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Abstract

This paper examines the spread of diseases within populations in the context of networks of potentially disease-causing contacts. We
examine the assumptions underlying classical mathematical models of epidemics and how more realistic assumptions can be made using contact
networks. Several well-known kinds of contact networks are examined and simulated by evaluating their structural properties relevant to disease
propagation. Algorithms used in the study of these networks are explained and numerical simulations of percolation and the epidemic process
carried out to explore the effects that the network structure has on disease progression.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The purpose of modelling epidemics is to understand the
processes by which they spread, and thus provide a rational ba-
sis for formulating more effective prevention programmes and
combating outbreaks. To be able to decide beforehand whether
a targeted vaccination programme is likely to work and to de-
cide which individuals will contribute most to the transmission
of the infection, is to make that much more effective use of
limited resources in combatting disease spread.

The epidemic process is essentially a population growth
model, the disease being represented by infected individu-
als and the remaining (limited) resources by those suscep-
tible to infection. Models of epidemics are classified by
their assumptions about the disease and population [1]. Dis-
ease assumptions include the mechanism of infection (such
as by direct contact, carriers and vectors), and removal or
recovery (fixed time, probabilistic). A model makes assump-
tions about the population structure, which may be homo-
geneous except for disease status, consist of heterogeneous
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subgroups where there are different risk factors (such as age,
gender, culture), or be generally heterogeneous on an individual
basis, which can be included as a network representation. Re-
garding population dynamics, the model may assume a closed
population, or an open one in which it may grow or shrink over
time by including birth and deaths [2].

The primary assumption a model must make is in its choice
of an exhaustive and mutually exclusive classification of disease
status. The simplest possible model is the SI model in which
individuals are either susceptible (S) or infective (I) and the
progress of the epidemic is traced by transmission between
infectives and susceptibles until it ends (at least mathematically)
when the entire population is infected. The model explored
here is the SIR model in which infectives become removed
(R) probabilistically or after a time period. The R status may
correspond to death, quarantine, or recovery with permanent
immunity.

There are many variations of these models, such as the
SEIR model, which includes an exposed (E) class in which
the individual has the disease but does not pass it on to
susceptibles. A long incubation period can cause new in-
fectives to arrive in waves [3]. The SIS model includes in-
fectives that become susceptible again, and the SIRS model
represents diseases conferring temporary immunity—these
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models are often used to model different epidemics such as
HIV or SARS [2].

In the following sections, we first discuss the traditional
fully mixed models and their success at describing the ba-
sic features of epidemics, and then how the contact network
does away with the assumption of full-mixedness and opens
many possibilities for more realistic models. We then investi-
gate the structural measures of networks, the mapping of the
final epidemic to bond percolation, and some of the more de-
tailed epidemiological information that can be obtained by the
SIR model on networks. We then examine common network
models and compare their relative usefulness as models of
real-world contact networks in terms of their structural mea-
sures. Algorithms for generating the important scale-free net-
work models are described, as well as an efficient means of
calculating the mean path length, clustering coefficient and per-
colation threshold, and carrying out the SIR model on a gen-
eral network. We finish with a discussion of dynamic networks
that do away with the important simplifying assumption of a
static network structure and outline the challenges involved in
doing so.

2. Fully mixed models

Traditional models assume that the population is fully mixed,
that is, a susceptible has a fixed probability � per unit time
of contracting the disease from any infective in the popula-
tion. Combined with a fixed probability � per unit time of
any infective becoming removed, this allows the number s, i

and r of each class of individual in a closed population of
size N to be modelled by a system of ordinary differential
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Fig. 1. Progress of a classical SIR epidemic model. Model parameters: � = 0.02, � = 0.4, S0 = 50, and i0 = 1. The model exhibits an epidemic threshold and
finite survival rate.

equations first proposed by Kermack and McKendrick in
1927 [2]:

ds

dt
= −�si,

di

dt
= �si − �i,

dr

dt
= �i, (1)

where s is non-increasing, r is non-decreasing, and the last
equation is redundant since (d/dt)(s + i + r) = 0 implies that
s + i + r = N at all times. This model has a number of useful
features: it exhibits a threshold for epidemic outbreak, since
we must have (di/dt)(0) > 0 for an epidemic to occur, which
implies that initially we must have s0 > �, where � = �/� is
the relative removal rate.

Furthermore, if the population has no R-status individuals,
s0 + i0 = N , then a non-zero portion of the susceptibles will
remain uninfected as t → ∞, the number r∞ of individuals
infected and removed being the unique root [1] of the equation

s0 + i0 − r∞ = x0e−r∞/�. (2)

This survival property can be seen in the case of � = 0.02,
� = 0.4, s0 = 50 and i0 = 1 and plotted in Fig. 1. s is the
decreasing curve, r the increasing one, and i peaks around
t = 7. There is a 1 in 50 chance of contracting the disease
from any infective and a 40% chance of recovery per day.
The fully-mixed nature of the model might make this a re-
alistic model of a mild influenza outbreak in a university
residence with time measured in days. The model thus ex-
hibits an epidemic threshold and finite survival rate. There
are many variations, such as finite birth and death rates as
in the SIS and SIRS models. Extra equations account for
states such as in the SEIR model and stratified populations
in which portions of susceptibles have different risk factors.
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Fig. 2. Progress of a classical stochastic epidemic choosing a sufficiently small �T = 1/2�N .

There are also models for carriers as a different type of in-
fective and separate populations for vector-borne diseases,
such as modelling the mosquito population in the context of
malaria.

s, i and r as continuous variables is a poor approximation
in small populations, and so an alternative model is a Markov
process with a discrete population and time, in which the prob-
abilities of transitions from (s, i) to (s −1, i +1) and (s, i −1)

are given by �si�T and �i�T , respectively. This can be simu-
lated stochastically on computer by choosing sufficiently small
�T , so that the mean Poisson-distributed time of a state tran-
sition is larger than 1. The university residence example is a
small population, and the stochastic simulation is shown in
Fig. 2 for a time step of �T = 1/(2�N). Note that the out-
come of the simulation can be very different from the de-
terministic model, sometimes the epidemic does not occur at
all or progresses more slowly or more quickly, as is the case
in Fig. 2.

3. Network models

Network models do away with the assumption of a fully-
mixed population. A population is represented as a collection
of individuals, called vertices or nodes from the terminology of
graph theory or sites in the context of percolation. Two nodes
are connected by an edge if they are in regular contact and
has the potential to transmit the disease if one of the nodes is
infective. On a given day it is unlikely that there is a uniform
probability of shaking hands with any given person in your city;
you are far more likely to shake hands with one of the 20 or
more people you see regularly, and this would be represented
as 20 edges between yourself and 20 other nodes [4].

The structure of the network also provides many properties
that influence the spread of an epidemic. With most diseases
people you have contact with are likely to have contact with

each other as well or, in the context of HIV, a small number of
high-degree nodes could be a significant influence in its spread
[5]. We can also expect the structure to be different for a disease
that is airborne, contact-transmitted, or sexually transmitted.
The progression of an epidemic is modelled by initially putting
one or more (usually one) of the nodes in a I state and the rest
in a S state. At each successive time step, each neighbour of
an infective node becomes infected with probability 0 < � < 1,
� representing the rate of infective contacts, and each infec-
tive becomes removed with probability �. Here �T = 1 time
unit because, unlike the stochastic model, more than one in-
fection is able to take place in each step. It can also be seen
that the epidemic network is exactly the traditional stochastic
model in the case of a complete graph, in which every node
is connected to every other. More realistic assumptions can be
added to these models. For example, an alternative to proba-
bilistic removal is to put a fixed time limit � = 1/� on how
long a node remains infective. More complex models can be
made by drawing �ij and �i for nodes i and j from probability
distributions that might reflect risk factors amongst nodes of
different types in a stratified population. Simulating networks
have the disadvantage of being computationally intensive: an
epidemic in a population of just a few hundred thousand nodes
can take hours of computation to obtain averaged results over a
range of model parameters. However, that is a once-off cost of
doing away with the assumption of a fully-mixed population,
and the range of possibilities it provides makes it a necessary
trade-off.

3.1. Network measures

Network measures are statistical properties of network
structure, which are useful for understanding the character of
networks that might be far too large to visualise. We look qual-
itatively at how these measures might directly influence the
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progress of a disease modelled on the network, and describe
what we expect in an actual human contact network, later to
be used to evaluate the realism of commonly used network
structures.

The coordination number z is the average degree of a site in
the network. In a human network of hand-shaking for modelling
influenza, we would expect z to be quite high, and a disease will
spread faster with higher coordination number. In a network
of sexual contacts for modelling HIV, z would be low and
does not reflect the small number of high-degree nodes, given
by the degree distribution. The degree distribution, p(k), is
the probability of a node having degree k, and a number of
social networks show highly skewed distributions of power law
P(k) ∼ k−� and power-law with exponential cutoff P(k) ∼
k−�e−k/� forms.

The mean path length, �, is the average number of steps
between any given node and any other node in the network,
averaged over all nodes and all possible networks of the same
type and parameter set. A closely related quantity is the network
diameter, D, which is the average over all nodes in the network
of the shortest path distance to the furthest node from it.

Related to � and D is the “small world” property of
many real-world networks [4]. In particular, in contact net-
works as anyone who has come across surprising connec-
tions between arbitrary strangers and relatives, friends or
friends of friends. A small-world network is quantified as
one in which the mean path length and diameter increases
as a logarithm of the number of nodes. The significance
of the small world property of diseases is that it does not
take long for an initial infection to reach remote parts of
the contact network, since there are generally no remote
parts.

The clustering coefficient C can be thought of as averaging
over all nodes in the graph; “how many of my friends are friends
with each other”. That is, each node’s contribution to the sum
is the number of neighbours which are connected to each other,
divided by the n(n − 1)/2 possible ways to pair n neighbours.

If the network is complete, then each node’s neighbours will
form a complete network and the clustering coefficient will be
C = 1. Thus, C gives a measure of how close the network is to
the classical stochastic model. In a human contact network we
expect a significant non-zero value of C and also expect that in
disease modelling clusters will tend to get infected at once, as
in the case of influenza in a university residence. Newman [5]
also provides an alternative definition that is more difficult to
compute but easier to derive analytically and does not weigh
low-degree vertices as heavily.

The community structure of a network, in which there are
denser connections within communities than between them, is
also important but difficult to quantify. Newman [5] provides al-
gorithms which can be used to estimate the number and strength
of communities, and cites an Ohio study of the friendship net-
work of children at a school which clearly shows divisions
along lines of middle versus upper ages and by race. On the
other hand, the artificial construction of community structure in
existing network classes without disrupting degree distribution
and other measures is a topic for further research that might

be approached by either thinning out a single network to pro-
duce community divisions, or by generating separate networks
and appropriately rewiring connections to produce the desired
inter-community connection density.

3.2. Percolation and epidemics

A property of networks that has direct relevance to epi-
demiology is the bond percolation threshold, which is directly
equivalent to the epidemic threshold in traditional models.

In percolation, the nodes of a network are referred to as sites,
and the edges or connections as bonds. If a site i is infected for
time �i and has infection-causing contacts with site j at a rate
of 0 < �ij < 1 per time unit, then the probability of j not being
infected is (1−�ij )

�i for �i time steps of �t =1. Therefore, the
probability of infection across the edge ij is the transmissibility
Tij ,

Tij = 1 − (1 − �ij )
�i . (3)

If an infection occurs, the bond is said to be occupied, oth-
erwise, it is unoccupied. Thus, contact rate and infective time
translates directly into a bond occupation probability. If �i are
equal across all nodes and �ij across all edges, then Eq. (3) can
be used to produce a uniform probability T of bonds occupied,
otherwise, Newman [6] shows that the distributions of �ij and
�i can be averaged to produce T.

Starting with a network of unoccupied bonds and randomly
occupying them one by one corresponds to continuously in-
creasing T from 0 to 1. Percolation is said to occur when occu-
pied bonds connect enough sites together to create a percolating
or spanning cluster, which corresponds to an epidemic with the
size of the cluster. This occurs over a relatively narrow range of
T, associated with a critical Tc called the percolation threshold,
or in diseases, the epidemic threshold. On lattices a spanning
cluster is defined as one which connects the top and bottom
and/or left and right edges of the lattice, but for general net-
works it is described more loosely in terms of a giant component
that covers a large portion of the graph. Taking T from just above
Tc to just below will fragment the giant component into several
much smaller ones. For T < Tc the smaller components corre-
spond to non-epidemic outbreaks of disease, and their average
size can be calculated as a function of T. Above Tc this size tends
to infinity in the limit of infinitely large networks due to the gi-
ant component. Newman [6] found exact solutions for the per-
colation threshold on general networks, and also demonstrated
by simulation that different values or distributions of �ij and
�i that map to the same value of T show the same mean cluster
and epidemic size, and thus that the result of simulating SIR on
a network maps directly onto the problem of bond percolation.

3.3. Epidemiological measures

Beyond the epidemic size and distribution outbreak sizes ob-
tained by percolation, there are a number of measures of an
epidemic that require an actual SIR simulation to be carried
out. For one, the distribution of infectives in the network is
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important—are they concentrated, or spread out? Does the in-
fection propagate outwards in a ring, leaving removed nodes
behind, as in Grassberger’s lattice model [7]? In the context
of HIV, it is important to know the proportion of high-degree
nodes that are infected to determine their significance in the
spread of the disease.

To track the progress of the disease, the rate of new infec-
tions is an important measure. It can be accumulated over each
time step and plotted. The height of an epidemic can be thought
of either as when the number of infectives is at a maximum, an
important measure visible in the infective curve of Fig. 1, or
when the infection rate is at a maximum. The proportion of un-
touched susceptibles is a measure of the impact of the epidemic,
as a network with low degree nodes as well as high-degree ones
may find a large number of low-degree nodes untouched in the
epidemic.

4. Common network models

In this section we describe a number of widely studied net-
works on which epidemic models are often based, and we
provide some analytical properties and common variations.
The models described are the random, Watts–Strogatz, lattice,
Barabasí–Albert, and power-law or “scale-free” networks, of
which all but the lattice exhibit the small world property.

4.1. Random networks

Random networks are simple models that can exhibit the
small-world property—it consists of N sites and a probability
p of any two sites being connected and the average degree is
z = pN . An alternative approach is to specify that each site
has degree z, in which case there are 1

2zN connections. These
are also called Poisson random graphs because their degree
distribution is p(k) ≈ zke−z/k! [5].

Random networks are small-world, which Newman [8] ex-
plains by each site having z nearest neighbours, and z2 second-
nearest neighbours and so on, such that the diameter D is given
by N = zD and hence the diameter and mean path length scale
logarithmically with the number of nodes. However, random
networks lack important properties of contact networks, in par-
ticular, it has a low clustering coefficient of C = z/N .

Also, random networks are said to be “well-mixed” (as op-
posed to fully mixed like classical models). They thus have a
much lower epidemic threshold than expected in real popula-
tions (see Fig.3 for p = 0.05 on a N = 1000 graph (i.e. z = 50
is reasonable for human social networks).

4.2. Lattices

A d-dimensional lattice is a regular arrangement of sites in
a space of dimension d, and in which each site is connected to
nearest z(k) neighbours of distance k or less from itself. The
number of sites N is found from the “side-length” L, such that
N = Ld , with N = L2 for the usual case of a square lattice.

The simplest form is a line of sites, d = 1, k = 1, which
can be made into a circle using periodic boundary conditions
(connecting the last site to the first). More useful for epi-
demics is the d = 2 lattice in which points are laid out on
a grid (or a torus if the boundaries wrap). The distance met-

ric for k is usually either the Euclidian (
√

(�x)2 + (�y)2)
distance between the points, or the Manhattan (|�x| + |�y|)
distance that is obtained following only horizontal and vertical
edges.

The advantage of a lattice is that it naturally incorporates
spatial separation of sites and provides a simple analytical case
of bond percolation with threshold Tc = 0.5, prompting Grass-
berger [7] to use the 2D lattice in his foundational research in
dynamical percolation in the epidemic process. If T is only a
little greater than 0.5, as in the epidemics shown in Fig. 3 sim-
ulated on an L = 100, d = 2, k = 1 grid with � = 0.05 and
� = 15 corresponding to T = 0.54, we find the epidemic to be
long-term and always at a low level. For k > 1, we also find a
non-zero clustering coefficient that is constant as N varies, as
in social networks [8]:

C = 3(z − 2d)

4(z − d)
. (4)

However, the lattice is inherently large since the mean
path length � = 1

4dL/k in the 2D lattice [9] scales lin-
early instead of logarithmically. All nodes also have the
same degree, whereas social networks usually have skewed
distributions.

4.3. Watts–Strogatz networks

The Watts–Strogatz model adds the small-world property to
a general lattice by creating shortcuts. The original model used
a d = 1 ring lattice and rewired each edge in the lattice with
probability �. It therefore interpolates uniformly between a
lattice at � = 0 and a random graph at � = 1. Fig. 4 shows
how the path length decreases with increasing �. Newman and
Watts [9] modified the model to preserve the underlying lattice
for each edge by adding a shortcut with probability �.

In the case of a d-dimensional lattice of side L in which
2k nearest neighbours along each of the principle axes is con-
nected, the Watts–Strogatz network averages �kdLd shortcuts,
and coordination number z=2kd(1+�). At small �, the model
is “large-world” with � ∼ L, and at large � small-world with
� ∼ log N=d log L [9]. For small � the Watts–Strogatz network
retains the clustering of the underlying lattice. Watts–Strogatz
networks also show significantly higher percolation thresholds
on account of the underlying lattice, where for well connected
individuals (k = 4) and many shortcuts (� = 0.25) the percola-
tion threshold is Tc ≈ 0.12.

However, in networks where there is geographical separa-
tion, such as human social networks, distance should affect the
probability of a connection. Newman [8] cites work by Klein-
berg [10] in which he found that there exists a simple means
of finding short paths between any two nodes in a small-world
network on a 2D lattice using local information only if the
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Fig. 3. Random network largest cluster with N = 1000, p = 0.02. Random networks exhibit low epidemic thresholds.
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Fig. 4. SIR Lattice with, d = 2, L = 100, k = 1, � = 0.05, � = 15. The epidemic persists at a low level. For k > 1, there is a non-zero clustering coefficient
that is constant as N varies.

probability of a shortcut fell as the inverse-square of the dis-
tance between nodes.

4.4. Power-law networks

One feature lacking in Watts–Strogatz networks is a power-
law degree distribution often found in human social networks,
such as the network of sexual contacts studied by Liljeros [11].
These are of the form P(k) ∼ k−�, and sometimes with an
exponential cutoff P(k) ∼ k−�e−k/�. Power-law networks are
often called “scale-free” on account of the degree distribution
being self-similar on different levels, although technically the
network itself exhibits distinct scales.

The properties of power-law networks vary greatly with the
exponent �, described in detail by Newman [5]. For � < 7

3 the
clustering coefficient grows with graph size, is constant for
�= 7

3 , and shrinks as C ∼ 1/N . For � < 2, a random graph such
as Fig. 5 will always have a giant component, and possibly a
few small ones in finite graphs. For 2 < � < 3.4788 . . . the gi-
ant component fraction steadily decreases (and implies that we
cannot reliably create a single-component power-law network
with � in that range), until for larger � it ceases to exist. Also,
increasing � tends to increase path length and diameter due to
fewer high-degree nodes.

Power-law networks are small world due to the small propor-
tion of high-degree nodes, and are unrealistic primarily in the
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Fig. 5. Watts–Strogatz path length for N = 1000 and k = 2.

random mixing (connections not being geographically corre-
lated). Also, unlike the traditional epidemic threshold, May and
Lloyd [12] demonstrated that there is a zero percolation thresh-
old in transmissibility for 2 < � ≤ 3 in infinite graphs while
finite graphs show small but non-zero thresholds. Further work
by Newman [6] with a bipartite power-law graph does however
exhibit the threshold Tc that rises from 0 to 1 over the range
3 < � < 3.4788, and since Liljeros’s [11] measured � ≈ 3.2 for
a network of sexual contacts it suggests that a random scale-free
network still has the necessary properties for modelling STDs.

Fig. 5 shows a simulated epidemic of �=0.02, �=10 (T =0.4)
on a complete power law network of � = 2, created using the
Monte Carlo Markov chain technique of the following section.
The progress of the epidemic is markedly different from that
of the classical model, in that even far above the epidemic
threshold Tc ≈ 0.07 a large number of susceptibles remain
uninfected.

One means of restoring a geographical metric is the lattice-
based scale-free network of Warren et al. [13]. They scatter
nodes randomly on a 2D lattice, with connections to lattice sites
within a radius R drawn from a power-law distribution, and
connecting nodes if their disks overlap. Their model also shows
the interesting property of a non-zero percolation threshold in
the density of the nodes and transmissibility.

4.5. Barabasí–Albert

The Barbasí–Albert scale-free model is a network of the form
P(k) ∼ k−3, which was designed to allow network growth, as
opposed to the static nature of the networks above. The network
starts with N0 nodes and no edges, and N −N0 nodes are added
one by one. Each new node is connected to m existing nodes,
each with a probability proportional to its degree. This is the
same as m times randomly picking an edge, then randomly
picking one of the nodes on it, and connecting to that node.

The result is preferential attachment instead of random mix-
ing: high-degree nodes naturally accumulate more connections.
Although simple, power-law and small-world, the model has a
disadvantage over random mixing in that there are much shorter
paths between high-degree nodes, so an epidemic can occur
for any non-zero transmissibility even though it corresponds to
� = 3, as demonstrated in Figs. 6 and 7 for N = 5000, where
finite-size effects produce Tc ≈ 0.12. Note also the distinctly
nonlinear curve in the size of the largest cluster. Like the ordi-
nary power-law networks, the epidemic leaves many suscepti-
bles behind in finite networks as in Fig. 6, despite the cluster
being infinite in the limit of large network size.

4.6. Generating scale-free networks

The algorithm, or sequence of steps, for generating a random
network, lattice, Watts–Strogatz network or Barabasí–Albert
network follows trivially from the description of the network.
However, to create a network with an arbitrary specified degree
distribution, such as power-law, so as to maintain connectivity
and a random choice from the ensemble of such networks, is
rather more complicated.

Generating random mixing scale free networks is usually
accomplished by first choosing a degree for each node from
the distribution. An important result in the power-law network
p(k) ∼ k−� is the maximum value of k likely to occur [5],
from which a discrete probability distribution for 1, . . . , kmax
can be constructed:

kmax ∼ n1/(�−1). (5)

The approach then taken by Newman [5] is to treat the degree
as the number of “spokes” on the node, which are connected
randomly to other available spokes until none remain, thus se-
lecting a random member of the ensemble of networks with
that degree sequence. However, with � > 2 the graph will have
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Fig. 6. Complete power-law SIR network with N = 500 and � = 2. Epidemic progress is different from the classical model.
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Fig. 7. Barbarasí–Albert network percolation: N = 5000, N0 = 5, m = 2.

a lot of small components. Interestingly, an attempt here to pro-
duce a bipartite network of accumulated sexual contacts by this
algorithm with � = 3.2 [11] resulted mostly in pairs.

Multiple components is realistic in sexual contact networks
that span only a few months or years, and possibly makes this
kind of random network less useful for modelling HIV, where
the long infective time necessitates a fragmentary network of
regular contacts that changes on long timescales if an epidemic
is to occur. Using networks accumulated over longer time pe-
riods to achieve connectivity would produce more high-degree
nodes than is observed in any local time-period, and thus over-
estimate the spread of the disease.

One alternative taken here is to choose the network instead
from the ensemble of connected graphs with the same power-

law degree distribution, which would then reflect a rapid spread
when the disease reaches a relatively large component as might
be found in a country-sized population. Unfortunately, a single-
component form is only reliably possible for � ≤ 2.

The algorithm used in this paper is that of Gkantsidis
et al. [14]. For this algorithm the degree distribution is first ex-
amined to see whether a connected network is possible for the
degree sequence k1 > k2 > · · · > kN . The first condition is that
for each subset of the h highest degree nodes, the sum of their
degrees can be absorbed by themselves and the outside nodes:

h∑
i=1

ki ≤ h(h − 1) +
N∑

i=h+1

min{h, ki}. (6)
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The second is that the graph contains a spanning tree,

N∑
i=1

ki �2(N − 1). (7)

Together they are sufficient [14] to guarantee connectivity. The
initial graph is constructed by picking random vertices and
connecting them to a node with the highest residual degree. We
found an efficient means of locating such a node by creating a
table that lists the nodes of a given degree, and which is updated
whenever two nodes are connected.

Deterministic attachment clearly does not produce a random
instance of the graph, and the second step is to randomise it by
a Markov chain process that preserves the degree distribution.
The simplified approach used here is to pick any two edges
(x, y) and (u, v) from the graph at step t. If (u, x) and (v, y)

are not edges, and the graph obtained by replacing (x, y) and
(u, v) with (u, x) and (v, y) is connected, then that is the graph
at step t + 1. The mean path length and diameter of the graph
converge from the low initial value to ensemble most probable
values by t, roughly on the order of the number of edges.

It is possible to speed up the algorithm by performing mul-
tiple swaps between connectivity checks, and maintaining an
undo list, where the window of swaps is incremented if the net-
work is found to be connected, and halved if it is found to be
disconnected, necessitating an undo.

5. Network algorithms

We now discuss the algorithms implemented here for numer-
ically calculating structural and epidemiological measures on
networks.

5.1. Mean path lengths

The mean path length is found by calculating the shortest
path distance from a given node to each of the others, and
averaging, and then averaging again over each possible starting
node. The path distance can be found by doing a breadth first
search in which for visiting a node at distance d from the start,
its unvisited neighbours of distance d + 1 are pushed onto a
queue. The queue is first-in–first-out, so nodes are visited in
increasing order of distance (if a node further away than the
closest were visited out of order, it could put a longer than
optimal path length on one of its neighbours). Formally, for
shortest path distances dij

� = 1

N

N∑
i=1

�i, �i = 1

N

N∑
j=1

dij . (8)

It was also found that a good estimate can be obtained by av-
eraging over a random sample of starting nodes to save com-
putation time on very large graphs.

5.2. Clustering coefficient

The clustering coefficient was found by averaging the clus-
tering of each node in the graph. The clustering of a node i is
found by, for each of the node’s n neighbours j, counting those
neighbours of j which are also neighbours of i, and then divid-
ing by n(n− 1), since it is possible for each of n neighbours to
be connected to at most n − 1 others. Again, a good estimate
can be obtained using a random sample of nodes. Formally, for
distances dij ,

C = 1

N

N∑
i=1

Ci, Ci = 1

n(n − 1)

∑
j∈adj(i)

�(1, dij ). (9)

5.3. Percolation thresholds

Percolation thresholds were calculated using the union-find
algorithm proposed by Ziff and Newman [15]. A continuum
of T from 0 to 1 is obtained by randomly occupying bonds in
the network one by one. At each step, the clusters formed are
kept track of using a union-find structure, in which each site is
labeled with a parent that is one of the other sites in the same
cluster. The site at the root of the tree for that cluster is labelled
with a negative number that is the number of sites in the cluster
(lone sites are thus labeled “−1”).

Detecting whether a new bond joins two clusters is done by a
“find” operation which follows the parents of the sites on either
end of the new bond to their roots. If the roots are different,
then the union of the clusters is carried out by setting the parent
of root of the smaller cluster to be the root of the larger cluster,
whose size is then updated.

Finds are made more efficient by path compression: after
performing the find, the root of the tree is now known, so one
more pass through the path to the root is carried out, setting the
parent of each site along the way to point directly to the root.

Using the tree structure, the average cluster size can be found
by dividing the size of the network by the number of clusters,
and the percolation threshold occurs when several smaller clus-
ters join to form one which covers a large part of the network.
This can be detected by a sudden increase in the size of the
largest cluster followed by a steady or decreasing positive gra-
dient in that size until the graph is fully occupied.

5.4. SIR modelling

Other epidemiological measures require carrying out an SIR
simulation as described in the section on “network models”.
One means of avoiding passing through the entire network is
to store the infectives in a separate list. By running through
this list, only the neighbours of infectives are investigated and
infectives whose time limit is reached can change state to re-
moved. Also new infectives can be added to a separate list that
is tagged onto the list of infectives at the end of the time step,
which avoids making a copy of the network for updating pur-
poses.
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6. Dynamic networks

The networks discussed, thus, far have all been accumulated
networks of potentially disease-transmitting contacts that oc-
cur between individuals on a regular basis. This assumption
simplifies computation and is valid possibly on a timescale of
several months. However, on longer timescales as in the case
of HIV one might consider a regular contact network whose
structure changes through addition and deletion of nodes and
edges. Unfortunately, the network models here, except the ran-
dom network, do not easily support modification since random
changes will eventually lead to all the networks converging on
a random graph. Constructing realistic random changes that
maintain the network type, and then also the network parame-
ters to within some tolerance, is a considerably more difficult
task for all but Barabasí–Albert network which was designed
to support growth.

The alternative is to consider a network of instantaneous con-
tacts. The network is not stored directly, but at each time step
the contacts between nodes is drawn from a probability dis-
tribution. This has the advantage of easily adding and remov-
ing nodes, since no edges need to be modified. However, the
problem of persistence has merely been shifted from modify-
ing edges to modifying a probability distribution, and measures
such as path length and clustering become difficult if not im-
possible to quantify.

A conceptually simple approach to the dynamic network has
been taken in a recent work by Verdasca et al. [16]. They use
an underlying 2D lattice to provide spatial proximity. Contacts
occur with probability p with one of the 12 nearest neighbours
(8 around the node, 4 at a distance of 2 at the cardinal compass
points), and small-world contacts at probability 1 − p with
any other node in the network. The primary motivation for the
model was that it would easily accommodate birth by changing
R nodes to S, and death by changing S or I nodes to R, allowing
a network model of an SIR endemic.

Their simulation was carried out stochastically in a Monte
Carlo fashion by performing N = L2 random site updates
with relative rates of birth, death and infection of 	, 	 and
�, but only carrying out birth if the chosen site is R, only
carrying out death if it is S or I, and only carrying out
infection if it is S and a second randomly chosen con-
tact (neighbour with probability p, distant with p − 1) is
infective.

Their approach is not a fully general dynamic network
and suffers from being computationally intensive: order of
magnitude calculations show several weeks of computation
behind their results carried out on 250 000 and 1 000 000-
nodes graphs. Nevertheless, they succeeded in showing a
percolation transition from outbreak to epidemic behaviour
at p = 0.1 in the SIR model and were able to fit an SEIR
version of their model to produce three-year periodic oscil-
lations in the rate of new infectives every two weeks, and
average age at infection, using known parameters and data on
measles. This much was accomplished without the difficult-
to-measure parameters of seasonal forcing used in traditional
models.

7. Conclusions

Using a contact network removes the assumption of a fully-
mixed population inherent in traditional models. There are sev-
eral common network models, each of which has similarities
and differences from those expected of typical human con-
tact networks. One important structure, the community, may
be possible to incorporate as an additional step. Information
can be gathered from a network’s structural properties, the
mapping of the removed nodes after an epidemic to a bond
percolation problem, and actual simulations of the epidemic,
and relatively efficient algorithms exist for all of these tasks.
The next step in realism is to make the network dynamic,
though the reduction in information available about the network
structure and the complexity of computation makes this task
difficult.
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