.
I Helps the training of high-resolution model easier.

DCUNet++

Multi-scale D
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Perceptual Loss

LG,Φ
LP

(~x,~̂x) =LL1(Φ(~x),Φ(~̂x)) = E
~x,~̂x

[
‖Φ(~x)− Φ(~̂x)‖1

]
, (2)
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DLS training

LDLS =
∑

k=1,2
LcGAN(G,Dk) + λ0LG,Φ

LP
(y, ŷ). (3)

G D

D
x

Real

Fake

z ŷ
<latexit sha1_base64="7CZ4qKZ6qe92jLDIBbVtlvjZlkY="></latexit>

x

y
Perceptual Loss

x: mask y: wafer G: high-resolution G D: multi-scale D
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DMG training

LDMG =
∑

k=1,2
LcGAN(GDMG, (DDMG)k) + λ1LGDMG,Φ

LP
(x, x̂). (4)

LDAMO =LDMG + LDLS + λ2LL1(ŷ,wr). (5)

DLS
Generator

(a)

DMG
Generator

Frozen
DLS

Generator

Feed-forward Back-Propagation

(b)
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Full-chip Splitting Algo: Coarse to Fine, DBSCAN to KMeans

Algo. detail

1. DBSCAN then KMeans++
2. Initialize the number of

centroids from 1 to V to
run KMeans++.

3. Every cluster contains no
more than K via patterns.

4. Every via pattern must be
contained in a window.

5. If (3) or (4) is not satisfied,
increase the centroid
number.

Algo. figure
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Coarse step, DBSCAN

Algo. detail

DBSCAN algorithm is used to
initially detect the clusters of via
patterns. After the coarse step,
the via patterns in a large layout
will be assigned into different
DBSCAN clusters.

DBSCAN clusters

DBSCAN 1

DBSCAN 2
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Fine step, KMeans++

Algo. detail

Then we search every coarse
cluster and run KMeans++
algorithm to find the best
splitting windows.

KMeans clusters

1024 1024

1

3
2

4
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The split chips.

Algo. detail

Every KMeans cluster belongs
to a 1024× 1024nm2 chip,
whose center locates at the
centroid of the KMeans cluster.

The split chips

4

3

2

1
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Main Contribution

I DCGAN-HD: we extend cGANs model by redesign the generator and discriminator for
high resolution input (1024*1024), combined with a novel window-splitting algorithm,
our model can handle input layout of any size with high accuracy.

I DLS: We build up a deep lithography simulator (DLS) based on our DCGAN-HD.
Thanks to the express power of stack convolution layers, DLS is expected to conduct
lithography simulation faster with similar contour quality compared to legacy
lithography simulation process.

I DAMO: We present DAMO, a unified end-to-end trainable OPC engine that employs
both DLS and DMG to conduct full-chip scale mask optimization without further
fine-tune with legacy OPC engines.

I Experimental results show that the proposed DAMO framework is able to output high
quality lithography contours more efficiently than Calibre, which also derives ∼ 4×
speed-up in OPC tasks while generating masks with even better printability.
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Results on self-generated datasets
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Results on self-generated datasets
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Results on ISPD 2019 datasets

52.5W
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Results on ISPD 2019 datasets
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Results Visualization

(c) (d) (e) (f) (g)

Visualization of DAMO model advancement on via layer:
(c) Epoch 20; (d) Epoch 40; (e) Epoch 60; (f) Epoch 80; (g) Epoch 100.
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Thanks

Thank you.
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