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Finding and evaluating community structure in networks
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We propose and study a set of algorithms for discovering community structure in networks—natural divi-
sions of network nodes into densely connected subgroups. Our algorithms all share two definitive features:
first, they involve iterative removal of edges from the network to split it into communities, the edges removed
being identified using any one of a number of possible “betweenness” measures, and second, these measures
are, crucially, recalculated after each removal. We also propose a measure for the strength of the community
structure found by our algorithms, which gives us an objective metric for choosing the number of communities
into which a network should be divided. We demonstrate that our algorithms are highly effective at discovering
community structure in both computer-generated and real-world network data, and show how they can be used
to shed light on the sometimes dauntingly complex structure of networked systems.
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[. INTRODUCTION that give acceptably good solutions in many cases, the best
known being perhaps the Kernighan-Lin algoritHr20],
Empirical studies and theoretical modeling of networkswhich runs in timeO(n?) on sparse graphs.
have been the subject of a large body of recent research in A solution to the graph partitioning problem is, however,
statistical physics and applied mathemafits4]. Network  not particularly helpful for analyzing and understanding net-
ideas have been applied with success to topics as diverse Works in general. If we merely want to find if and how a
the Internet and the world wide wels—7], epidemiology given network breaks down into communities, we probably
[8—11], scientific citation and collaboratidii2,13, metabo-  do not know how many such communities there are going to
lism [14,15, and ecosystemd6,17], to name but a few. A be, and there is no reason why they should be roughly the
property that seems to be common to many networkeis- same size. Furthermore, the number of intercommunity
munity structure the division of network nodes into groups edges need not be Strictly minimized either, since more such
within which the network connections are dense, but be€dges are admissible between large communities than be-
tween which they are sparser—see Fig. 1. The ability to findween small ones.
and analyze such groups can provide invaluable help in un- As far as our goals in this paper are concerned, a more
derstanding and visualizing the structure of networks. In thig/seful approach is that taken by social network analysis with
paper, we show how this can be achieved. the set of techniques known as hierarchical clustering. These
The study of community structure in networks has a longtéchniques are aimed at discovering natural divisionsof
history. It is closely related to the ideas of graph partitioningcial) networks into groups, based on various metrics of simi-
in graph theory and computer science, and hierarchical cludarity or strength of connection between vertices. They fall
tering in sociology[18,19. Before presenting our own find- into two broad classes, agglomerative and divigiv@|, de-
ings, it is worth reviewing some of this preceding work to Pending on whether they focus on the addition or removal of
understand its achievements and shortcomings. edges to or from the network. In an agglomerative method,
Graph partitioning is a problem that arises in, for ex- Similarities are calculated by one method or another between
amp|e, para||e| Computing_ Suppose we have a numbar vertex pairs, and edgeS are then added to an |n|t|a”y empty
intercommunicating computer processes, which we wish to
distribute over a numbey of computer processors. Processes
do not necessarily need to communicate with all others, and
the pattern of required communications can be represented as
a graph or network in which the vertices represent processes
and edges join process pairs that need to communicate. The
problem is to allocate the processes to processors in such a
way as roughly to balance the load on each processor, while
at the same time minimizing the number of edges that run
between processors, so that the amount of interprocessor
communication(which is normally slow is minimized. In
general, finding an exact solution to a partitioning task of this  F|G. 1. A small network with community structure of the type
kind is believed to be an NP-hard problem, making it pro-considered in this paper. In this case there are three communities,
hibitively difficult to solve exactly for large graphs, but a denoted by the dashed circles, which have dense internal links but
wide variety of heuristic algorithms have been developecetween which there is only a lower density of external links.
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__________________________

© FIG. 3. Agglomerative clustering methods are typically good at
FIG. 2. A hierarchical tree or dendrogram illustrating the type of discovering the strongly linked cores of communitibseld vertices
output generated by the algorithms described here. The circles at tted edgesbut tend to leave out peripheral vertices, even when, as
bottom of the figure represent the individual vertices of the net-here, most of them clearly belong to one community or another.
work. As we move up the tree, the vertices join together to form
larger and larger communities, as indicated by the lines, until we | this paper, therefore, we focus on divisive methods.
reach the top, where all are joined together in a single communityThese methods have been relatively little studied in the pre-
Alternatively, the dendrogram depicts an initially connected netvjoys literature, either in social network theory or elsewhere,
work splitting into smaller qnd smaller communities as we go frombut, as we will see, they seem to offer a lot of promise. In a
top to bottom. A cross section of the tree at any level, such as thafjisive method, we start with the network of interest and
?:éc\?;?gc?l/ :;? f}?tti?h"ne’ |W|” give the ;]:ommunme_s g_t that Ievei"attempt to find thdeastsimilar connected pairs of vertices
height of the spiit points In the tree are indicative only ;4 1hen remove the edges between them. By doing this
of the order in which the splitéor joins) take place, although it is repeatedly, we divide the network into smaller and smaller
possible to construct more elaborate dendrograms in which these ! .
heights contain other information. components, and again we can stop the process at any stage
and take the components at that stage to be the network
network (n vertices with no edgesstarting with the vertex communities. Again, the process can be represented as a den-
pairs with highest similarity. The procedure can be halted a@rogram depicting the successive splits of the network into
any point, and the resulting components in the network arémaller and smaller groups.
taken to be the communities. Alternatively, the entire pro- The approach we take follows roughly these lines, but
gression of the algorithm from empty graph to completeadopts a somewhat different philosophical viewpoint. Rather
graph can be represented in the form of a tredesrdrogram  than looking for the most weakly connected vertex pairs, our
such as that shown in Fig. 2. Horizontal cuts through the tre@pproach will be to look for the edges in the network that are
represent the communities appropriate to different haltingnost “between” other vertices, meaning that the edge is, in
points. some sense, responsible for connecting many pairs of others.
Agglomerative methods based on a wide variety of simi-Such edges need not be weak at all in the similarity sense.
larity measures have been applied to different networksHow this idea works out in practice will become clear in the
Some networks have natural similarity metrics built in. Forcourse of the presentation.
example, in the widely studied network of collaborations be-  Briefly then, the outline of this paper is as follows. In Sec.
tween film actor§21,22, in which two actors are connected |l we describe the crucial concepts behind our methods for
if they have appeared in the same film, one could quantifyfinding community structure in networks and show how
similarity by how many films actors have appeared in to-these concepts can be turned into a concrete prescription for
gether[23]. Other networks have no natural metric, but suit-performing calculations. In Sec. Ill we describe in detail the
able ones can be devised using correlation coefficients, paifiplementation of our methods. In Sec. IV we consider ways
lengths, or matrix methods. A well known example of anof determining when a particular division of a network into
agglomerative clustering method is the Concor algorithm offommunities is a good one, allowing us to quantify the suc-
Breigeret al.[24]. cess of our community-finding algorithms. And in Sec. V we
Agglomerative methods have their problems, howevergive a number of applications of our algorithms to particular
One concern is that they fail with some frequency to find thenetworks, both real and artificial. In Sec. VI we give our
correct communities in networks where the communityCOﬂC|USi0nS. A brief report of some of the work contained in
structure is known, which makes it difficult to place much this paper has appeared previously as R23].
trust in them in other cases. Another is their tendency to find
only the cores of communitie; and leave out the pgriphgry. Il. FINDING COMMUNITIES IN A NETWORK
The core nodes in a community often have strong similarity,
and hence are connected early in the agglomerative process, In this paper, we present a class of new algorithms for
but peripheral nodes that have no strong similarity to othersetwork clustering, i.e., the discovery of community struc-
tend to get neglected, leading to structures like that shown iture in networks. Our discussion focuses primarily on net-
Fig. 3. In this figure, there are a number of peripheral nodesvorks with only a single type of vertex and a single type of
whose community membership is obvious to the eye—inundirected, unweighted edge, although generalizations to
most cases, they have only a single link to a specifionore complicated network types are certainly possible.
community—but agglomerative methods often fail to place There are two central features that distinguish our algo-
such nodes correctly. rithms from those that have preceded them. First, our algo-
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rithms are divisive rather than agglomerative. Divisive algo-current-flow betweenness turns out to be exactly equal to the
rithms have occasionally been studied in the past, but, asandom-walk betweenness of the previous paragraph, but we
discussed in the Introduction, ours differ in focusing not onnonetheless consider it separately since it leads to a simpler
removing the edges between vertex pairs with the lowestlerivation of the measure.
similarity, but on finding edges with the highest “between- These measures are only suggestions; many others are
ness,” where betweenness is some measure that favors edgesssible and may well be appropriate for specific applica-
that lie between communities and disfavors those that ligions. Measure§i) and(ii) are in some sense extremes in the
inside communities. spectrum of possibilities, one corresponding to signals that
To make things more concrete, we give some examples dénow exactly where they are going, and the other to signals
the types of betweenness measures we will be looking at. Althat have no idea where they are going. As we will see,
of them are based on the same idea. If two communities areowever, these two measures actually give rather similar re-
joined by only a few intercommunity edges, then all pathssults, indicating that the precise choice of betweenness mea-
through the network from vertices in one community to ver-sure may not, at least for the types of applications considered
tices in the other must pass along one of those few edgebere, be that important.
Given a suitable set of paths, one can count how many go The second way in which our methods differ from previ-
along each edge in the graph, and this number we then exus ones is in the inclusion of a “recalculation step” in the
pect to be largest for the intercommunity edges, thus providalgorithm. If we were to perform a standard divisive cluster-
ing a method for identifying them. Our different measuresing based on edge betweenness, we would calculate the edge
correspond to various implementations of this idea as folbetweenness for all edges in the network and then remove
lows: edges in decreasing order of betweenness to produce a den-
(i) The simplest example of such a betweenness measudkogram like that of Fig. 2, showing the order in which the
is that based on shortegeodesit paths: we find the short- network split up.
est paths between all pairs of vertices and count how many However, once the first edge in the network is removed in
run along each edge. To the best of our knowledge, thisuch an algorithm, the betweenness values for the remaining
measure was first introduced by Anthonisse in a neveredges will no longer reflect the network as it now is. This can
published technical report in 19726]. Anthonisse called it give rise to unwanted behaviors. For example, if two com-
“rush,” but we prefer the termedge betweenngssince the munities are joined by two edges, but, for one reason or
quantity is a natural generalization to edges of the well-another, most paths between the two flow along just one of
known (verteX betweenness measure of Freem@Y], those edges, then that edge will have a high betweenness
which was the inspiration for our approach. When we needcore and the other will not. An algorithm that calculated
to distinguish it from the other betweenness measures coretweennesses only once and then removed edges in be-
sidered in this paper, we will refer to it a&hortest-path be- tweenness order would remove the first edge early in the
tweennessA fast algorithm for calculating the shortest-path course of its operation, but the second might not get removed
betweenness is given in Sec. Il A. until much later. Thus the obvious division of the network
(i) The shortest-path betweenness can be thought of imto two parts might not be discovered by the algorithm. In
terms of signals traveling through a network. If signals travelthe worst case, the two parts themselves might be individu-
from source to destination along geodesic network paths, anally broken up before the division between the two is made.
all vertices send signals at the same constant rate to all othr practice, problems like this crop up in real networks with
ers, then the betweenness is a measure of the rate at whisbme regularity and render algorithms of this type ineffective
signals pass along each edge. Suppose, however, that signfids the discovery of community structure.
do not travel along geodesic paths, but instead just perform a The solution, luckily, is obvious. We simply recalculate
random walk about the network until they reach their desti-our betweenness measure after the removal of each edge.
nation. This gives us another measure on edgesaii@om-  This certainly adds to the computational effort of performing
walk betweennessve calculate the expected net number ofthe calculation, but its effect on the results is so desirable that
times that a random walk between a particular pair of vertiwe consider the price worth paying.
ces will pass down a particular edge and sum over all vertex Thus the general form of our community structure finding
pairs. The random-walk betweenness can be calculated usiragorithm is as follows:
matrix methods, as described in Sec. Il C. (i) Calculate betweenness scores for all edges in the net-
(i) Another betweenness measure is motivated by ideawork.
from elementary circuit theory. We consider the circuit cre- (ii) Find the edge with the highest score and remove it
ated by placing a unit resistance on each edge of the netwoifkom the network(If two or more edges tie for highest score,
and unit current source and sink at a particular pair of vertichoose one of them at random and remove Yhat.
ces. The resulting current flow in the network will travel (i) Recalculate betweenness for all remaining edges.
from source to sink along a multitude of paths, those with (iv) Repeat from stefii).
least resistance carrying the greatest fraction of the current. In fact, it appears that the recalculation step is the most
Thecurrent-flow betweenne$sr an edge we define to be the important feature of the algorithm, as far as getting satisfac-
absolute value of the current along the edge summed over albry results is concerned. As mentioned above, our studies
source/sink pairs. It can be calculated using Kirchhoff’sindicate that, once one hits on the idea of using betweenness
laws, as described in Sec. Il B. In fact, as we will show, themeasures to weight edges, the exact measure one uses ap-
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pears not to influence the results highly. The recalculation S
step, on the other hand, is absolutely crucial to the operation (a)
of our methods. This step was missing from previous at-
tempts at solving the clustering problem using divisive algo-
rithms, and yet without it the results are very poor indeed,
failing to find known community structure even in the sim-
plest of cases. In Sec. VB we give an example comparing
the performance of the algorithm on a particular network
with and without the recalculation step.

In the following sections, we discuss implementation and
give examples of our algorithms for finding community
structure. For the reader who merely wants to know what
algorithm they should use for their own problem, let us give FIG. 4. Calculation of shortest-path betweenne@s: When
an immediate answer: for most problems, we recommend theere is only a single shortest path from a source vesiép) to all
algorithm with betweenness scores calculated using thether reachable vertices, those paths necessarily form a tree, which
shortest-path betweenness meadilr@bove. This measure makes the calculation of the contribution to betweenness from this
appears to work well and is the quickest to calculate—aset of paths particularly simple, as described in the tét.For
described in Sec. Il A, it can be calculated for all edges incases in which there is more than one shortest path to some vertices,
time O(mn), wherem is the number of edges in the graph the calculation is more complex. First we must calculate the number
andn is the number of verticelgi8]. This is the only version ©f distinct paths from the source to each vertex(numbers on
of the algorithm that we discussed in RE25]. The other vertic_es), a_nd then these are used to weight the path counts as
versions we discuss, while being of some pedagogical integesc_nbgd in the text. In either case, we can check the results by
est, make greater computational demands, and in practi(fémf'rm'ng that the sum of the betweennesses of the edges con-

seem to give results no better than the shortest-path methogcted 1o the source vertexis equal to the total number of reachable
vertices—six in each of the cases illustrated here.

leaves

Il IMPLEMENTATION tion to betwegnne;s for each edge from this set of paths as
follows. We find first the “leaves” of the tree, i.e., those

In theory, the descriptions of the preceding section comnodes such that no shortest paths to other nodes pass through
pletely define the methods we consider in this paper, but ithem, and we assign a score of 1 to the single edge that
practice there are a number of subtleties to their implemeneonnects each to the rest of the tree, as shown in the figure.
tation that are important for turning the description into aThen, starting with those edges that are farthest from the
workable computer algorithm. source vertex on the tree, i.e., lowest in Figa)4we work

Essentially all of the work in the algorithm is in the cal- upwards, assigning a score to each edge that is 1 plus the
culation of the betweenness scores for the edges; the job gim of the scores on the neighboring edges immediately be-
finding and removing the highest-scoring edge is trivial andow it (i.e., those edges with which it shares a common ver-
not computationally demanding. Let us tackle our three sugtex). When we have gone though all edges in the tree, the
gested betweenness measures in turn. resulting scores are the betweenness counts for the paths
from vertexs. Repeating the process for all possible vertices
sand summing the scores, we arrive at the full betweenness
scores for shortest paths between all pairs. The breadth-first

At first sight, it appears that calculating the edge betweensearch and the process of working up through the tree both
ness measure based on geodesic paths for all edges will takgke worst-case tim®(m) and there ara vertices total, so
O(mr?) operations on a graph witim edges anch vertices:  the entire calculation takes tin@(mn) as claimed.
calculating the shortest path between a particular pair of ver- This simple case serves to illustrate the basic principle
tices can be done using breadth-first search in tDfen) behind the algorithm. In general, however, it is not the case
[28,29, and there ar®(n?) vertex pairs. Recently, however, that there is only a single shortest path between any pair of
new algorithms have been proposed by Newrfid® and  vertices. Most networks have at least some vertex pairs be-
independently by Brandd81] that can perform the calcula- tween which there are two or more geodesic paths of equal
tion faster than this, finding all betweennessesG(mn) length. Figure &) shows a simple example of a shortest
time. Both Newman and Brandes gave algorithms for thepath “tree” for a network with this property. The resulting
standard Freeman vertex betweenness, but it is trivial tgtructure is in fact no longer a tree, and in such cases an extra
adapt their algorithms for edge betweenness. We describe tls¢ep is required in the algorithm to calculate the betweenness
resulting method here for the algorithm of Newman. correctly.

Breadth-first search can find shortest paths from a single In the traditional definition of vertex betweennd&y],
vertex s to all others in timeO(m). In the simplest case, multiple shortest paths between a pair of vertices are given
when there is only a single shortest path from the sourcequal weights summing to 1. For example, if there are three
vertex to any othefwe will consider other cases in a mo- shortest paths, each will be given weightWe adopt the
meny), the resulting set of paths forms a shortest-path tree—same definition for our edge betweennéss did Anthonisse
see Fig. 4a). We can use this tree to calculate the contribu-in his original work[26], although other definitions are pos-

A. Shortest-path betweenness
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sible[32]). Note that the paths may run along the same edgether edges that fall in the same component, and hence that
or edges for some part of their length, resulting in edges witlwe need only recalculate betweennesses in that component.
greater weight. To calculate correctly what fraction of theNetworks with strong community structure often break apart
paths flows along each edge in the network, we generalizento separate components quite early in the progress of the
the breadth-first search part of the calculation, as follows. algorithm, substantially reducing the amount of work that
Consider Fig. 4) and suppose we are performing a needs to be done on subsequent steps. Whether this results in
breadth-first search starting at vertexWe carry out the a change in the computational complexity of the algorithm

following steps: for any commonly occurring classes of graphs is an open
(i) The initial vertexs is given distancels=0 and weight  question, but it certainly gives a substantial speed boost to
ws=1. many of the calculations described in this paper.
(ii) Every vertexi adjacent tos is given distanca; =ds Some networks are directed, i.e., their edges run in one
+1=1 and weightw;=ws=1. o direction only. The world wide web is an example; links in
(iii) For each vertex adjacent to one ofhoseverticesi,  he web point in one direction only from one web page to

we do one of three thingga) If j has not yet been assigned
a distance, it is assigned distandg=d;+1 and weightw;
=w;; (b) if j has already been assigned a distance @nd
=d;+ 1, then the vertex’s weight is increased Wy, that is,
wj—w;+w;; and(c) if j has already been assigned a dis-
tance andi;<d;+1, we do nothing.

another. One could imagine a generalization of the shortest-
path betweenness that allowed for directed edges by count-
ing only those paths that travel in the forward direction along
edges. Such a calculation is a trivial variation on the one
described above. However, we have found that in many cases
(iv) Repeat from stegiii) until no vertices remain that it is better to ignore the directed nature of a network in cal-

have assigned distances but whose neighbors do not hagg]l?Egg:;ﬁ;]]moﬁngycztgﬁgggg'n%fgtevr\‘/eaer;] et(\jv%e r?c?ésessméﬁg f’t‘i
assigned distances. '

In practice, this algorithm can be implemented most eﬁi-d:irsgtg):r IZI uonrlimrrfrttgr:- foFgé (\j\;(eabm(?fle,rlerljgfﬁar;’veir?tgrac-
ciently using a queue or first-inffirst-out buffer to store theP 9 p prey

vertices that have been assigned a distance, just as in tlﬂ er;as;lbeijt;lr\l:cetz drTcr)lr?g Sspsgilgss.nl?;eds;?r;r)];et)r/];rr]tebrjtcﬂ()ir;suzri]r_e
standard breadth-first search. y P y ’

Physically, the weight on a vertéxepresents the number likely that the reverse is simultaneously true. However, as far

of distinct paths from the source vertexitoThese weights asec;ci)gn;]l;r\vet:yir?;r(relﬁ;'::l:iroengc;s;k,‘ Y/vvii\(,:vk?r(])ttrtn(;rlém\)/\\?é?mg V,;/r?écrz
are precisely what we need to calculate our edge betwee P ' '

nesses, because if two vertideandj are connected, with tﬁ;efotggtw%ubr v?i?rigt\?vgllzﬁpl:igirto ghu? t%gdéf:qﬁir\:ifrsggzg
farther thani from the sources, then the fraction of a geo- . it picking ity

: . . S ture, and no special algorithm is needed for the directed case.
desic path fron) throughi to sis given byw; /w; . Thus, to e give another example of our method applied to a directed
calculate the contribution to edge betweenness from aIYV g b bp

shortest paths starting at we need only carry out the fol- graph in Sec. VD.
lowing steps:
(i) Find every “leaf” vertext, i.e., a vertex such that no
paths froms to other vertices go though As examples of betweenness measures that take more
(if) For each vertex neighboringt, assign a score to the than just shortest paths into account, we proposed in Sec. Il
edge fromt to i of w; /w;. measures based on random walks and on current flow in
(iii ) Now, starting with the edges that are farthest from theresistor networks. In fact, there are well known mathematical
source vertexs—lower down in a diagram such as Fig. connections between random walks and resistor networks
4(b)—work up towardss. To the edge from verteixto vertex  [33], and the properties of one can often be calculated by
J, with j being farther froms thani, assign a score that is 1 considering the other. This turns out to be the case here also
plus the sum of the scores on the neighboring edges immend, as we now show, when appropriately defined, our
diately below it(i.e., those with which it shares a common random-walk and current-flow betweenness measures are
vertex, all multiplied by w; /w; . precisely the same. Here we derive the current-flow measure
(iv) Repeat from stefiii ) until vertexs is reached. first, since it turns out to be simpler; in the following section,
Now repeating this process for allsource verticesand  we derive the random-walk measure and show that the two
summing the resulting scores on the edges gives us the totate equivalent.
betweenness for all edges in tifl¥mn). Consider the network created by placing a unit resistance
We have to repeat this calculation for each edge removedn every edge of our network, a unit current source at vertex
from the network, of which there arg, and hence the com- s, and a unit current sink at vertéXsee Fig. 5. Clearly, the
plete community structure algorithm based on shortest-patburrent betwees andt will flow primarily along short paths,
betweenness operates in worst-case @gen’n), or O(n®) but some will flow along longer ones, roughly in inverse
time on a sparse graph. In our experience, this typicallyproportion to their length. We will use the absolute magni-
makes it tractable for networks of up to abaut10000 tude of the current flow along an edge, summed over all
vertices, with currenticirca 2003 desktop computers. In source/sink pairs, as our betweenness score.
some special cases one can do better. In particular, we note The current flows in the network are governed by Kirch-
that the removal of an edge only affects the betweenness dioff’s laws. To solve them, we proceed as follows for each

B. Resistor networks
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taking the differences of pairs of columns to get the voltage

current in vectorV for each possible source/sink pdifhe voltage for
\ the one missing vertex is always zero, by hypothesisihe
absolute magnitudes of the differences of voltages along

S each edge give us betweenness scores for the given source

and sink. Summing over all sources and sinks, we then get
our complete betweenness score.
! The matrix inversion takes tim@(n®) in the worst case,
while the subsequent calculation of betweennesses takes time
O(mr?), where as beform s the number of edges amthe
number of vertices in the graph. Thus, the entire community
FIG. 5. An example of the type of resistor network consideredstructure algorithm, including the recalculation step, will
here, in which a unit resistance is placed on each edge and urfieke O((n+m)mn?) time to complete, 0O(n*) on a sparse
current flows into and out of the source and sink vertices. graph. Although, as we will see, the algorithm is good at
finding community structure, this poor performance makes it
separate component of the graph. Mgtbe the voltage at practical only for smaller graphs; a few hundreds of vertices
vertexi, measured relative to any convenient point. Then foris the most that we have been able to do. It is for this reason
all i we have that we recommend using the shortest-path betweenness al-
gorithm in most cases, which gives results about as good or
E A (Vi=V)) = 85— By 1) better with considerably less effort.
j

current out

. . . . C. Random walks
where A;; is theij element of the adjacency matrix of the

graph, i.e.,A;=1 if i andj are connected by an edge and The random-walk betweenness described in Sec. Il re-
Aj;=0 otherwise. The left-hand side of E4) represents the dUIres us to calculate how often on average random walks
net current flow out of vertek along edges of the network, Starting at vertexs will pass down a particular edge from
and the right-hand side represents the source and sink. D¥rtexuv to vertexw (or vice versa before finding their way
fining k;=3;A;;, which is the vertex degree, and creating ato a given target vertek To calculate this quantity, we pro-
diagonal matrixD with these degrees on the diagoriy ceed as follows for each separate component of the graph.

=k;, this equation can be written in matrix form ap (A before, letA;; be an element of the adjacency matrix
—A)-V=s, where the source vectsrhas components such thatA;; =1 if verticesi andj are connected by an edge
andA;;=0 otherwise. Consider a random walk that on each
+1 for i=s step decides uniformly between the neighbors of the current

vertex j and takes a step to one of them. The number of
_ neighbors is just the degree of the vertgx ;A;; , and the

0 otherwise. probability for the transition from to i is A;; /k;, which we

] ] can regard as an element of the maivixA-D ™!, whereD
We cannot directly invert the matriR— A to get the volt- 5 the diagonal matrix witiD;; =k; .

age vectorV, because the matritwhich is just the graph e are interested in walks that terminate when they reach
Laplaciar) is singular. This is equivalent to saying that there ¢ target, so thatt is an absorbing state. The most conve-
is one undetermined degree of freedom corresponding to thgent way to represent this is just to remove entirely the

choice of reference potential fo_r measuring the voltages. Wgeariex t from the graph, so that no walk ever reaches any
can add any constant to a solution for the vertex voltages anginer vertex front. Thus letM,=A, - thl be the matrixM

get anlother solution—only the'voltage'diffe.rences matter. IN,iih the tth row and column removetand similarly forA,
choosing the reference potential, we fix this degree of freeénd D)

dom,_ Ie?vmg oniyn—1 molre ftoh be dete_rmln_ed. In mat_h- Now the probability that a walk starts attakesn steps,
fematul:af[_ terms, ont(_:ef_ar(;y;h of the equations in Iour m?trlx t_and ends up at some other vert@ot t) is given by theis
ormulation are satisfied, the remaining one is also automatiz; i+ ofM!', which we denotM!,.. In particular,

cally satisfied so long as current is conserved in the networl‘<E . > n
as a whole, i.e., so long &% s;=0, which is clearly true in walks end up aw and w with probabilities [M],s and

this case. [M{].s, and of those a fraction &/ and 1k,,, respectively,
Choosing any vertex to be the reference point, there- then pass along the edge'@ in one direction or the other,

fore, we remove the row and column corresponding to thafSSUming such an edge exisisote that they may also have

vertex fromD andA before inverting. Denoting the resulting passed along this edge an arbitrary number of times before

=4 —1 fori=t 2

(n—1)X (n—1) matricesD, andA, , we can then write reaphing this point.Summing over alh, the mean number
v v’ of times that a walk of any length traverses the edge foom
V=(D,—A,) !s ©) towis ku_l[(l —My) 1,5, and similarly for walks that go

fromw to v.

Calculation of the currents in the network thus involves  To highlight the similarity with the current-flow between-
inverting D, — A, once for any convenient choice of and  ness of Sec. Il B, let us denote these two numbérsaand
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V., respectively. Then we can write Consider a particular division of a network inkccommuni-
. . . ties. Let us define kX k symmetric matrixe whose element
V=D - (I=Mp~"-s=(Di—=A) s, (4 e is the fraction of all edges in the network that link verti-

ces in community to vertices in community [50]. (Here we

where the source vectaris the vector whose components consider all edges in the original network—even after edges
are all 0 except for a single 1 in the position corresponding tdave been removed by the community structure algorithm,
the source vertes. our modularity measure is calculated using the full network.

Now we define our random-walk betweenness for the The trace of this matrix Te=ZX,;e;; gives the fraction of
edge ¢,w) to be the absolute value of thtifferenceof the  edges in the network that connect vertices in the same com-
two probabilitiesV, andV,,, i.e., the net number of times munity, and clearly a good division into communities should
the walk passes along the edge in one direction. This seentgve a high value of this trace. The trace on its own, how-
a natural definition—it makes little sense to accord an edgever, is not a good indicator of the quality of the division
high betweenness simply because a walk went back and forgince, for example, placing all vertices in a single community
along it many times. It is the difference between the numbersvould give the maximal value of Te=1 while giving no
of times the edge is traversed in either direction that matterinformation about community structure at all.
[49]. So we further define the rowor column sums g

But now we see that this method is very similar to the=ZX;e;;, which represent the fraction of edges that connect
resistor network calculation of Sec. Il B. In that calculation, to vertices in community. In a network in which edges fall
we also evaluatedd;— A,) ~!- s for a suitable source vector between vertices without regard for the communities they
and then took differences of the resulting numbers. The onlpelong to, we would have;;=a;a;. Thus we can define a
difference is that in the current-flow calculation we had amodularity measure by
sink term ins as well as a source. Purely for the purposes of
mathematical convenience, we can add such a sink in the
present case at the target vertexthis makes no difference 2
to the solution forV since thetth row has been removed QZZ (e —al)=Tr e—|€], 5)
from the equations anyway. By doing this, however, we turn
the equations into precisely the form of the current-flow cal-

culation, and hence it becomes clear that the two measur%ere”)(” indicates the sum of the elements of the masrix
are numerically identical, although their derivation is quite g o ,antity measures the fraction of the edges in the net-
different. (It also immediately follows that we can remove work that connect vertices of the same tyfe., within-

any row or column and still get the same a.nswer—.it dor—_zs no(t:ommunity edgesminus the expected value of the same
have to be row and columpalthough physically this choice ¢, anity in a network with the same community divisions but

makes the most senge. random connections between the vertices. If the number of
within-community edges is no better than random, we will
IV. QUANTIFYING THE STRENGTH getQ=0. Values approachin@= 1, which is the maximum,
OF COMMUNITY STRUCTURE indicate networks with strong community structdfe]. In
practice, values for such networks typically fall in the range
As we show in Sec. V, our community structure algo-from about 0.3 to 0.7. Higher values are rare.
rithms do an excellent job of recovering known communities  The expected error o can be calculated by treating
both in art|f|C|a”y genel’ated random networks and in real-each edge in the network as an independent measurement of
world examples. However, in praCticaI situations the algo-the contributions to the elements of the mateixA Simp]e
rithms will normally be used on networks for which the com- jackknife procedure works wejB4,35.
munities are not known ahead of time. This raises a new Typically, we will calculateQ for each split of a network
problem: how do we know when the communities found byinto communities as we move down the dendrogram, and
the algorithm are good ones? Our algorithms always producgok for local peaks in its value, which indicate particularly
somedivision of the network into communities, even in com- satisfactory splits. Usually we find that there are only one or
pletely random networks that have no meaningful commutwo such peaks, and, as we will show in the next section, in
nity structure, so it would be useful to have some way ofcases where the community structure is known beforehand
saying how good the structure found is. Furthermore, thgy, some means, we find that the positions of these peaks
algorithms’ output is in the form of a dendrogram which correspond closely to the expected divisions. The height of a

represents an entire nested hierarchy of possible communifyeak is a measure of the strength of the community division.
divisions for the network. We would like to know which of

these divisions are the best ones for a given network—where
we should cut the dendrogram to get a sensible division of
the network.

To answer these questions, we now define a measure of In this section, we give a number of applications of our
the quality of a particular division of a network, which we algorithms to particular problems, illustrating their operation
call the modularity This measure is based on a previousand their use in understanding the structure of complex net-
measure of assortative mixing proposed by Newr24i. works.

V. APPLICATIONS
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FIG. 6. Plot of the modularity and dendrogram for a 64-vertex random community-structured graph generated as described in the text
with, in this casez;,=6 andz,,= 2. The shapes at the bottom denote the four communities in the graph and, as we can see, the peak in the
modularity (dotted ling corresponds to a perfect identification of the communities.

A. Tests on computer-generated networks number of connections to vertices outside its community as it

First, as a controlled test of how well our algorithms per-do€s to those inside. _
form, we have generated networks with known community 1 he shortest-path version of the algorithm does, however,
structure, to see if the algorithms can recognize and extra@€rform noticeably better than the random-walk version, es-
this structure. pecially for the more difficult cases whezg,; is large. Given

We have generated a large number of graphs with that the random-walk algorithm is also more computationally
— 128 vertices. divided into four communities of 32 vertices démanding, there seems little reason to use it rather than the
each. Edges were placed independently at random betweSRortest-path algorithm, and hence, as discussed previously,
vertex pairs with probabilityp;, for an edge to fall between we recommend the Iattt_ar for most apphcatlo(iﬁ) be fair,
vertices in the same community apg,; to fall between ver- the random-walk glgorllthm does slightly outperfqrm the
tices in different communities. The values pf, and po shortest-path algorithm in the example addressed in the fol-

were chosen to make the expected degree of each verté‘?(Wing section, although, being only a single case, it is hard
equal to 16. In Fig. 6, we show a typical dendrogram from

the analysis of such a graph using the shortest-path between- - T T
ness version of our algorithniin fact, for the sake of clarity, BB G OO L EhC
the figure is for a 64-node version of the grgpResults for
the random-walk version are similar. At the right of the fig-
ure we also show the modularity, E(p), for the same cal-
culation, plotted as a function of position in the dendrogram.
That is, the plot is aligned with the dendrogram so that one
can read off modularity values for different divisions of the
network directly. As we can see, the modularity has a single
clear peak at the point where the network breaks into four

Yy

0.8 |

0.6

04|
§ o—o shortest path

o—0a random walk

fraction of vertices classified correctl

communities, as we would expect. The peak value is around Bl v

0.5, which is typical. I 1
In Fig. 7, we show the fraction of vertices in our O é A'L é 5

computer-generated network sample classified correctly into

the four communities by our algorithms, as a function of the average number of inter-community edges per vertex

mean numbeg,,, of edges from each vertex to vertices in FIG. 7. The fraction of vertices correctly identified by our algo-

other communities. As the _flgure shows, b_Oth the ShorteStr'lthms in the computer-generated graphs described in the text. The
path and random-walk versions of the algorithm perform exy,4 curves show results for the shortest-patincles and random-
cellently, with more than 90% of all vertices classified cor- ik (squaresversions of the algorithm as a function of the num-
rectly from z,,=0 all the way to around,=6. Only for  per of edges the vertices have to others outside their own commu-
Z,,+=6 does the classification begin to deteriorate markedlynity. The pointz,,=8 at the rightmost edge of the plot represents
In other words, our algorithm correctly identifies the com-the point at which vertices have as many connections outside their
munity structure in the network almost all the way to the own community as inside it. Each data point is an average over 100
point z, =8 at which each vertex has on average the samgraphs.
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In the last panel of Fig. 9, we show the dendrogram and
modularity for an algorithm based on shortest-path between-
ness but without the crucial recalculation step discussed in
Sec. Il. As the figure shows, without this step, the algorithm
fails to find the division of the network into the two known
groups. Furthermore, the modularity does not reach nearly
such high values as in the first two panels, indicating that the
divisions suggested are much poorer than in the cases with
the recalculation.

C. Collaboration network

For our next example, we look at a collaboration network
of scientists. Figure 1@) shows the largest component of a
FIG. 8. The network of friendships between individuals in the network of collaborations between physicists who conduct
karate club study of ZacharyB6]. The administrator and the in- research on network¢The aUthqu Of the presgnt paper, for
structor are represented by nodes 1 and 33, respectively. Shadi¥tance, are among the nodes in this netwarkis network
squares represent individuals who ended up aligning with the club$Which appeared previously in R¢B7]) was constructed by
administrator after the fission of the club, open circles those whdaking names of authors appearing in the lengthy bibliogra-
aligned with the instructor. phy of Ref.[4] and cross-referencing with the Physics e-print
Archive at arxiv.org, specifically the condensed-matter sec-
tion of the archive, where, for historical reasons, most papers
on networks have appeared. Authors appearing in both were
added to the network as vertices, and edges between them
indicate coauthorship of one or more papers appearing in the
We now turn to applications of our methods to real-world archive. Thus the collaborative ties represented in the figure
network data. Our first such example is taken from one of there not limited to papers on topics concerning networks—we
classic studies in social network analysis. Over the course ofrere interested primarily in whether people know one an-
two years in the early 1970s, Wayne Zachary observed sociather, and collaboration on any topic is a reasonable indica-
interactions between the members of a karate club at ator of acquaintance.
American university[36]. He constructed networks of ties The network as presented in Fig.(&Dis difficult to in-
between members of the club based on their social interaderpret. Given the names of the scientists, knowledgeable
tions both within the club and outside it. By chance, a dis-readers with too much time on their hands could, no doubt,
pute arose during the course of his study between the clubgick out known groupings, for instance at particular institu-
administrator and its principal karate teacher over whether ttions, from the general confusion. But were this a network
raise club fees, and as a result the club eventually split imbout which we had na priori knowledge, we would be
two, forming two smaller clubs, centered around the adminhard pressed to understand its underlying structure.
istrator and the teacher. Applying the shortest-path version of our algorithm to this
In Fig. 8, we show a consensus network structure exnetwork, we find that the modularity, E¢5), has a strong
tracted from Zachary's observations before the split. Feedingeak at 13 communities with a value Q&= 0.72+0.02. Ex-
this network into our algorithms, we find the results shown intracting the communities from the corresponding dendro-
Fig. 9. In the leftmost two panels, we show the dendrogramgram, we have indicated them with colors in Fig(H0The
generated by the shortest-path and random-walk versions &howledgeable reader will again be able to discern known
our algorithm, along with the modularity measures for thegroups of scientists in this rendering, and more easily now
same. As we see, both algorithms give reasonably high valwith the help of the colors. Still, however, the structure of the
ues for the modularity when the network is split into two network as a whole and of the interactions between groups is
communities—around 0.4 in each case—indicating that therguite unclear.
is a strong natural division at this level. What is more, the In Fig. 10c), we have reduced the network tmly the
divisions in question correspond almost perfectly to the acgroups. In this panel, we have drawn each group as a circle,
tual divisions in the club revealed by which group each clubwith size varying roughly with the number of individuals in
member joined after the club split ugThe shapes of the the group. The lines between groups indicate collaborations
vertices representing the two factions are the same as thobetween group members, with the thickness of the lines
of Fig. 8) Only one vertex, vertex 3, is misclassified by the varying in proportion to the number of pairs of scientists
shortest-path version of the method, and none are misclassitho have collaborated. Now the overall structure of the net-
fied by the random-walk version—the latter gets a perfectvork becomes easy to see. The network is centered around
score on this testOn the other hand, the two-community the large group in the middl@vhich consists of researchers
split fails to produce a local maximum in the modularity for primarily in southern Europe with a knot of intercommu-
the random-walk method, unlike the shortest-path methodqity collaborations going on between the groups on the lower
for which there is a local maximum precisely at this point. right of the picture(mostly Boston University physicists and

to know whether this is significant.

B. Zachary’s karate club network
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FIG. 9. Community structure in the karate club network. Left: the dendrogram extracted by the shortest-path betweenness version of our
method and the resulting modularity. The modularity has two maxohoéted line$ corresponding to splits into two communitiéghich
match closely the real-world split of the club, as denoted by the shapes of the veaticefive communitiegsthough one of those five
contains only one individual Only one individual, number 3, is incorrectly classified in the two-community split. Center: the dendrogram
for the random-walk version of our method. This version classifies all 34 vertices correctly into the factions that they actually &pkt into
dotted ling, although the split into four communities gets a higher modularity s¢tsgeond dotted line Right: the dendrogram for the
shortest-path algorithm without recalculation of betweennesses after each edge removal. This version of the calculation fails to find the split
into the two factions.

their intellectual descendantOther groupgiincluding the D. Other examples
authors’ own are scattered further out and more loosely con- In this section, we briefly describe example applications
nected to one another. of our methods to three further networks. The first is a non-

One of the problems created by the sudden availability i, ;man social network, a network of dolphins, the second a
recent years of large network data sets has been our lack @kyyork of fictional characters, and the third not a social
tools for visualizing their structurp4]. In the early days of [ otwork at all, but a network of web pages and the links
network analysis, particularly in the social sciences, it was,atyeen them.
usually enoug_h simply to draw a .picture of a network to see |, Fig. 11, we show the social network of a community of
what was going on. Networks in those days had ten 0gy pottienose dolphins living in Doubtful Sound, New
twenty nodes, not 140 as here, or several billion as in th&ggjand. The network was compiled by Luss¢ad] from
world wide web. We believe that methods like the one preseyen years of field studies of the dolphins, with ties between
sented here, _Of using community structure algorithms tQjolphin pairs being established by observation of statistically
make a meaningful “coarse graining” of a network, thereby significant frequent association. The network splits naturally
reducing its level of complexity to one that can be inter-into two large groups, represented by the circles and squares
preted readily by the human eye, will be invaluable in help-in the figure, and the larger of the two also splits into four
ing us to understand the large-scale structure of these negmaller subgroups. The modularity@=0.38+0.08 for the
network data. split into two groups, and peaks at 0:50.03 when the sub-

026113-10



FINDING AND EVALUATING COMMUNITY STRUCTURE.. .. PHYSICAL REVIEW E 69, 026113 (2004

B i
"':'.('IIW

»

/Fell Stadler
Gleiss
(b) \ = Mukherjee
Wagner Lassig Sy Dasgupta
/ erj Lancabarti
Manna
\ Sienkiewicz
B/erg Sen N\
Fronczak
. Herrmann
/ ~— Penna Holyst Jedynak

Moo
/ \ /@si/ejuk
N Stauffer

- Valverde /
ecora / Szabo ;
- Kaski
Ferrer i Cancho . \ =
Bl \ el sz/l Lahtinen
3 2
Girvan
Stro%rz Kepler
/ >la L300
Hopcr\ r \\ Watts — Smith
ICIEHRERE. Dodds —
Zaliznyak /
Simonse’ Moo
N\
Maslo\ _ Sneppen P
Eriksen
Schuster L
Bornholdt
/

Klemm'
Eguiluz/ Davidsen

Ebe"ielsch

FIG. 10. lllustration of the use of the community-structure algorithm to make sense of a complex néavdtie initial network is a
network of coauthorships between physicists who have published on topics related to networks. The figure shows only the largest component
of the network, which contains 145 scientists. There are 90 more scientists in smaller components, which are néb)shpplitation of
the shortest-path betweenness version of the community-structure algorithm produces the communities indicated by the shades of the
vertices.(c) A coarse-graining of the network in which each community is represented by a single node, with edges representing collabo-
rations between communities. The thickness of the edges is proportional to the number of pairs of collaborators between communities.
Clearly panel(c) reveals much that is not easily seen in the original network of p@el
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group splitting is included also.

The split into two groups appears to correspond to a
known division of the dolphin community89]. Lusseau re-
ports that for a period of about two years during observation
of the dolphins they separated into two groups along the
lines found by our analysis, apparently because of the disap-
pearance of individuals on the boundary between the groups.
When some of these individuals later reappeared, the two
halves of the network joined together once more. As Lusseau
points out, developments of this kind illustrate that the dol-
phin network is not merely a scientific curiosity but, like
human social networks, is closely tied to the evolution of the
community. The subgroupings within the larger half of the

FIG. 11. Community structure in the bottlenose dolphins ofNetwork also seem to correspond to real divisions among the
Doubtful Sound 38,39, extracted using the shortest-path version of @nimals: the largest subgroup consists almost of entirely of
our algorithm. The squares and circles denote the primary split ofemales and the others almost entirely of males, and it is
the network into two groups, and the circles are subdivided furtheconjectured that the split between the male groups is gov-
into four smaller groups as shown. The modularity for the split iserned by matrilineag¢D. Lusseau(personal communica-
Q=0.52. The network has been drawn with longer edges betweetion)].
vertices in different communities than between those in the same Figure 12 shows the community structure of the network
community, to make the community groupings clearer. The same igf interactions between major characters in Victor Hugo's
also true of Figs. 12 and 13. sprawling novel of crime and redemption in post-restoration
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FIG. 12. The network of interactions between major characters in the hegeMiseables by Victor Hugo. The greatest modularity
achieved in the shortest-path version of our algorithr®is0.54 and corresponds to the 11 communities shown.
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edges. This is a problem long studied in computer science,
applied mathematics, and the social sciences, but it has
lacked a satisfactory solution. We believe the methods de-
. scribed here give such a solution. They are simple, intuitive,
/ and demonstrably give excellent results on networks for

which we know the community structure ahead of time. Our
methods are defined by two crucial features. First, we use a
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“divisive” technique that iteratively removes edges from the
network, thereby breaking it up into communities. The edges
to be removed are identified using one of a set of edge be-
tweenness measures, of which the simplest is a generaliza-
tion to edges of the standard shortest-path betweenness of
Freemarj27]. Second, our algorithms include a recalculation
step in which betweenness scores are reevaluated after the

removal of every edge. This step, which was missing from
previous algorithms, turns out to be of primary importance to

FIG. 13. Pages on a web site and the hyperlinks between thenlihe Success qf ours. Wlthou_t it, the algorithms fail miserably
t even the simplest clustering tasks.

The different shades denote the optimal division into communitie® X .
We have demonstrated the efficacy and utility of our

found by the shortest-path version of our algorithm. -
methods with a number of examples. We have shown that

France,Les Miseables Using the list of character appear- OUr algorithms can reliably and sensitively extract commu-
ances by scene compiled by Knui0], the network was ity structure from artificially generated networks with
constructed in which the vertices represent characters and &/0Wn communities. We have also applied them to real-
edge between two vertices represents coappearance of tierld networks with known community structure and again
corresponding characters in one or more scenes. The optim#€y extract that structure without difficulty. And we have
community split of the resulting graph has a strong modulargiven examples of how our algorithms can be used to ana-
ity of Q=0.54+0.02, and gives 11 communities as shown inlyze networks whose structure is otherwise difficult to com-
the figure. The communities clearly reflect the subplot strucPrehend. The networks studied include a collaboration net-
ture of the book: unsurprisingly, the protagonist, Jean ValWork of scientists, in which our methods allow us to generate
jean, and his nemesis, the police officer Javert, are central fffhematic depictions of the overall structure of the network
the network and form the hubs of communities composed ofnd collaborations taking place within and between commu-
their respective adherents. Other subplots centered offties, other social networks of people and of animals, and a
Marius, Cosette, Fantine, and the bishop Myriel are als@'€twork of links between pages on a corporate web site.
picked out. The primary remaining difficulty with our algorithms is

Finally, as an example of the application of our method tothe relatively high computational demands they make. The

a nonsocial network. we have looked at a web graph_;;astest of them, the one based on shortest-path betweenness,
. . ’ . H 3\ i ; :

network in which the vertices and edges represent web pag@$erates inO(n”) time on a sparse graph, which makes it
and the links between them. The graph in question represent§ablé for networks up to about 10000 vertices, but for
180 pages from the web site of a large corporati6al. larger systems it becomes intractable. Although the ever-
Figure 13 shows the network and the communities found ifmProving speed of computers will certainly raise this limit
it by the shortest-path version of our algorithm. This networkin coming years, it would be more satisfactory if a faster
has one of the strongest modularity values of the example¥ersion of the method could be discovered. One possibility is
studied here, aQ=0.65+-0.02. The links between web parallelization: the betweenness calculation involves a sum
pages are directed, as indicated by the arrows in the figur@Ver source vertices and the elements of that sum can be
but, as discussed in Sec. IlI A, for the purposes of finding th&listributed over different processors, making the calculation
communities, we ignore direction and treat the network adfivially parallelizable on a distributed-memory machine.
undirected. However, a better approach would be to find some improve-

Certainly it might be useful to know the communities in ament in _the algorithm itself to decrease its computational
web network; an algorithm that can pick out communitiesCOMPIexity. o _ _
could reveal which pages cover related topics or the social Since the publication of our first paper on this tof5],
structure of links between pages maintained by different inSeveral other authors have made use of the shortest-path ver-

dividuals. Ideas along these lines have been pursued by, f§on of our algorithm. Holmet al.[43] have applied it to a
example, Flaket al.[41] and Adamic and Adaf42]. number of metabolic networks for different organisms, find-

ing communities that correspond to functional units within
the networks, while Wilkinson and Huberm@] have ap-
plied it to a network of relations between genes, as estab-
In this paper, we have described a new class of algorithmbshed by the co-occurrence of names of genes in published
for performing network clustering, the task of extracting theresearch articles. An interesting application to social net-
natural community structure from networks of vertices andworks is the study by Gleiser and Danfgtb] of the collabo-

VI. CONCLUSIONS
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ration network of early jazz musicians. They found, amongnecessarily suffers from the statistical fluctuations inherent in
other things, that the network split into two communitiesrandom sampling methods. This idea, or a variation of it,
along lines of race, with black musicians in one group andmight provide a solution to the problems mentioned above of
white musicians in the other. Guimeed al. [46] have ap- the high computational demands of our algorithms.

plied the method to a network of email messages passing We are, of course, delighted to see our methods applied to
between users at a university, and found communities thatuch a variety of problems. Combined with the algorithms
reflect both formal and informal levels of organization. Tyler and measures described in this paper, we hope to see many
et al. [47] have also applied the algorithm to an email net-more applications in the future.

work, in their case at a large company, finding that the re-
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