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Abstract G G2 .
The problem of measuring “similarity” of objects arises in g {univ, Univ
many applications, and many domain-specific measures ProfA StudentA 0034 /'.{F?r;‘fl: o)
have been developed, e.g., matching text across docu- H {Univ, StudemB}T ‘ '
ments or computing overlap among item-sets. We pro- Univ( ¢ {Soth;tA, Sudents)
pose a complementary approach, applicable in any domain L 0.042 0132
with object-to-object relationships, that measures similar- @ - {ProfB, StudentA} \ @ i oy
ity of the structural context in which objects occur, based ProfB Studentd
on their relationships with other objects. Effectively, we 0106 oo @)
compute a measure that says “two objects are similar if {ProfA, StudentB} {ProfB, Students}
they are related to similar objects.” This general similar- €) (b)

ity measure, calleimRankis based on a simple and in-
tuitive graph-theoretic model. For a given domain, Sim-
Iarlty'measur.es. We suggest technlqu.es for effl.C|ent com- graphG2. SimRank scores using parametér= 0.8 are
putation of SimRank scores, and provide experimental re- 2
S ; - shown for nodes iid==.
sults on two application domains showing the computa-

tional feasibility and effectiveness of our approach. the (logical) graphs derived from such data sets to compute similar-

ity scores between nodes (objects) based ostituetural contexin
1 Introduction which they appear, a concept to be made clear shortly. The intuition
L . o behind our algorithm is that, in many domaisanilar objects are
Many applications require a measure of “similarity” between ob- e|a1eq tosimilar objects. More precisely, objecisandb are sim-
jects. One obvious example is the *find-similar-document” query,jjar if they are related to objectsandd, respectively, and andd
on traditional text corpora or the World-Wide WeBl.[ More gen- 50 themselves similar. The base case is that objects are similar to
erally, a similarity measure can be used to cluster objects, such §famselves.

for collaborative filteringin a recommender systeri,[11, 20], in . . -
which “similar” users and items are grouped based on the users’ As an example, consider the tiny Web gra@fshown in Figure

preferences 1(a), representing the Web pages of two professors ProfA and ProfB,

Various aspects of objects can be used to determine similaritythGIr students StudentA and Student8, and the home page of their

. . . L Iniversity Univ. Edges between nodes represent hyperlinks from
usually depending on the domain and the appropriate definition 0f)ne page to another. From the fact that both are referenced (linked

similavity for that domain, In.a d‘?cume”t corpus, matching text.mayto) by Univ, we may infer that ProfA and ProfB are similar, and some
be used, and for collaborative filtering, similar users may be iden-_” . o . .
evious algorithms are based on thcitation[21] information.

tified by common preferences. We propose a general approach th : . :
. ; - . ) . .~ \We generalize this idea by observing that once we have concluded
exploits the object-to-object relationships found in many domains_. "~ . L
. similarity between ProfA and ProfB, and considering that ProfA and
of interest. On the Web, for example, we can say that two page

are related if there are hyperlinks between them. A similar a roacf?rOfB reference StudentA and Studentd respectively, we can also
yp y PP conclude that StudentA and StudentB are similar. Continuing forth,

can be applied to SC|.ent|f|c papers and thelr C|tat|.0ns, or to any othere can infer some similarity between Univ and ProfB, ProfA and
document corpus with cross-reference information. In the case o tudentB. etc
recommender systems, a user’s preference for an item constitutes a T ) ) )
relationship between the user and the item. Such domains are natu- L6t us logically represent the computation by using a node-pair
rally modeled as graphs, with nodes representing objects and edg8&@PhG™, in which eacr; node represents an ordered pair of nodes
representing relationships. We present an algorithm for analyzingf G. A node(a,b) of G* points to a n0d¢0,2d_) if, in G, a points
0 ¢ andb points tod. A simplified view of G* is shown in Figure

*This work was supported by the National Science Foundation undef(b); scores will be explained shortly. As we shall see later, scores

grants 11S-9817799 and 11S-9811947. are symmetric, so for clarity in the figure we drdw; b) and (b, a)




as a single nodéa, b} (with the union of their associated edges). andq. These methods have been applied to cluster scientific papers
Further simplifications in Figurg(b) are explained in Sectich according to topic I8, 21]. More recently, the co-citation method
We run an iterative fixed-point algorithm @¥ to compute what  has been used to cluster Web pagk [L7]. As discussed in Sec-
we call SimRankscores for the node-pairs ii2. The SimRank tion 1, our algorithm can be thought of as a generalization of co-
score for a node of G2 gives a measure of similarity between the citation where the similarity of citing documents is also considered,
two nodes of represented by. Scores can be thought of as “flow- recursively. In terms of graph structure, co-citation scores between
ing” from a node to its neighbors. Each iteration propagates scoreany two nodes are computed only from their immediate neighbors,
one step forward along the direction of the edges, until the systerwhereas our algorithm can use the entire graph structure to deter-
stabilizes (i.e., scores converge). Since node§fepresent pairs mine the similarity between any two nodes. This generalization is
in G, similarity is propagated from pair to pair. Under this com- especially beneficial for nodes with few neighbors (e.g., documents
putation, two objects arsimilar if they are referenced bgimilar rarely cited), a property we will discuss in Sectin
objects! Computing similarity recursively based on structure has also
It is important to note that we are proposing a general algorithmbeen explored in the specific context of database schema-matching
that determines only the similarity of structural context. Our algo-[15]. However, that work deals with the pairing of nodes across two
rithm applies to any domain where there are enough relevant relegraphs and relies on domain-specific metadata (e.g., node and edge
tionships between objects to base at least some notion of similaritiabels) as well as structural relationships.
on relationships. Obviously, similarity of other domain-specific as- Iterative algorithms over the web graph have been used in
pects are important as well; these can—and should—be combingd0, 16] to compute “importance” scores for Web pages. Results
with relational structural-context similarity for an overall similarity show that the use of structure can greatly improve Web search ver-
measure. For example, for Web pages we can combine SimRardus text alone. The algorithms i, 16] analyze individual pages
with traditional textual similarity; the same idea applies to scien-with respect to the global structure, whereas our similarity measure
tific papers or other document corpora. For recommender systemanalyzes relationships between pairs of pages.
there may be built-in known similarities between items (e.g., both  In the classifier for Web pages presenteds}; fhe classification
computers, both clothing, etc.), as well as similarities between usersf the neighbors of a Web pagés used to improve upon the textual
(e.g., same gender, same spending level). Again, these similaritiesassification ofp through a probabilistic model. In contrast, Sim-
can be combined with the similarity scores that we compute baseRank computes scores for pairs of pages (instead of a single page) by
on preference patterns, in order to produce an overall similarity meacomparing their neighbors. Our algorithm is not limited to discrete

sure. categories and it computes a purely structural score that is indepen-
The main contributions of this paper are as follows. dent of domain-specific information.
o Aformal definition forSimRanlsimilarity scoring over arbitrary Similarity of documents by textual content has been studied ex-
graphs, several useful derivatives of SimRank, and an algorithniensively in the field of Information Retrieval (IRZ]. As discussed
to compute SimRank scores (Sectié)n in Sectionl, our work addresses only similarity of structural infor-

mation, and may be used in combination with textual methods.
The process of making recommendations to a user based on
preference or purchase data from other users is knowcokesh-

° Expgrimental results u_sing an initial in-memory implementation g ative filtering[7, 11, 20]. Many approaches to collaborative fil-
of SimRank over two different real data sets that show the eﬁectering rely on identifying similar users or similar items. A good

tiveness and feasibility of SimRank (Sectién

e A graph-theoretic model for SimRank that gives intuitive math-
ematical insight into its use and computation (Sectpn

overview of the techniques used, which include numerical methods
Discussions of related work and our basic graph model are providetike vector-cosine similarity 4] and the Pearson correlatiod]],

in Section and3, respectively. can be found inJ]. These methods compute similarity between
sets of objects (e.g., preference lists for users, or preferred-by lists
2 Related Work for items), whereas our algorithm deals with similarity of context in

) - ~ graph structures. Still other approaches take advantage of external
Structural context has been used and analyzed in specific applicgformation about the objects themselves, e.g., a hierarchy by which
tions, such as bibliometrics, database schema-matching, and hypgfe items may be categorize@] [
text classification. The more general problem of finding similar ob-  The intuitive underlying model for our similarity measure is
jects has been studied in Information Retrieval and recommend&jased on “random surfers”, a concept which is also used6h [
systems, among other areas. to provide an intuitive model for thBageRankalgorithm. For our

Bibliometricsstudies the citation patterns of scientific papers (or purposes we formalize and extend the model usixgectedf dis-

other publications), and relationships between papers are inferrednces a general graph-theoretic property that can apply in other
from their cross-citations. Most noteworthy from this field are the strycture-based applications, such as personalized Web s8grch |
methods ofco-citation[21] and bibliographic coupling[9]. In the Finally, some of the graph-theoretic definitions and properties
co-citation scheme, similarity between two pape@ndq is based  ysed in this work are surveyed i, [14].
on the number of papers which cite bgttandg. In bibliographic
coupling, similarity is based on the number of papers cited by both

3 Basic Graph Model

1The recursive nature of our algorithm, and thus its name, resembles that . . . .
of the PageRankalgorithm, used by the Googld][Web search engine to Ve Model objects and relationships as a directed gtaph (V, E)

compute importance scores for Web pages}.[In Section2 we discuss how ~ Where nodes inl/ represent objects of the domain and edges in
PageRank and other iterative algorithms relate to our work. FE represent relationships between objects. In Web pages or sci-




entific papers, which areomogeneouslomains, nodes represent the similaritys(Z;(a), I;(b)) of these pairs. Then we divide by the
documents, and a directed ed@e g) from p to ¢ corresponds to  total number of in-neighbor pair$l (a)||Z(b)|, to normalize. That
a reference (hyperlink or citation) from documerto document. is, the similarity between andb is the average similarity between
In a user-item domain, which isipartite, we represent both users in-neighbors ofa and in-neighbors ob. As discussed earlier, the
and items by nodes iv. A directed edg€p, q) corresponds to a similarity between an object and itself is defined tolbe
purchase (or other expression of preference) of ifdmy personp. In the Appendix we show that a simultaneous solutién x) €
The result in this case is a bipartite graph, with users and items ofo, 1] to then? SimRank equations always exists and is unique. Thus
either side. Note that edge weights may be used to represent varyinge can define th&imRank scordetween two objecta andb to
degrees of preference, but currently they are not considered in ouse the solutions(a,b). From equation ), it is easy to see that
work. SimRank scores are symmetric, i.8q,b) = s(b, a).

For a nodev in a graph, we denote bj(v) and O(v) the set We said in Sectiori that similarity can be thought of as “prop-
of in-neighbors and out-neighbors of respectively. Individual in-  agating” from pair to pair. To make this connection explicit, we
neighbors are denoted &gv), for 1 < i < |I(v)|, and individual  consider the derived grapfi* = (V2 E?), where each node in

out-neighbors are denoted @s(v), for 1 < i < |O(v)|. V2 =V x V represents a paifu, b) of nodes inG, and an edge
from (a, b) to (c, d) exists inE? iff the edges(a, c) and (b, d) exist

4 SimRank in G. Figurel(b) shows a simplified version of the derived graph
G? for the graphG in Figurel(a), along with similarity scores com-

4.1 Motivation puted usingC' = 0.8. As mentioned earlier, we have drawn the

Recall that the basic recursive intuition behind our approach is “twosi/mrr:jetnc palrs{q&b) da:(nd(b,tﬁ) a}f a S'“gr"; n(f)_déta, b}.tmo tly ;:es
objects aresimilar if they are referenced bgimilar objects.” As ot hodes are omitted from the Tigure. 1he Hirst are thasgieton

the base case, we consider an object maximally similar to itself,nOdes which have no effect on the similarity of other nodes, such as

to which we can assign a similarity score of 1. (If other objects{PrOfA’ ProfAj. The second are the nodes wisimilarity, such as
are known to be similar a-priori, such as from human input or text{PrO_fAf St.udentﬁ}. o .
matching, their similarities can be preassigned as well.) Referrin S'm"a”tY propagate; I .frpm “‘?de to node (corre;pgndmg
back to Figurel, ProfA and ProfB are similar because they are both 0 _propagat_lon from pair to pair '_@)' with the sources of similarity
referenced by Univ (i.e., they are co-cited by Univ), and Univ is being the singleton nodes. Notice that cycle:ffy caused by the

(maximally) similar to itself. Note in Figur&(b) the similarity score presence of cycles i6, allow similarity to flow in cycles, such as
of 1 on the nodg{Univ, Univ}, and the score of 0.414 on the node oM {Univ, ProfB} back to{ProfA, ProfB} in the example. Simi-
{ProfA, ProfB}. (How we obtained 0.414 will be described later.) larity scores are thusputually reinforced )
StudentA and StudentB are similar because they are referenced by NOW et us consider the consta@t, which can be thought of
similar nodes ProfA and ProfB; notice the similarity score of 0.331€ither as a confidence level or a decay factor. Consider a simple
on the node fof StudentA, StudentBin Figure1(b). scenario where paglereference_s b_otbandd, sowe cor_mlude some

In Sectiond.2we state and justify the basic equation that formal- similarity betweern: andd. The similarity ofz with itselfis 1, but we
izes SimRank as motivated above. Sectidmodifies the equation Probably don'twant to conclude thatc, d) = s(z, z) = 1. Rather,
for bipartite graphs, such as graphs for recommender systems as di¥€ ets(c, d) = C's(z, x), meaning that we are less confident about
cussed in SectioB. The actual computation of SimRank values is (€ Similarity betweea andd than we are betweenand itself. The
discussed in Sectiof.4, including pruning techniques to make the Same argument holds when two distinct gagesr]db cite ¢ and
algorithm more efficient. Finally, Sectioh5 discusses the benefits ¢ Viewed in terms of similarity flowing irG", C gives the rate of
of SimRank in scenarios where information is limited. decay (sinc&” < 1) as similarity flows across edges. In Sectiéns
and6 we will discuss the empirical significance ©f

Though we have given motivation for the basic SimRank equa-
tion, we have yet to characterize its solution, which we take to be a
Let us denote the similarity between objeatandb by s(a,b) € measure of similarity. It would be difficult to reason about similar-
[0,1]. Following our earlier motivation, we write a recursive equa- ity scores, to adjust parameters of the algorithm (so far Gflyor
tion for s(a, b). If a = bthens(a,b) is defined to bd. Otherwise, to recognize the domains in which SimRank would be effective, if

we cannot get an intuitive feel for the computed values. Se&ion

4.2 Basic SimRank Equation

- C ‘IZ(“:)‘ ”ff' (L@, L (B) " addresses this issue with an intuitive model for SimRank.
s(a,0) = 77~ stia), 4;
H(@)[I(0)] = = !

4.3 Bipartite SimRank
whereC' is a constant betwedhand1. A slight technicality here is P

that eithera or b may not have any in-neighbors. Since we have noNext we extend the basic SimRank equatib)t¢ bipartite domains
way to infer any similarity betweea andb in this case, we should consisting of two types of objects. We continue to use recommender
sets(a, b) = 0, so we define the summation in equatidh o be0 systems as motivation. Suppose persons A and B purchased item-
whenlI(a) = @ orI(b) = 0. sets{eggs, frosting, sugarand{eggs, frosting, flour respectively.

One SimRank equation of the forn)(is written for each (or- A graph of these relationships is shown in Fig@¢e). Clearly, the
dered) pair of objects. and b, resulting in a set o> SimRank  two buyers are similar: both are baking a cake, say, and so a good
equations for a graph of size Let us defer discussion of the con- recommendation to person A might be flour. One reason we can con-
stantC for now. Equation I) says that to compute(a, b), we it- clude that A and B are similar is that they both purchased eggs and
erate over all in-neighbor paid;(a), I;(b)) of (a,b), and sum up  frosting. But moreover, A purchased sugar while B purchased flour,



{sugar, frosting} together, not the absolute number of times. It is, however, easy to
0619 incorporate the absolute number if desired; see Sedtn

{suger, eggst

4.3.1 Bipartite SimRank in Homogeneous Domains

It turns out that the bipartite SimRank equatioBsgnd @) can also

be applied to homogeneous domains, such as Web pages and scien-

tific papers. Although a bipartite distinction is not explicit in these

\. {frosting, eggs} domains, it may be the case that elements take on different roles
(e.g., “hub” pages and “authority” pages for important€]), or

that in-references and out-references give different information. For

example, two scientific papers might be similarsasveypapers if

. {eogs, eggs they cite similarresult papers, while two papers might be similar
1 as result papers if they are cited by similar survey papers. In anal-
. {eggs, flour} ogy with the HITS [LQ] algorithm, we can associate a “points-to”

similarity scores; (a, b) to each pair of nodes andb, as well as a
“pointed-to” similarity scoresz(a, b), and write the same equations
(2) and @) as if the domain were bipartite:

[O(a)| [O(b)]
Figure 2: Shopping grap& and a simplified version of the s1(a,b) G Z 52(0i(a), 0;(b))
derived node-pairs grapfi?. Bipartite SimRank scores are O@IO®)] = j=1
shown forG? usingC; = Cy = 0.8. Cy 11(a)] 11(b)]

= —— Ii(a), I;

and these are similar items, in the sense that they are purchased by (et HOIHOL ; Jz:‘: fi(, 1,0
similar people: cake-bakers like A and B. Here, similarity of items
and similarity of people are mutually-reinforcing notions: Depending on the domain and application, either score or a combi-

AP Lo nation may be used.

e People arsimilar if they purchaseimilar items. y
e Items aresimilar if they are purchased tsimilar people. 4.3.2 The Minimax Variation

The mutually-recursive equations that formalize these notions are o ) . ) . )

analogous to equatiorl), Let s(A, B) denote the similarity be- The basic SimRank (_aquatlon (and th_e blpa_rtlte version) is one way

tween persons andB, and lets(c, d) denote the similarity between tq e_ncc_Jde mathematically our recursive notion of s_trucf[ural-con_text

itemsc andd. Since, as discussed in Sectidndirected edges go similarity. We present another possibility here for bipartite domains,

from people to items, forl B we write the equation inspired by a real data set on which we experimented: finding sim-
' ilarity between undergraduate students and between courses based

o [o(A)||O0(B)] on the students’ history of courses taken. Students often take groups
s(A,B) = OO 5(0i(A),0;(B)) (2)  of related courses due to curricular requirements. For example, two
=1 j=1 Computer Science (CS) majorsand B may both take a group of

required CS courses, while one takes Sociology-related electives and

and forec # d we write . o
the other English-related. In the formalization presented thus far,

Cs [L(e)] [ 1(d)] each ofA’s courses would be compared with eachR®i§. How-
s(e,d) = TNI@] > s(lile), Ii(d) (3)  ever, it may be meaningless to compafis CS courses withB’s
i=1 j=1 electives, or vice versa, diluting the results. Instead, we are more in-

terested in comparing’s elective choices witlB’s elective choices.

If A = B, s(A,B) = 1, and analogously fos(c, d). Neglecting : .
C: andCs, equation 2) says that the similarity between persots One approach that addresses this problem is to compare each of
dB’s coursesc with only the one course taken by which is most

and B is the average similarity between the items they purchased, °. i : X o
and equation3) says that the similarity between itemandd is §|m|Iar toc. For notatlonal convenience in writing the new equa-
the average similarity between the people who purchased them. THON for s(4, B), we define the !ntermed|ate terreq (4, B) and
constants’, C> have the same semantics@sn equation L). s5(4, B) (for A # B) as follows:

Figure2(b) shows the derived node-pairs gragh for the graph |0(4)]
G in Figure 2(a). Simplifications have been made &', as in sa(A, B) = i Z 10(B)I s(0:(A),0;(B))
Figure 1(b). Similarity scores for nodes af?, computed using ' 0(A4)] = =1 e
Ci1 = C2 = 0.8, are also shown. Notice how sugar and flour are 10(B)|
similar even though they were purchased by different people, al- (4 py— &! il s(0:(4),0,(B))
though not as similar as, say, frosting and eggs. The ffrdsting, ’ |O(B)] - Y

eggs has the same score as, sgsygar, eggs even though frosting

and eggs have been purchased together twice, versus once for sudpatuitively, s 4 (A, B) gives a score foB'’s liking of the preferences
and eggs, since the normalization in equatid)safd @) says that  of A, while sg(A, B) gives a score foA’s liking of the prefer-

we consider only the percentage of times that items are purchasezhces ofB. Since we consider a good match to be one of common



predilection, we take 4.4.2 Pruning

s(A, B) = min(sa(A, B),sp(A, B)) (4) One way to reduce the resource requirements is to prune the logical
graphG?. So far we have assumed thatafl node-pairs of3? are
to be the similarity between studentsand B, requiring that each considered, and a similarity score is computed for every node-pair.
must be interested in the other’s interests (i.e., no one-sided relatioWhenn is significantly large, it is very likely that the neighborhood
ships). For the similarity of coursegc, d), equation 8) or a mini- (say, nodes within a radius of 2 or 3) of a typical node will be a very
max variation analogous td) (or possibly other variations) can be small percentage< 1%) of the entire domain. Nodes far from a
used. Likewise, a minimax variation can also be applied to equatiomodev, whose neighborhood has little overlap with thatofwill

(2) for use in homogeneous domains. tend to have lower similarity scores withthan nodes near, an ef-
fect that will become intuitive in Sectioh Thus one pruning tech-
4.4 Computing SimRank nigue is to set the similarity between two nodes far apart to be 0, and
consider node-pairs only for nodes which are near each other. If we
4.4.1 Naive Method consider only node-pairs within a radiusrofrom each other in the

underlying undirected graph (other criteria are possible), and there
are on averagé, such neighbors for a node, then there will/bgé-
node-pairs. The time and space complexities becOtE nd,-d)
andO(nd,.) respectively, wherd; is the average df (a)||1(b)| for
pagesz, b close enough to each other. Sinteis likely to be much

less tham and constant with respect tofor many types of data,

we can think of the approximate algorithm as being linear with a
possibly large constant factor.

A solution to the SimRank equations (or bipartite variations) for a
graphG can be reached by iteration to a fixed-point. khebe the
number of nodes i6. For each iteratiott, we can keem? entries

Ry (%, %) of lengthn?, where Ry, (a, b) gives the score between
andb on iterationk. We successively comput®, 1 (x, x) based

on Ry (*, ). We start withRy (*, *) where eachR(a, b) is a lower
bound on the actual SimRank scai, b):

0 (if a#Db) Of course, the quality of the approximation needs to be verified
Ro(a,b) = { 1 (if a=0) experimentally for the actual data sets. For the case of scientific
papers, our empirical results suggest that this is a good approxima-
To computeRy+1(a, b) from Ry (*, ), we use equatiorif to get: tion strategy, and allows the computation to be carried out entirely
11 in main memory for a corpus of = 278, 626 objects. More details
C Ha)ll! can be found in Sectiof.
Riy1(a,b) 7(a)[[1(0)] Z:ZI ; Ry (Ii(a), I;(b))  (5)

4.5 Limited-Information Problem

for a # b, andRi+1(a,b) = 1fora = b. Thatis, on each iter-
ationk + 1, we update the similarity ofa, b) using the similarity ~ In document corpora, there may be many “unpopular” documents,
scores of the neighbors ¢, b) from the previous iteratiof ac- i.e., documents with very few in-citations. Although the scarcity of
cording to equationl). The valuesRy (*, ) are nondecreasing as contextual information makes them difficult to analyze, these docu-
k increases. We show in the Appendix that they converge to limments are often the most important, since they tend to be harder for
its satisfying (), the SimRank scores(x, *), i.e., for alla,b € V, humans to find. This is especially true for new documents, which
limy, 00 Ri(a,b) = s(a, b). In all of our experiments we have seen are likely unpopular because it takes time for others to notice and
rapid convergence, with relative rankings stabilizing within 5 itera- Cite them, but often we are most interested in new documents. Un-
tions (details are in SectioB), so we may choose to fix a number like the simple co-citation scheme, SimRank can effectively analyze
K =~ 5 of iterations to perform. documents with little contextual information.

Let us analyze the time and space requirements for this method The intermediate scoreB; (x, x) resulting from the first itera-
of computing SimRank. The space required is sin{y.?) to store  tion of the basic SimRank algorithm (Sectidr.]) are essentially
the resultsR;.. Letds be the average df (a)||1(b)| over all node-  weighted co-citation scores. To be precifge(a, b) gives the num-
pairs (a,b). The time required i©(Kn?dz), since on each iter- ber of documents that cite bothandb, divided by the product of
ation, the score of every node-pait®(of these) is updated with theirin-degrees(a)||Z(b)|R1(a, ) is exactly the co-citation score
values from its in-neighbor pairg4{ of these on average). As it cor- betweer andb. Successive iterations can be thought of as improv-
responds roughly to the square of the average in-dedsds likely ing upon these scores, especially in the limited-information case. We
to be a constant with respecttofor many domains. The resource demonstrate with an example.
requirements for bipartite versions are similar. Suppose we are trying to answer a “find-similar-document”

We mentioned that typicallf{ ~ 5, and in most cases we also query for documenti, and A is cited by only one other document
expect the average in-degree to be relatively small. Howevaran B, which also citesAy, . . ., A,,. The situation is shown in Figu®
be prohibitively large in some applications, such as the Web, wheré&nder the co-citation scheme, any 4f, ..., A,, appears equally
it exceeds the size of main memory. Specialized disk layout andimilar to A. In reality, we expect that not all citations froB are
indexing techniques may be needed in this case; such techniquesjual. There may be some “outlier” documents amdng. . ., A,
are beyond the scope of this paper. However, in the next subseevhich have relatively little to do wittB or the rest of the group. In
tion we do briefly consider pruning techniques that reduce both theur algorithm, the citers of each of the pagés, ..., A,, are also
time and space requirements. Pruning has allowed us to run our exaken into account, and they affect the similarity scores betwken
periments entirely in main memory, without the need for disk-basedand each ofd, ..., A,,. Those documentd; which are cited by
techniques. other documents similar t8 will have higher similarity toA. In the



7N

@ (b) ©

) . . . L Figure 4: Sample graph structures.
Figure 3: Little information is available fad, which is cited

only by B. theexpected distanéel(u, v) fromu to v as
figure, A,, is shown as a better match fer than A, sinceA,,’s d(u,v) = Z Plt]i(t) (7)
other citer isB’, which is similar toB. tru~sv

The example demonstrates the case where we are interested
documents similar to documert about which there is little infor-
mation. We can also consider the complementary case where
are interested in a general documéhtand ask whethen should 1
be included on a list of documents most similar@o In our ex- . i=1 [0(w;)[’
ample A has only one in-citation, and it may be the case that this: if I(t) = 0. Note that the case whete= v, for whichd(u,v) =
is an “outlier” citation. It would be safer to consider only docu- U IS @ Special case of): only one tour is in the summation, and it
ments for which we have more information. On the other hand, we'@S 1€ngth 0. Because of the presence of cycles, there are infinitely
don't want to eliminate unpopular documents from consideration of 2"y tours fromu to v, and ) is an (convergent) infinite sum. The
popular documents to be favored for every query. If we eliminated®Pected distance from to v is exactly the expected number of
the constant fact I1b ‘ from equation {), then documents with stepls a rlz(ando;n sukr]fe]rc,_ who at each st_ep f;)llows a random out-edge,
a very high popularity would have a high similarity score with any would take before he first reachesstarting fromu.
other document. As a compromise, we can weigh the final results
of the algorithm by popularity, using the asymmetric formula 5.2 Expected Meeting Distance

‘Fﬁe summation is taken over adlurs¢ (paths that may have cycles)
which start atu and end ab, and do not touch except at the end.
"Eoratourt = (w1, ..., wk), thelength(t) of ¢t is k—1, the number
of edges irt. The probabilityP[t] of travelingt is [T~} or

For our model, we extend the concept of expected distanex-to
pected meeting distand&MD). Intuitively, the expected meeting
] ) distancen(a, b) betweeru andb is the expected number of steps re-
where the constan? € (0, 1) is a parameter adjustable by the end qyired before two surfers, one startingzand the other a, would
user. In Sectior we discuss experimentation with this weighting meet if they walked (randomly) in lock-step. The EMD is symmetric
scheme. by definition. Before formalizing EMD, let us consider a few exam-
Note that although we have used documents as examples of uptes. The EMD between any two distinct nodes in Figda) is
popular objects, the same ideas apply in other domains, such as {iformally) oo, since two surfers walking the loop in lock-step will
items rarely purchased, courses rarely taken, etc. follow each other forever. In Figurb), m(u, v) = m(u,w) = co
(surfers will never meet) anek(v, w) = 1 (surfers meet on the next
. step), suggesting thatandw are much more similar to each other
5 Random Surfer-Pairs Model thanu is tov or w. Between two distinct nodes dfc), the EMD is

As discussed in Sectiof 2, it is important to have an intuition for 3.’ suggesting a lower similarity than betweeandw in 4(b), but
higher than between andv (or u andw).

the similarity scores produced by the algorithm. For this we provide : . . 9
an intuitive model based on “random surfers”. (Readers not inter- To define EMD formally inG;, we use the derived graphi™ of

ested in underlying models may proceed directly to Secian node-pairs. Each node, b) of V2 can be thought of as the present

experimental results.) We will show that the SimRank scegte b) .StateQ of a pair O.f surfers. 'K.Y’ where an edge frorfu, b) to (c, d)
measures how soon two random surfers are expected to meet at thG says that in the original grap®¥, one surf_er c2an move from
same node if they started at nodeandb and randomly walked the @ ©© ¢ While the other moves frorto d. A tour in G of lengthn

graph backwards. The details involve some complexity, and are ddEPreSents a pair of tours @ also having length.

veloped in the remainder of this section. The model is presented in 1€ EMDm(a,b) is simply the eXgpeCFed distance @if* from

the context of general directed graphs; variations for bipartite Sim-(aé b) to any singleton noder, z) € V", since singleton nodes in
Rank (Sectior.3) are easy to derive and we leave them to the inter-G r_epresent states where both surfers are at the same node. More
ested reader. precisely,

sp(a,b) = s(a,b) - [1(b)[" (6)

mab)= Y. P (®)

t:(a,b)~ (z,x)

5.1 Expected Distance

) ) ) 2In the literature this quantity, in undirected graphs, is known asite
Let H be any strongly connected graph (in which a path exists beting time[14], but we will develop the idea differently and so choose to use
tween every two nodes). Lat v be any two nodes ifif. We define  another name for our presentation.



The sum is taken over all toutsstarting from(a, b) which toucha  choosingO; (), the expected number of steps he will still have to
singleton node at the end and only atthe end. Unfortuna@@lynay  travel isd(O;(u),v) (the base case is whe; (u) = v, for which
not always be strongly connected (everifis), and in such cases d(O;(u),v) = 0). Accounting for the step he travels to get to
there may be no toursfor (a, b) in the summationg). The intuitive O, (u), we get:

definition form/(a, b) in this case iso, as in Figured(b), discussed

above. However, this definition would cause problems in defining 1 1o

distances for nodes from which some tours lead to singleton nodes d(u,v) =1+ m Z d(Oi(u),v)

while others lead tda, b). We discuss a solution to this problem in =t

the next section. With this intuition in mind, we derive similar recursive equations
for s'(a, b) which will show thats’(a,b) = s(a,b). If @ = bthen

5.3 Expectedf Meeting Distance s'(a,b) = s(a,b) = 1. If there is no path irG* from (a, b) to any

singleton nodes, in which caséa,b) = 0, it is easy to see from
&guation ) thats(a, b) = 0 as well, since no similarity would flow

to (a, b) (recall that edges have been reversed). Otherwise, consider
the tours from (a, b) to a singleton node in which the first step is to

which as we will see yields equations equivalent to the SimRan he out-neighbo0)- ((a, b)). There is a one-to-one correspondence

equations, is to map all distances to a finite interval: instead of com: etweenlsuch and tOl_JrSt/ from Oz((a’.b)) toa smgleton node:
puting expected length(t) of a tour, we can compute the expected for eacht” we may derive a cqrre;pondlmg)y append.llng t.he edge
f((t)), for a nonnegative, monotonic functighwhich is bounded {(a, b)’OZ(,(a’b)» at the begl_nnlng. Lef” be the/ puecnon that
on the domair{0, co). With this replacement we get thexpected- takes each’ to tr}e _correspondlng If the length Oft. Is I, then _the

f meeting distance For our purposes, we choose the exponential!ength oft = j;(t ) 'SZ,JF 1. Morelover, the/probablllty of travgllng

function f(z) = ¢*, wherec € (0, 1) is a constant. The benefits of is P[t] = IO((a,bg_\P[t] - IQ(a)HO(b)IP[t J. We can now splitthe
this choice off, which has values in the rande, 1] over domain Ing to the first step of the totito write

There are various ways to circumvent the “infinite EMD” problem
discussed in the previous section. For example, we can make ea
surfer “teleport” with a small probability to a random node in the
graph (the solution suggested for PageRank 8})[ Our approach,

sum in @) acco

[0, 00), are: 10((a,b))] ,
e Equations generated are simple and easy to solve. s'(a,b) = Z Z P[T ()] T
e Closer nodes have a lower score (meeting distancégofto 1 =110z ((ab) > (3,2)
and distances afo go to0), matching our intuition of similarity. 10((a,b))] 1 ,
. Lo _ = Z Z S E— AR
We defines’(a, b), the similarity betweer andb in G based on — , |O(a)||O(b)]
expectedf meeting distance, as #=t 1 0:((a9)= (@)
|O((a;b))]
’ — c n.L(t)
s'(aby= > PV ) = o@ow)] > > Plt]e
t(anbym (.2 =1 4 0L (@ b))~ (2,2)
herec | tant ir(0, 1). Th tion is taken to Ifif I
wherec is a constant i . The summation is taken to ltei /
, - ° s'(0i(a), 0;(b (10)
there is no tour fron{a, b) to any singleton nodes. Note frorf)( |O(a)||O(b)] ; ; (0:(a), 0; (%))

thats’(a, b) € [0,1] for all a, b, and thats’(a,b) = 1 if a = b.

Let us consider these similarity scores on FighisingC' = 0.8 Equation (0) is identical to the SimRank equatiot)(with ¢ =
as an example. Between any two distinct nodgdsin Figure4(a),  C and in-edges swapped for out-edges. Since the solutiof)to (
s'(a,b) = 0. In Figure4(b), s'(v,w) = 0.8 while s'(u,v) = is unique,s’(a,b) = s(a,b) for all a,b € V. Thus we have the
s'(u,w) = 0. For any two distinct nodes in the complete graph of following theorem.
Figure4(c), s'(a, b) = 0.47, a lower score than betweerandw in

Figure4(b). Theorem. The SimRank score, with parametét between two
nodes is their expecteflmeeting distance traveling back-edges, for
5.4 Equivalence to SimRank flz) =C".

We now show that’(x, ) exactly models our original definition Thus, two nodes with a high SimRank score can be thought of as
of SimRank scores by showing thli(x, ) satisfies the SimRank being “close” to a common “source” of similarity.

equations I). To ease presentation, let us assume that all edges in

our graphG' have been reversed, so following an edge is equivalen Experimental Results

to moving one step backwards in the original graph.

First, to aid in understanding, we give an intuitive but infor-
mal argument about the expected distad¢e, v) in a graph; the
same ideas can be applied to the expegtedeeting distance. Sup-
pose a surfer is ab € V. At the next time step, he chooses
one ofO1(u), ..., Ojo(u)(u), €ach with probabiliwm. Upon

We have proposed an algorithm for computing SimRank similarity
scores between nodes of a graph, a mathematical property that de-
pends only on the graph structure and can be computed in any graph.
In this section, we report on some preliminary experiments, whose
primary purpose is to show that SimRank scores do in fact refine
simpler notions of structural similarity for graph structures derived
3Had we written equationlj in terms of out-neighbors instead of in- TOM practical data sets. The experiments also illustrate the effects
neighbors, as may be appropriate in some domains, this step would not & varying the parameters of the algorithm. Although performance
necessary. and scalability issues obviously are extremely important, they are
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Figure 5: SimRank and co-citation on scientific papers.

not the focus of this paper or of our experiments. Nevertheless, th&he numberr 4, n (p) gives the average “actual” similarity to of
fact that we were able to run experiments on relatively large data sethe top NV objects that algorithnal decides are similar tp.

shows the general feasibility of our approach. Different values of N were tried in our experiments, ranging
We ran experiments on two data sets. The first isfrom 5 to 50, in increments of5. Since only the set of co-cited

a corpus of scientific research papers froResearchindex oObjectsc(p) ever appear as candidates in the simple co-citation

(http://www.researchindex.com ) [13], which crawls the ~ scheme, for proper comparison we restricted our experiments to

Web for research papers and parses their contents for citation infofhose objectg for which co-citation had at leas candidates to
mation and other metadata. We had information on 688,898 cros§onsider, orlc(p)| > 50. As a baseline, letr,~(p) be the av-
references among 278,628 papers, along with the titles for most p&rage ofo(p, ¢) for N objectsq randomly chosen frome(p). We
pers. The second data set comes from the transcripts of 1030 undéneasure the performance of algoritbtnon objectp using the dif-
graduate students in the School of Engineering at Stanford Univeferenceéa n(p) = oa,n(p) — or,n(p), which is the amount of
sity. Each transcript lists all the courses that the student has taken snprovement” of A over a random assignment of similarity. The

far in his undergraduate career, an average of about 40 courses paferage ob .,y (p) over allp, A4, n, is the final score for algorithm
student. A. In our experiments, algorithi is either SimRank or the simple

The feature that distinguishes SimRank is its recursive definitiorFO-citation scheme.

of similarity, which computationally is manifested in the fixed-point L

iteration process (Sectioh4.1). Thus we should expect to see that 6-1 ~ Scientific Papers

the intermediate similarity scorgs, (+, x) become more “accurate” por scientific papers, we based our external similarity metran

on successive iterations. We can also compare our algorithm againggations and titles. Similar papers should be more likely to cite com-
the simple co-citation scheme, which as discussed in Sedt®is 1o papers and have common words in their titles. More precisely,

similar to using just one iteration of SimRank. we used the evaluation functions
A good evaluation of SimRank or any other method of measur- o ) o )
ing similarity in any domain is difficult without performing exten- o (p, q) = fraction of¢’s citations also cited by

sive user studies or having a reliable external measure of similarity &7 (p, q) = fraction of words ing’s title also inp’s title

to compare against. For the results reported in this paper, we take a

simple approach that uses domain-specific properties as rough methere title words were first stemmed using the standard Porter algo-
rics of similarity. Although admittedly not definitive or exhaustive, fithm [19]. At first one might question the use of citations to eval-

this approach does serve to illustrate empirically important aspectdate algorithms that are themselves based on citation structure. To
of SimRank. be fair, we ran the bipartite variant (Sectidr8.1) of the SimRank

algorithm and used only the pointed-to similarity scores, which for

papergp andq are computed using only their in-citations.
We experimented with various values for the parametgrand

] o C5 in equations Z) and @), and found little difference in the rank-

1. Generate asebop, y(p) of the topN objects mostsimilartp  jngs  although there were differences in absolute magnitudes of
(exceptp itself), according to algorithmal. scores. This behavior is to be expected sigeand C» can be

2. For eachq € top, y(p), computeo(p,q), whereo is a  viewed as the bases of exponential functions whose only purpose
coarse domain-specific similarity measure. Return the averagis to map distances to finite intervals (Sect@®B). For efficiency,
oa,n(p) of these scores. we pruned considerably, creating node-pairs only for nodes sharing

We consider objectg in our domain of interest, generating lists
of objects similar tgp. The procedure for evaluating the similarity
scores for an objegt by algorithmA is as follows:


http://www.researchindex.com
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Figure 6: SimRank and co-citation on scientific papers for varying N.

a common in-edge for pointed-to similarity calculations, or shar- Department score versus fteration
ing a common out-edge for points-to similarity calculations (Section /\‘/h-‘/h/
4.4.2). Our experiments showed little difference in relative rankings 021 /
as we increased the radius of consideration for node-pair creation,
which confirms that this is a good approximation to make. We tried
different values forP (Section4.5), and found thaf® = 0.5 seems
to be the best setting for this corpus. Results here are shown for
Ci =Cy=0.8andP = 0.5.

Figure 5 plots the scores’AS,N (left) and Aﬁ’N (right) for
N = 5andN = 10, over a total of 13,481 objecis for various 0.17
intermediate SimRank valud®; (x, x) computed aftek iterations. /
The iteration numbek is on the x-axis, and the scorés, v are
on the y-axis. The co-citation scores are also shown for comparison.
Scores for the initial vectoR(x*, ) are not shown because they

0.19

Score

0.15

0 1 2 3 4 5 6 7 8 9

provide random rankings and are equivalent to the random baseline. Jteration
Iteration2, which computesR, (x, ) based on iteration-scores —— SimRank (top 5) —e— SimRank (top 10)
R (*, %), can be thought of as the first iteration that takes advantage - - -First iteration (top 5) — First iteration (top 10)

of the recursive definition of similarity. Subsequent changes become
increasingly minor, suggesting a rapid convergence, at least in terms
of the two metrics. This result is in agreement with the numerical  Figure 7: SimRank on courses for increasing iterations.
differences) _, , |Rk+1(a, b) — Ri(a, b)| that we observed.

D B . .
Figure6 plots the final score&ﬁw (left) andAﬁyN (right) for department, and (p,q) = 0 otherwise. We found that for this

bipartite domain, the minimax variation of SimRank (SectoB.2

different values ofV. The value ofV is on the x-axis and the score .
. ) . : performs best. Again, we found that the parameférandCs have
is on the y-axis. Across alV, the average improvement of SimRank . . :
little effect on relative rankings. The results shown here are for the

over simple co-citation under these coarse evaluation measures IS. . L .
o . minimax variation (used for both students and courses) with param-
about45% (citations) and36% (titles). The downward curves show ) D .
: - . .. etersCy = C> = 0.8. Figure? plots the scored 4 n usingN =5

a decrease in score (for both algorithms)Msncreases, which is . - ’

. . . . andN = 10 for intermediate result®; (x, x), over a total of 3,193

expected since higher-ranking papers are more similar. We note th e .

; L rjals. Co-citation scores, which are very poer (.161 for N =5
the high resemblance between the plots of the citation-based an ;

. . . . . and~ 0.147 for N = 10), are not shown in the graph. Scores corre-
title-based metrics confirms the appropriateness of these metrics as = . L .
S u I sponding to the first-iteration resulfs (x, ) are also plotted across
indicators of “actual” similarity.

the x-axis to show the improvements of successive iterations.

6.2 Students and Courses .
7 Conclusion and Future Work

For our second data set, students and courses, we used an external ) o .

similarity metric for courses only, not having any reasonable met-10 Summarize the contributions of this paper:

ric for students. The external course-similarity metric is based on e We started with the basic premise that in many domains with
departmentsz” (p,q) = 1 if p andq are courses from the same object-to-object relationships, “structural-context similarity” be-



tween two objects can be inferred by considering recursively the [7] David Goldberg, David Nichols, Brian M. Oki, and Douglas
similarity of their neighbors. This approach generalizes previous
approaches that compute similarity by common neighbors alone.

tion of structural-context similarity, and defin&imRanlkscores

We wrote mathematical equations to formalize our recursive no-

(8]

in terms of these equations. We also presented variations of Sim-

Rank that are applicable to different domains.

We presented a fixed-point algorithm for computing SimRank

scores, as well as methods to reduce its time and space requirel9]

ments.

We defined a “random-surfer” model by which to interpret so- [10]

lutions to the SimRank equations, relating SimRank scores to
intuitive graph-theoretic properties. The model is based on the

concept ofexpected meeting distan(EMD).

significant improvement over simpler co-citation measures.

We ran experiments on two representative data sets. Results cob1]
firm the applicability of the algorithm in these domains, showing

There are a number of avenues for future work. Foremost, we
must address efficiency and scalability issues, including additional2]
pruning heuristics and disk-based algorithms. One possible approx-
imation that differs from the neighborhood-based pruning heuristic

in Section4.4.2is to divide a corpus into chunks, computing accu-

rate similarity scores separately for each chunk and then combininf3]

them into a global solution. A second area of future work is to con-

sider ternary (or more) relationships in computing structural-context
similarity. For example, in the student-course domain we might also
include the professors who taught the courses and the grades rg4]
ceived by the students. Extending our entire framework to encom-
pass such relationships should be possible, but it is not straightfor-
ward. Finally, we believe that structural-context similarity is only [15]
one component of similarity in most domains, so we plan to explore

the combination of SimRank with other domain-specific similarity

measures.
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APPENDIX

We prove the existence and uniqueness of a simultaneous solutiontd BienRank equationslj. The unique solution is
actually constructed in Secti@gh4.1, and the correctness of the iterative algorithm follows. First, a simple fact about the values
Ry (*, ), which follows by induction using equatiob){

Fact. Monotonicity:0 < Ri(a,b) < Ri41(a,b) < 1forall a,b eV, k > 0.

This says for every, b, the sequencéRy.(a,b)} is bounded and nondecreasingkamcreases without bound. By the Com-
pleteness Axiom of calculus, each sequefigk (a,b)} converges to a limiR(a,b) € [0,1]. Butlimg o Rrt1(a,b) =
limg_,o0 Ri(a,b) = R(a,b), and the limit of a sum is the sum of the limits, so we have fr&jn (

=1 j=1

. [1(a)] [1(b)] )
Rt - { o X X RE@LG) @ ar)
1 (f a=b)

which shows that the limit&(x, ) satisfy the SimRank equations.

Now we show uniqueness. Suppeséx, x) ands;(x, ) are two solutions to the? SimRank equations. For allb € V,
let 6(a,b) = si(a,b) — s2(a,b) be their difference. Lef = max(, ) [d(a,b)| be the maximum absolute value of any
difference. We need to show thaf = 0. Let |§(a,b)| = M for somea,b € V. CertainlyM = 0 if a = b, in which case
s1(a,b) = sa(a,b) = 1, orif a or b have no out-neighbors, in which casga,b) = s2(a,b) = 0. Otherwise,s;(a,b) and
s2(a, b) are the average scores of their in-neighbors. That is, from equdjion (

C [1(a)| [1(b)]
D i) SYONAL)

i=1 j=1

o @I
[1(a)[[1(b)] ; ;

s1(a,b) =

sa(a,b) =

In terms ofé(a, b),

d(a,b) = si(a,b) — s2(a,b)
C [I(a)| |1(b)]
= o 2 2 oli@), 1) - sa(lifa), o)

o @1 10)
= Ty 2 2 SH@: L)

i=1 j=1
Thus,

M = 15(a,b)]
C [ (a)[ [1(b)]
= | & Z L)
C ()| [1(b)]
S TaTm)] 2 2 9@, L)

C \IEI)HI;))\
< T & =M
C
= W\[(G)HIU))\M
= CM

Since0 < C < 1, it follows thatM = 0. O
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