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Finding and evaluating community structure in networks
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We propose and study a set of algorithms for discovering community structure in networks—natural divi-
sions of network nodes into densely connected subgroups. Our algorithms all share two definitive features:
first, they involve iterative removal of edges from the network to split it into communities, the edges removed
being identified using any one of a number of possible ‘‘betweenness’’ measures, and second, these measures
are, crucially, recalculated after each removal. We also propose a measure for the strength of the community
structure found by our algorithms, which gives us an objective metric for choosing the number of communities
into which a network should be divided. We demonstrate that our algorithms are highly effective at discovering
community structure in both computer-generated and real-world network data, and show how they can be used
to shed light on the sometimes dauntingly complex structure of networked systems.
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I. INTRODUCTION

Empirical studies and theoretical modeling of networ
have been the subject of a large body of recent researc
statistical physics and applied mathematics@1–4#. Network
ideas have been applied with success to topics as divers
the Internet and the world wide web@5–7#, epidemiology
@8–11#, scientific citation and collaboration@12,13#, metabo-
lism @14,15#, and ecosystems@16,17#, to name but a few. A
property that seems to be common to many networks iscom-
munity structure, the division of network nodes into group
within which the network connections are dense, but
tween which they are sparser—see Fig. 1. The ability to fi
and analyze such groups can provide invaluable help in
derstanding and visualizing the structure of networks. In t
paper, we show how this can be achieved.

The study of community structure in networks has a lo
history. It is closely related to the ideas of graph partitioni
in graph theory and computer science, and hierarchical c
tering in sociology@18,19#. Before presenting our own find
ings, it is worth reviewing some of this preceding work
understand its achievements and shortcomings.

Graph partitioning is a problem that arises in, for e
ample, parallel computing. Suppose we have a numbern of
intercommunicating computer processes, which we wish
distribute over a numberg of computer processors. Process
do not necessarily need to communicate with all others,
the pattern of required communications can be represente
a graph or network in which the vertices represent proce
and edges join process pairs that need to communicate.
problem is to allocate the processes to processors in su
way as roughly to balance the load on each processor, w
at the same time minimizing the number of edges that
between processors, so that the amount of interproce
communication~which is normally slow! is minimized. In
general, finding an exact solution to a partitioning task of t
kind is believed to be an NP-hard problem, making it p
hibitively difficult to solve exactly for large graphs, but
wide variety of heuristic algorithms have been develop
1063-651X/2004/69~2!/026113~15!/$22.50 69 0261
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that give acceptably good solutions in many cases, the
known being perhaps the Kernighan-Lin algorithm@20#,
which runs in timeO(n3) on sparse graphs.

A solution to the graph partitioning problem is, howeve
not particularly helpful for analyzing and understanding n
works in general. If we merely want to find if and how
given network breaks down into communities, we proba
do not know how many such communities there are going
be, and there is no reason why they should be roughly
same size. Furthermore, the number of intercommun
edges need not be strictly minimized either, since more s
edges are admissible between large communities than
tween small ones.

As far as our goals in this paper are concerned, a m
useful approach is that taken by social network analysis w
the set of techniques known as hierarchical clustering. Th
techniques are aimed at discovering natural divisions of~so-
cial! networks into groups, based on various metrics of sim
larity or strength of connection between vertices. They f
into two broad classes, agglomerative and divisive@19#, de-
pending on whether they focus on the addition or remova
edges to or from the network. In an agglomerative meth
similarities are calculated by one method or another betw
vertex pairs, and edges are then added to an initially em

FIG. 1. A small network with community structure of the typ
considered in this paper. In this case there are three commun
denoted by the dashed circles, which have dense internal links
between which there is only a lower density of external links.
©2004 The American Physical Society13-1
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network ~n vertices with no edges! starting with the vertex
pairs with highest similarity. The procedure can be halted
any point, and the resulting components in the network
taken to be the communities. Alternatively, the entire p
gression of the algorithm from empty graph to comple
graph can be represented in the form of a tree ordendrogram
such as that shown in Fig. 2. Horizontal cuts through the
represent the communities appropriate to different halt
points.

Agglomerative methods based on a wide variety of sim
larity measures have been applied to different netwo
Some networks have natural similarity metrics built in. F
example, in the widely studied network of collaborations b
tween film actors@21,22#, in which two actors are connecte
if they have appeared in the same film, one could quan
similarity by how many films actors have appeared in
gether@23#. Other networks have no natural metric, but su
able ones can be devised using correlation coefficients,
lengths, or matrix methods. A well known example of
agglomerative clustering method is the Concor algorithm
Breigeret al. @24#.

Agglomerative methods have their problems, howev
One concern is that they fail with some frequency to find
correct communities in networks where the commun
structure is known, which makes it difficult to place mu
trust in them in other cases. Another is their tendency to fi
only the cores of communities and leave out the periph
The core nodes in a community often have strong similar
and hence are connected early in the agglomerative proc
but peripheral nodes that have no strong similarity to oth
tend to get neglected, leading to structures like that show
Fig. 3. In this figure, there are a number of peripheral no
whose community membership is obvious to the eye—
most cases, they have only a single link to a spec
community—but agglomerative methods often fail to pla
such nodes correctly.

FIG. 2. A hierarchical tree or dendrogram illustrating the type
output generated by the algorithms described here. The circles a
bottom of the figure represent the individual vertices of the n
work. As we move up the tree, the vertices join together to fo
larger and larger communities, as indicated by the lines, until
reach the top, where all are joined together in a single commu
Alternatively, the dendrogram depicts an initially connected n
work splitting into smaller and smaller communities as we go fr
top to bottom. A cross section of the tree at any level, such as
indicated by the dotted line, will give the communities at that lev
The vertical height of the split points in the tree are indicative o
of the order in which the splits~or joins! take place, although it is
possible to construct more elaborate dendrograms in which t
heights contain other information.
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In this paper, therefore, we focus on divisive metho
These methods have been relatively little studied in the p
vious literature, either in social network theory or elsewhe
but, as we will see, they seem to offer a lot of promise. In
divisive method, we start with the network of interest a
attempt to find theleast similar connected pairs of vertice
and then remove the edges between them. By doing
repeatedly, we divide the network into smaller and sma
components, and again we can stop the process at any
and take the components at that stage to be the netw
communities. Again, the process can be represented as a
drogram depicting the successive splits of the network i
smaller and smaller groups.

The approach we take follows roughly these lines, b
adopts a somewhat different philosophical viewpoint. Rat
than looking for the most weakly connected vertex pairs,
approach will be to look for the edges in the network that
most ‘‘between’’ other vertices, meaning that the edge is
some sense, responsible for connecting many pairs of oth
Such edges need not be weak at all in the similarity sen
How this idea works out in practice will become clear in t
course of the presentation.

Briefly then, the outline of this paper is as follows. In Se
II we describe the crucial concepts behind our methods
finding community structure in networks and show ho
these concepts can be turned into a concrete prescription
performing calculations. In Sec. III we describe in detail t
implementation of our methods. In Sec. IV we consider wa
of determining when a particular division of a network in
communities is a good one, allowing us to quantify the s
cess of our community-finding algorithms. And in Sec. V w
give a number of applications of our algorithms to particu
networks, both real and artificial. In Sec. VI we give o
conclusions. A brief report of some of the work contained
this paper has appeared previously as Ref.@25#.

II. FINDING COMMUNITIES IN A NETWORK

In this paper, we present a class of new algorithms
network clustering, i.e., the discovery of community stru
ture in networks. Our discussion focuses primarily on n
works with only a single type of vertex and a single type
undirected, unweighted edge, although generalizations
more complicated network types are certainly possible.

There are two central features that distinguish our al
rithms from those that have preceded them. First, our a
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FIG. 3. Agglomerative clustering methods are typically good
discovering the strongly linked cores of communities~bold vertices
and edges! but tend to leave out peripheral vertices, even when
here, most of them clearly belong to one community or anothe
3-2
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rithms are divisive rather than agglomerative. Divisive alg
rithms have occasionally been studied in the past, but
discussed in the Introduction, ours differ in focusing not
removing the edges between vertex pairs with the low
similarity, but on finding edges with the highest ‘‘betwee
ness,’’ where betweenness is some measure that favors e
that lie between communities and disfavors those that
inside communities.

To make things more concrete, we give some example
the types of betweenness measures we will be looking at
of them are based on the same idea. If two communities
joined by only a few intercommunity edges, then all pa
through the network from vertices in one community to v
tices in the other must pass along one of those few ed
Given a suitable set of paths, one can count how many
along each edge in the graph, and this number we then
pect to be largest for the intercommunity edges, thus pro
ing a method for identifying them. Our different measur
correspond to various implementations of this idea as
lows:

~i! The simplest example of such a betweenness mea
is that based on shortest~geodesic! paths: we find the short
est paths between all pairs of vertices and count how m
run along each edge. To the best of our knowledge,
measure was first introduced by Anthonisse in a nev
published technical report in 1971@26#. Anthonisse called it
‘‘rush,’’ but we prefer the termedge betweenness, since the
quantity is a natural generalization to edges of the w
known ~vertex! betweenness measure of Freeman@27#,
which was the inspiration for our approach. When we ne
to distinguish it from the other betweenness measures
sidered in this paper, we will refer to it asshortest-path be-
tweenness. A fast algorithm for calculating the shortest-pa
betweenness is given in Sec. III A.

~ii ! The shortest-path betweenness can be thought o
terms of signals traveling through a network. If signals tra
from source to destination along geodesic network paths,
all vertices send signals at the same constant rate to all
ers, then the betweenness is a measure of the rate at w
signals pass along each edge. Suppose, however, that si
do not travel along geodesic paths, but instead just perfor
random walk about the network until they reach their de
nation. This gives us another measure on edges, therandom-
walk betweenness: we calculate the expected net number
times that a random walk between a particular pair of ve
ces will pass down a particular edge and sum over all ve
pairs. The random-walk betweenness can be calculated u
matrix methods, as described in Sec. III C.

~iii ! Another betweenness measure is motivated by id
from elementary circuit theory. We consider the circuit c
ated by placing a unit resistance on each edge of the netw
and unit current source and sink at a particular pair of ve
ces. The resulting current flow in the network will trav
from source to sink along a multitude of paths, those w
least resistance carrying the greatest fraction of the curr
Thecurrent-flow betweennessfor an edge we define to be th
absolute value of the current along the edge summed ove
source/sink pairs. It can be calculated using Kirchho
laws, as described in Sec. III B. In fact, as we will show, t
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current-flow betweenness turns out to be exactly equal to
random-walk betweenness of the previous paragraph, bu
nonetheless consider it separately since it leads to a sim
derivation of the measure.

These measures are only suggestions; many others
possible and may well be appropriate for specific appli
tions. Measures~i! and~ii ! are in some sense extremes in t
spectrum of possibilities, one corresponding to signals t
know exactly where they are going, and the other to sign
that have no idea where they are going. As we will s
however, these two measures actually give rather similar
sults, indicating that the precise choice of betweenness m
sure may not, at least for the types of applications conside
here, be that important.

The second way in which our methods differ from prev
ous ones is in the inclusion of a ‘‘recalculation step’’ in th
algorithm. If we were to perform a standard divisive clust
ing based on edge betweenness, we would calculate the
betweenness for all edges in the network and then rem
edges in decreasing order of betweenness to produce a
drogram like that of Fig. 2, showing the order in which th
network split up.

However, once the first edge in the network is removed
such an algorithm, the betweenness values for the remai
edges will no longer reflect the network as it now is. This c
give rise to unwanted behaviors. For example, if two co
munities are joined by two edges, but, for one reason
another, most paths between the two flow along just one
those edges, then that edge will have a high between
score and the other will not. An algorithm that calculat
betweennesses only once and then removed edges in
tweenness order would remove the first edge early in
course of its operation, but the second might not get remo
until much later. Thus the obvious division of the netwo
into two parts might not be discovered by the algorithm.
the worst case, the two parts themselves might be indivi
ally broken up before the division between the two is ma
In practice, problems like this crop up in real networks w
some regularity and render algorithms of this type ineffect
for the discovery of community structure.

The solution, luckily, is obvious. We simply recalcula
our betweenness measure after the removal of each e
This certainly adds to the computational effort of performi
the calculation, but its effect on the results is so desirable
we consider the price worth paying.

Thus the general form of our community structure findi
algorithm is as follows:

~i! Calculate betweenness scores for all edges in the
work.

~ii ! Find the edge with the highest score and remove
from the network.~If two or more edges tie for highest scor
choose one of them at random and remove that.!

~iii ! Recalculate betweenness for all remaining edges.
~iv! Repeat from step~ii !.
In fact, it appears that the recalculation step is the m

important feature of the algorithm, as far as getting satisf
tory results is concerned. As mentioned above, our stu
indicate that, once one hits on the idea of using betweenn
measures to weight edges, the exact measure one use
3-3
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pears not to influence the results highly. The recalculat
step, on the other hand, is absolutely crucial to the opera
of our methods. This step was missing from previous
tempts at solving the clustering problem using divisive alg
rithms, and yet without it the results are very poor inde
failing to find known community structure even in the sim
plest of cases. In Sec. V B we give an example compa
the performance of the algorithm on a particular netwo
with and without the recalculation step.

In the following sections, we discuss implementation a
give examples of our algorithms for finding communi
structure. For the reader who merely wants to know w
algorithm they should use for their own problem, let us g
an immediate answer: for most problems, we recommend
algorithm with betweenness scores calculated using
shortest-path betweenness measure~i! above. This measure
appears to work well and is the quickest to calculate—
described in Sec. III A, it can be calculated for all edges
time O(mn), wherem is the number of edges in the grap
andn is the number of vertices@48#. This is the only version
of the algorithm that we discussed in Ref.@25#. The other
versions we discuss, while being of some pedagogical in
est, make greater computational demands, and in pra
seem to give results no better than the shortest-path met

III. IMPLEMENTATION

In theory, the descriptions of the preceding section co
pletely define the methods we consider in this paper, bu
practice there are a number of subtleties to their implem
tation that are important for turning the description into
workable computer algorithm.

Essentially all of the work in the algorithm is in the ca
culation of the betweenness scores for the edges; the jo
finding and removing the highest-scoring edge is trivial a
not computationally demanding. Let us tackle our three s
gested betweenness measures in turn.

A. Shortest-path betweenness

At first sight, it appears that calculating the edge betwe
ness measure based on geodesic paths for all edges will
O(mn2) operations on a graph withm edges andn vertices:
calculating the shortest path between a particular pair of
tices can be done using breadth-first search in timeO(m)
@28,29#, and there areO(n2) vertex pairs. Recently, howeve
new algorithms have been proposed by Newman@30# and
independently by Brandes@31# that can perform the calcula
tion faster than this, finding all betweennesses inO(mn)
time. Both Newman and Brandes gave algorithms for
standard Freeman vertex betweenness, but it is trivia
adapt their algorithms for edge betweenness. We describ
resulting method here for the algorithm of Newman.

Breadth-first search can find shortest paths from a sin
vertex s to all others in timeO(m). In the simplest case
when there is only a single shortest path from the sou
vertex to any other~we will consider other cases in a mo
ment!, the resulting set of paths forms a shortest-path tre
see Fig. 4~a!. We can use this tree to calculate the contrib
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tion to betweenness for each edge from this set of path
follows. We find first the ‘‘leaves’’ of the tree, i.e., thos
nodes such that no shortest paths to other nodes pass thr
them, and we assign a score of 1 to the single edge
connects each to the rest of the tree, as shown in the fig
Then, starting with those edges that are farthest from
source vertex on the tree, i.e., lowest in Fig. 4~a!, we work
upwards, assigning a score to each edge that is 1 plus
sum of the scores on the neighboring edges immediately
low it ~i.e., those edges with which it shares a common v
tex!. When we have gone though all edges in the tree,
resulting scores are the betweenness counts for the p
from vertexs. Repeating the process for all possible vertic
s and summing the scores, we arrive at the full betweenn
scores for shortest paths between all pairs. The breadth
search and the process of working up through the tree b
take worst-case timeO(m) and there aren vertices total, so
the entire calculation takes timeO(mn) as claimed.

This simple case serves to illustrate the basic princi
behind the algorithm. In general, however, it is not the ca
that there is only a single shortest path between any pa
vertices. Most networks have at least some vertex pairs
tween which there are two or more geodesic paths of eq
length. Figure 4~b! shows a simple example of a shorte
path ‘‘tree’’ for a network with this property. The resultin
structure is in fact no longer a tree, and in such cases an e
step is required in the algorithm to calculate the betweenn
correctly.

In the traditional definition of vertex betweenness@27#,
multiple shortest paths between a pair of vertices are gi
equal weights summing to 1. For example, if there are th
shortest paths, each will be given weight1

3. We adopt the
same definition for our edge betweenness~as did Anthonisse
in his original work@26#, although other definitions are pos

FIG. 4. Calculation of shortest-path betweenness:~a! When
there is only a single shortest path from a source vertexs ~top! to all
other reachable vertices, those paths necessarily form a tree, w
makes the calculation of the contribution to betweenness from
set of paths particularly simple, as described in the text.~b! For
cases in which there is more than one shortest path to some ver
the calculation is more complex. First we must calculate the num
of distinct paths from the sources to each vertex~numbers on
vertices!, and then these are used to weight the path counts
described in the text. In either case, we can check the result
confirming that the sum of the betweennesses of the edges
nected to the source vertex is equal to the total number of reach
vertices—six in each of the cases illustrated here.
3-4
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sible @32#!. Note that the paths may run along the same e
or edges for some part of their length, resulting in edges w
greater weight. To calculate correctly what fraction of t
paths flows along each edge in the network, we genera
the breadth-first search part of the calculation, as follows

Consider Fig. 4~b! and suppose we are performing
breadth-first search starting at vertexs. We carry out the
following steps:

~i! The initial vertexs is given distanceds50 and weight
ws51.

~ii ! Every vertexi adjacent tos is given distancedi5ds
1151 and weightwi5ws51.

~iii ! For each vertexj adjacent to one ofthoseverticesi,
we do one of three things:~a! If j has not yet been assigne
a distance, it is assigned distancedj5di11 and weightwj
5wi ; ~b! if j has already been assigned a distance anddj
5di11, then the vertex’s weight is increased bywi , that is,
wj←wj1wi ; and ~c! if j has already been assigned a d
tance anddj,di11, we do nothing.

~iv! Repeat from step~iii ! until no vertices remain tha
have assigned distances but whose neighbors do not
assigned distances.

In practice, this algorithm can be implemented most e
ciently using a queue or first-in/first-out buffer to store t
vertices that have been assigned a distance, just as in
standard breadth-first search.

Physically, the weight on a vertexi represents the numbe
of distinct paths from the source vertex toi. These weights
are precisely what we need to calculate our edge betw
nesses, because if two verticesi and j are connected, withj
farther thani from the sources, then the fraction of a geo
desic path fromj throughi to s is given bywi /wj . Thus, to
calculate the contribution to edge betweenness from
shortest paths starting ats, we need only carry out the fol
lowing steps:

~i! Find every ‘‘leaf’’ vertex t, i.e., a vertex such that n
paths froms to other vertices go thought.

~ii ! For each vertexi neighboringt, assign a score to th
edge fromt to i of wi /wt .

~iii ! Now, starting with the edges that are farthest from
source vertexs—lower down in a diagram such as Fig
4~b!—work up towardss. To the edge from vertexi to vertex
j, with j being farther froms than i, assign a score that is
plus the sum of the scores on the neighboring edges im
diately below it~i.e., those with which it shares a commo
vertex!, all multiplied bywi /wj .

~iv! Repeat from step~iii ! until vertexs is reached.
Now repeating this process for alln source verticess and

summing the resulting scores on the edges gives us the
betweenness for all edges in timeO(mn).

We have to repeat this calculation for each edge remo
from the network, of which there arem, and hence the com
plete community structure algorithm based on shortest-p
betweenness operates in worst-case timeO(m2n), or O(n3)
time on a sparse graph. In our experience, this typic
makes it tractable for networks of up to aboutn510 000
vertices, with current~circa 2003! desktop computers. In
some special cases one can do better. In particular, we
that the removal of an edge only affects the betweennes
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other edges that fall in the same component, and hence
we need only recalculate betweennesses in that compon
Networks with strong community structure often break ap
into separate components quite early in the progress of
algorithm, substantially reducing the amount of work th
needs to be done on subsequent steps. Whether this resu
a change in the computational complexity of the algorith
for any commonly occurring classes of graphs is an op
question, but it certainly gives a substantial speed boos
many of the calculations described in this paper.

Some networks are directed, i.e., their edges run in
direction only. The world wide web is an example; links
the web point in one direction only from one web page
another. One could imagine a generalization of the short
path betweenness that allowed for directed edges by co
ing only those paths that travel in the forward direction alo
edges. Such a calculation is a trivial variation on the o
described above. However, we have found that in many ca
it is better to ignore the directed nature of a network in c
culating community structure. Often an edge acts simply
an indication of a connection between two nodes, and
direction is unimportant. For example, in Ref.@25# we ap-
plied our algorithm to a food web of predator-prey intera
tions between marine species. Predator-prey interactions
clearly directed—one species may eat another, but it is
likely that the reverse is simultaneously true. However, as
as community structure goes, we want to know only wh
species have interactions with which others. We find, the
fore, that our algorithm applied to the undirected version
the food web works well at picking out the community stru
ture, and no special algorithm is needed for the directed c
We give another example of our method applied to a direc
graph in Sec. V D.

B. Resistor networks

As examples of betweenness measures that take m
than just shortest paths into account, we proposed in Se
measures based on random walks and on current flow
resistor networks. In fact, there are well known mathemat
connections between random walks and resistor netwo
@33#, and the properties of one can often be calculated
considering the other. This turns out to be the case here
and, as we now show, when appropriately defined,
random-walk and current-flow betweenness measures
precisely the same. Here we derive the current-flow meas
first, since it turns out to be simpler; in the following sectio
we derive the random-walk measure and show that the
are equivalent.

Consider the network created by placing a unit resista
on every edge of our network, a unit current source at ver
s, and a unit current sink at vertext ~see Fig. 5!. Clearly, the
current betweens andt will flow primarily along short paths,
but some will flow along longer ones, roughly in invers
proportion to their length. We will use the absolute mag
tude of the current flow along an edge, summed over
source/sink pairs, as our betweenness score.

The current flows in the network are governed by Kirc
hoff’s laws. To solve them, we proceed as follows for ea
3-5
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separate component of the graph. LetVi be the voltage at
vertex i, measured relative to any convenient point. Then
all i we have

(
j

Ai j ~Vi2Vj !5d is2d i t , ~1!

whereAi j is the ij element of the adjacency matrix of th
graph, i.e.,Ai j 51 if i and j are connected by an edge an
Ai j 50 otherwise. The left-hand side of Eq.~1! represents the
net current flow out of vertexi along edges of the network
and the right-hand side represents the source and sink.
fining ki5( jAi j , which is the vertex degree, and creating
diagonal matrixD with these degrees on the diagonalDii
5ki , this equation can be written in matrix form as (D
2A)•V5s, where the source vectors has components

si5H 11 for i 5s

21 for i 5t

0 otherwise.

~2!

We cannot directly invert the matrixD2A to get the volt-
age vectorV, because the matrix~which is just the graph
Laplacian! is singular. This is equivalent to saying that the
is one undetermined degree of freedom corresponding to
choice of reference potential for measuring the voltages.
can add any constant to a solution for the vertex voltages
get another solution—only the voltage differences matter
choosing the reference potential, we fix this degree of fr
dom, leaving onlyn21 more to be determined. In math
ematical terms, once anyn21 of the equations in our matrix
formulation are satisfied, the remaining one is also autom
cally satisfied so long as current is conserved in the netw
as a whole, i.e., so long as( isi50, which is clearly true in
this case.

Choosing any vertexv to be the reference point, there
fore, we remove the row and column corresponding to t
vertex fromD andA before inverting. Denoting the resultin
(n21)3(n21) matricesDv andAv , we can then write

V5~Dv2Av!21
•s. ~3!

Calculation of the currents in the network thus involv
inverting Dv2Av once for any convenient choice ofv, and

FIG. 5. An example of the type of resistor network conside
here, in which a unit resistance is placed on each edge and
current flows into and out of the source and sink vertices.
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taking the differences of pairs of columns to get the volta
vectorV for each possible source/sink pair.~The voltage for
the one missing vertexv is always zero, by hypothesis.! The
absolute magnitudes of the differences of voltages al
each edge give us betweenness scores for the given so
and sink. Summing over all sources and sinks, we then
our complete betweenness score.

The matrix inversion takes timeO(n3) in the worst case,
while the subsequent calculation of betweennesses takes
O(mn2), where as beforem is the number of edges andn the
number of vertices in the graph. Thus, the entire commun
structure algorithm, including the recalculation step, w
takeO„(n1m)mn2

… time to complete, orO(n4) on a sparse
graph. Although, as we will see, the algorithm is good
finding community structure, this poor performance make
practical only for smaller graphs; a few hundreds of vertic
is the most that we have been able to do. It is for this rea
that we recommend using the shortest-path betweennes
gorithm in most cases, which gives results about as goo
better with considerably less effort.

C. Random walks

The random-walk betweenness described in Sec. II
quires us to calculate how often on average random wa
starting at vertexs will pass down a particular edge from
vertexv to vertexw ~or vice versa! before finding their way
to a given target vertext. To calculate this quantity, we pro
ceed as follows for each separate component of the grap

As before, letAi j be an element of the adjacency matr
such thatAi j 51 if verticesi and j are connected by an edg
andAi j 50 otherwise. Consider a random walk that on ea
step decides uniformly between the neighbors of the cur
vertex j and takes a step to one of them. The number
neighbors is just the degree of the vertexkj5( iAi j , and the
probability for the transition fromj to i is Ai j /kj , which we
can regard as an element of the matrixM5A•D21, whereD
is the diagonal matrix withDii 5ki .

We are interested in walks that terminate when they re
the targett, so thatt is an absorbing state. The most conv
nient way to represent this is just to remove entirely t
vertex t from the graph, so that no walk ever reaches a
other vertex fromt. Thus letM t5At•Dt

21 be the matrixM
with the tth row and column removed~and similarly forAt
andDt).

Now the probability that a walk starts ats, takesn steps,
and ends up at some other vertex~not t! is given by theis
element of M t

n , which we denote@M t
n# is . In particular,

walks end up atv and w with probabilities @M t
n#vs and

@M t
n#ws , and of those a fraction 1/kv and 1/kw , respectively,

then pass along the edge (v,w) in one direction or the other
assuming such an edge exists.~Note that they may also hav
passed along this edge an arbitrary number of times be
reaching this point.! Summing over alln, the mean number
of times that a walk of any length traverses the edge fromv
to w is kv

21@(I2M t)
21#vs , and similarly for walks that go

from w to v.
To highlight the similarity with the current-flow between

ness of Sec. III B, let us denote these two numbersVv and

d
nit
3-6
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Vw , respectively. Then we can write

V5Dt
21

•~ I2M t!
21

•s5~Dt2At!
21

•s, ~4!

where the source vectors is the vector whose componen
are all 0 except for a single 1 in the position corresponding
the source vertexs.

Now we define our random-walk betweenness for
edge (v,w) to be the absolute value of thedifferenceof the
two probabilitiesVv and Vw , i.e., the net number of time
the walk passes along the edge in one direction. This se
a natural definition—it makes little sense to accord an e
high betweenness simply because a walk went back and
along it many times. It is the difference between the numb
of times the edge is traversed in either direction that mat
@49#.

But now we see that this method is very similar to t
resistor network calculation of Sec. III B. In that calculatio
we also evaluated (Dt2At)

21
•s for a suitable source vecto

and then took differences of the resulting numbers. The o
difference is that in the current-flow calculation we had
sink term ins as well as a source. Purely for the purposes
mathematical convenience, we can add such a sink in
present case at the target vertext—this makes no difference
to the solution forV since thetth row has been remove
from the equations anyway. By doing this, however, we tu
the equations into precisely the form of the current-flow c
culation, and hence it becomes clear that the two meas
are numerically identical, although their derivation is qu
different. ~It also immediately follows that we can remov
any row or column and still get the same answer—it does
have to be row and columnt, although physically this choice
makes the most sense.!

IV. QUANTIFYING THE STRENGTH
OF COMMUNITY STRUCTURE

As we show in Sec. V, our community structure alg
rithms do an excellent job of recovering known communit
both in artificially generated random networks and in re
world examples. However, in practical situations the alg
rithms will normally be used on networks for which the com
munities are not known ahead of time. This raises a n
problem: how do we know when the communities found
the algorithm are good ones? Our algorithms always prod
somedivision of the network into communities, even in com
pletely random networks that have no meaningful comm
nity structure, so it would be useful to have some way
saying how good the structure found is. Furthermore,
algorithms’ output is in the form of a dendrogram whic
represents an entire nested hierarchy of possible commu
divisions for the network. We would like to know which o
these divisions are the best ones for a given network—wh
we should cut the dendrogram to get a sensible division
the network.

To answer these questions, we now define a measur
the quality of a particular division of a network, which w
call the modularity. This measure is based on a previo
measure of assortative mixing proposed by Newman@34#.
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Consider a particular division of a network intok communi-
ties. Let us define ak3k symmetric matrixe whose element
ei j is the fraction of all edges in the network that link ver
ces in communityi to vertices in communityj @50#. ~Here we
consider all edges in the original network—even after ed
have been removed by the community structure algorith
our modularity measure is calculated using the full networ!

The trace of this matrix Tre5( ieii gives the fraction of
edges in the network that connect vertices in the same c
munity, and clearly a good division into communities shou
have a high value of this trace. The trace on its own, ho
ever, is not a good indicator of the quality of the divisio
since, for example, placing all vertices in a single commun
would give the maximal value of Tre51 while giving no
information about community structure at all.

So we further define the row~or column! sums ai
5( jei j , which represent the fraction of edges that conn
to vertices in communityi. In a network in which edges fal
between vertices without regard for the communities th
belong to, we would haveei j 5aiaj . Thus we can define a
modularity measure by

Q5(
i

~eii 2ai
2!5Tr e2ie2i , ~5!

whereixi indicates the sum of the elements of the matrixx.
This quantity measures the fraction of the edges in the
work that connect vertices of the same type~i.e., within-
community edges! minus the expected value of the sam
quantity in a network with the same community divisions b
random connections between the vertices. If the numbe
within-community edges is no better than random, we w
getQ50. Values approachingQ51, which is the maximum,
indicate networks with strong community structure@51#. In
practice, values for such networks typically fall in the ran
from about 0.3 to 0.7. Higher values are rare.

The expected error onQ can be calculated by treatin
each edge in the network as an independent measureme
the contributions to the elements of the matrixe. A simple
jackknife procedure works well@34,35#.

Typically, we will calculateQ for each split of a network
into communities as we move down the dendrogram, a
look for local peaks in its value, which indicate particular
satisfactory splits. Usually we find that there are only one
two such peaks, and, as we will show in the next section
cases where the community structure is known beforeh
by some means, we find that the positions of these pe
correspond closely to the expected divisions. The height
peak is a measure of the strength of the community divisi

V. APPLICATIONS

In this section, we give a number of applications of o
algorithms to particular problems, illustrating their operati
and their use in understanding the structure of complex
works.
3-7
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FIG. 6. Plot of the modularity and dendrogram for a 64-vertex random community-structured graph generated as described i
with, in this case,zin56 andzout52. The shapes at the bottom denote the four communities in the graph and, as we can see, the pe
modularity ~dotted line! corresponds to a perfect identification of the communities.
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A. Tests on computer-generated networks

First, as a controlled test of how well our algorithms p
form, we have generated networks with known commun
structure, to see if the algorithms can recognize and ext
this structure.

We have generated a large number of graphs withn
5128 vertices, divided into four communities of 32 vertic
each. Edges were placed independently at random betw
vertex pairs with probabilitypin for an edge to fall between
vertices in the same community andpout to fall between ver-
tices in different communities. The values ofpin and pout
were chosen to make the expected degree of each ve
equal to 16. In Fig. 6, we show a typical dendrogram fro
the analysis of such a graph using the shortest-path betw
ness version of our algorithm.~In fact, for the sake of clarity,
the figure is for a 64-node version of the graph.! Results for
the random-walk version are similar. At the right of the fi
ure we also show the modularity, Eq.~5!, for the same cal-
culation, plotted as a function of position in the dendrogra
That is, the plot is aligned with the dendrogram so that o
can read off modularity values for different divisions of th
network directly. As we can see, the modularity has a sin
clear peak at the point where the network breaks into f
communities, as we would expect. The peak value is aro
0.5, which is typical.

In Fig. 7, we show the fraction of vertices in ou
computer-generated network sample classified correctly
the four communities by our algorithms, as a function of t
mean numberzout of edges from each vertex to vertices
other communities. As the figure shows, both the short
path and random-walk versions of the algorithm perform
cellently, with more than 90% of all vertices classified co
rectly from zout50 all the way to aroundzout56. Only for
zout*6 does the classification begin to deteriorate marke
In other words, our algorithm correctly identifies the com
munity structure in the network almost all the way to t
point zout58 at which each vertex has on average the sa
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number of connections to vertices outside its community a
does to those inside.

The shortest-path version of the algorithm does, howe
perform noticeably better than the random-walk version,
pecially for the more difficult cases wherezout is large. Given
that the random-walk algorithm is also more computationa
demanding, there seems little reason to use it rather than
shortest-path algorithm, and hence, as discussed previo
we recommend the latter for most applications.~To be fair,
the random-walk algorithm does slightly outperform t
shortest-path algorithm in the example addressed in the
lowing section, although, being only a single case, it is h

FIG. 7. The fraction of vertices correctly identified by our alg
rithms in the computer-generated graphs described in the text.
two curves show results for the shortest-path~circles! and random-
walk ~squares! versions of the algorithm as a function of the num
ber of edges the vertices have to others outside their own com
nity. The pointzout58 at the rightmost edge of the plot represen
the point at which vertices have as many connections outside
own community as inside it. Each data point is an average over
graphs.
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to know whether this is significant.!

B. Zachary’s karate club network

We now turn to applications of our methods to real-wo
network data. Our first such example is taken from one of
classic studies in social network analysis. Over the cours
two years in the early 1970s, Wayne Zachary observed so
interactions between the members of a karate club a
American university@36#. He constructed networks of tie
between members of the club based on their social inte
tions both within the club and outside it. By chance, a d
pute arose during the course of his study between the cl
administrator and its principal karate teacher over whethe
raise club fees, and as a result the club eventually spli
two, forming two smaller clubs, centered around the adm
istrator and the teacher.

In Fig. 8, we show a consensus network structure
tracted from Zachary’s observations before the split. Feed
this network into our algorithms, we find the results shown
Fig. 9. In the leftmost two panels, we show the dendrogra
generated by the shortest-path and random-walk version
our algorithm, along with the modularity measures for t
same. As we see, both algorithms give reasonably high
ues for the modularity when the network is split into tw
communities—around 0.4 in each case—indicating that th
is a strong natural division at this level. What is more, t
divisions in question correspond almost perfectly to the
tual divisions in the club revealed by which group each c
member joined after the club split up.~The shapes of the
vertices representing the two factions are the same as t
of Fig. 8.! Only one vertex, vertex 3, is misclassified by t
shortest-path version of the method, and none are miscla
fied by the random-walk version—the latter gets a perf
score on this test.~On the other hand, the two-communi
split fails to produce a local maximum in the modularity f
the random-walk method, unlike the shortest-path meth
for which there is a local maximum precisely at this poin!

FIG. 8. The network of friendships between individuals in t
karate club study of Zachary@36#. The administrator and the in
structor are represented by nodes 1 and 33, respectively. Sh
squares represent individuals who ended up aligning with the cl
administrator after the fission of the club, open circles those w
aligned with the instructor.
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In the last panel of Fig. 9, we show the dendrogram a
modularity for an algorithm based on shortest-path betwe
ness but without the crucial recalculation step discusse
Sec. II. As the figure shows, without this step, the algorith
fails to find the division of the network into the two know
groups. Furthermore, the modularity does not reach ne
such high values as in the first two panels, indicating that
divisions suggested are much poorer than in the cases
the recalculation.

C. Collaboration network

For our next example, we look at a collaboration netwo
of scientists. Figure 10~a! shows the largest component of
network of collaborations between physicists who cond
research on networks.~The authors of the present paper, f
instance, are among the nodes in this network.! This network
~which appeared previously in Ref.@37#! was constructed by
taking names of authors appearing in the lengthy bibliog
phy of Ref.@4# and cross-referencing with the Physics e-pr
Archive at arxiv.org, specifically the condensed-matter s
tion of the archive, where, for historical reasons, most pap
on networks have appeared. Authors appearing in both w
added to the network as vertices, and edges between t
indicate coauthorship of one or more papers appearing in
archive. Thus the collaborative ties represented in the fig
are not limited to papers on topics concerning networks—
were interested primarily in whether people know one a
other, and collaboration on any topic is a reasonable ind
tor of acquaintance.

The network as presented in Fig. 10~a! is difficult to in-
terpret. Given the names of the scientists, knowledgea
readers with too much time on their hands could, no dou
pick out known groupings, for instance at particular instit
tions, from the general confusion. But were this a netwo
about which we had noa priori knowledge, we would be
hard pressed to understand its underlying structure.

Applying the shortest-path version of our algorithm to th
network, we find that the modularity, Eq.~5!, has a strong
peak at 13 communities with a value ofQ50.7260.02. Ex-
tracting the communities from the corresponding dend
gram, we have indicated them with colors in Fig. 10~b!. The
knowledgeable reader will again be able to discern kno
groups of scientists in this rendering, and more easily n
with the help of the colors. Still, however, the structure of t
network as a whole and of the interactions between group
quite unclear.

In Fig. 10~c!, we have reduced the network toonly the
groups. In this panel, we have drawn each group as a cir
with size varying roughly with the number of individuals i
the group. The lines between groups indicate collaborati
between group members, with the thickness of the lin
varying in proportion to the number of pairs of scientis
who have collaborated. Now the overall structure of the n
work becomes easy to see. The network is centered aro
the large group in the middle~which consists of researcher
primarily in southern Europe!, with a knot of intercommu-
nity collaborations going on between the groups on the low
right of the picture~mostly Boston University physicists an

ed
’s
o
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FIG. 9. Community structure in the karate club network. Left: the dendrogram extracted by the shortest-path betweenness vers
method and the resulting modularity. The modularity has two maxima~dotted lines! corresponding to splits into two communities~which
match closely the real-world split of the club, as denoted by the shapes of the vertices! and five communities~though one of those five
contains only one individual!. Only one individual, number 3, is incorrectly classified in the two-community split. Center: the dendro
for the random-walk version of our method. This version classifies all 34 vertices correctly into the factions that they actually split in~first
dotted line!, although the split into four communities gets a higher modularity score~second dotted line!. Right: the dendrogram for the
shortest-path algorithm without recalculation of betweennesses after each edge removal. This version of the calculation fails to fin
into the two factions.
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their intellectual descendants!. Other groups~including the
authors’ own! are scattered further out and more loosely co
nected to one another.

One of the problems created by the sudden availability
recent years of large network data sets has been our lac
tools for visualizing their structure@4#. In the early days of
network analysis, particularly in the social sciences, it w
usually enough simply to draw a picture of a network to s
what was going on. Networks in those days had ten
twenty nodes, not 140 as here, or several billion as in
world wide web. We believe that methods like the one p
sented here, of using community structure algorithms
make a meaningful ‘‘coarse graining’’ of a network, there
reducing its level of complexity to one that can be inte
preted readily by the human eye, will be invaluable in he
ing us to understand the large-scale structure of these
network data.
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D. Other examples

In this section, we briefly describe example applicatio
of our methods to three further networks. The first is a no
human social network, a network of dolphins, the secon
network of fictional characters, and the third not a soc
network at all, but a network of web pages and the lin
between them.

In Fig. 11, we show the social network of a community
62 bottlenose dolphins living in Doubtful Sound, Ne
Zealand. The network was compiled by Lusseau@38# from
seven years of field studies of the dolphins, with ties betw
dolphin pairs being established by observation of statistic
significant frequent association. The network splits natura
into two large groups, represented by the circles and squ
in the figure, and the larger of the two also splits into fo
smaller subgroups. The modularity isQ50.3860.08 for the
split into two groups, and peaks at 0.5260.03 when the sub-
3-10
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FIG. 10. Illustration of the use of the community-structure algorithm to make sense of a complex network.~a! The initial network is a
network of coauthorships between physicists who have published on topics related to networks. The figure shows only the largest c
of the network, which contains 145 scientists. There are 90 more scientists in smaller components, which are not shown.~b! Application of
the shortest-path betweenness version of the community-structure algorithm produces the communities indicated by the sha
vertices.~c! A coarse-graining of the network in which each community is represented by a single node, with edges representing
rations between communities. The thickness of the edges is proportional to the number of pairs of collaborators between com
Clearly panel~c! reveals much that is not easily seen in the original network of panel~a!.
026113-11
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M. E. J. NEWMAN AND M. GIRVAN PHYSICAL REVIEW E 69, 026113 ~2004!
FIG. 11. Community structure in the bottlenose dolphins
Doubtful Sound@38,39#, extracted using the shortest-path version
our algorithm. The squares and circles denote the primary spl
the network into two groups, and the circles are subdivided furt
into four smaller groups as shown. The modularity for the spli
Q50.52. The network has been drawn with longer edges betw
vertices in different communities than between those in the s
community, to make the community groupings clearer. The sam
also true of Figs. 12 and 13.
02611
group splitting is included also.
The split into two groups appears to correspond to

known division of the dolphin community@39#. Lusseau re-
ports that for a period of about two years during observat
of the dolphins they separated into two groups along
lines found by our analysis, apparently because of the dis
pearance of individuals on the boundary between the gro
When some of these individuals later reappeared, the
halves of the network joined together once more. As Luss
points out, developments of this kind illustrate that the d
phin network is not merely a scientific curiosity but, lik
human social networks, is closely tied to the evolution of t
community. The subgroupings within the larger half of t
network also seem to correspond to real divisions among
animals: the largest subgroup consists almost of entirely
females and the others almost entirely of males, and i
conjectured that the split between the male groups is g
erned by matrilineage@D. Lusseau~personal communica
tion!#.

Figure 12 shows the community structure of the netwo
of interactions between major characters in Victor Hug
sprawling novel of crime and redemption in post-restorat

f
f
of
r

en
e
is
y
FIG. 12. The network of interactions between major characters in the novelLes Misérables by Victor Hugo. The greatest modularit
achieved in the shortest-path version of our algorithm isQ50.54 and corresponds to the 11 communities shown.
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FINDING AND EVALUATING COMMUNITY STRUCTURE . . . PHYSICAL REVIEW E 69, 026113 ~2004!
France,Les Misérables. Using the list of character appea
ances by scene compiled by Knuth@40#, the network was
constructed in which the vertices represent characters an
edge between two vertices represents coappearance o
corresponding characters in one or more scenes. The op
community split of the resulting graph has a strong modu
ity of Q50.5460.02, and gives 11 communities as shown
the figure. The communities clearly reflect the subplot str
ture of the book: unsurprisingly, the protagonist, Jean V
jean, and his nemesis, the police officer Javert, are centr
the network and form the hubs of communities composed
their respective adherents. Other subplots centered
Marius, Cosette, Fantine, and the bishop Myriel are a
picked out.

Finally, as an example of the application of our method
a nonsocial network, we have looked at a web graph
network in which the vertices and edges represent web p
and the links between them. The graph in question repres
180 pages from the web site of a large corporation@52#.
Figure 13 shows the network and the communities found
it by the shortest-path version of our algorithm. This netwo
has one of the strongest modularity values of the exam
studied here, atQ50.6560.02. The links between we
pages are directed, as indicated by the arrows in the fig
but, as discussed in Sec. III A, for the purposes of finding
communities, we ignore direction and treat the network
undirected.

Certainly it might be useful to know the communities in
web network; an algorithm that can pick out communit
could reveal which pages cover related topics or the so
structure of links between pages maintained by different
dividuals. Ideas along these lines have been pursued by
example, Flakeet al. @41# and Adamic and Adar@42#.

VI. CONCLUSIONS

In this paper, we have described a new class of algorith
for performing network clustering, the task of extracting t
natural community structure from networks of vertices a

FIG. 13. Pages on a web site and the hyperlinks between th
The different shades denote the optimal division into communi
found by the shortest-path version of our algorithm.
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edges. This is a problem long studied in computer scien
applied mathematics, and the social sciences, but it
lacked a satisfactory solution. We believe the methods
scribed here give such a solution. They are simple, intuiti
and demonstrably give excellent results on networks
which we know the community structure ahead of time. O
methods are defined by two crucial features. First, we us
‘‘divisive’’ technique that iteratively removes edges from th
network, thereby breaking it up into communities. The edg
to be removed are identified using one of a set of edge
tweenness measures, of which the simplest is a genera
tion to edges of the standard shortest-path betweennes
Freeman@27#. Second, our algorithms include a recalculati
step in which betweenness scores are reevaluated afte
removal of every edge. This step, which was missing fr
previous algorithms, turns out to be of primary importance
the success of ours. Without it, the algorithms fail misera
at even the simplest clustering tasks.

We have demonstrated the efficacy and utility of o
methods with a number of examples. We have shown
our algorithms can reliably and sensitively extract comm
nity structure from artificially generated networks wi
known communities. We have also applied them to re
world networks with known community structure and aga
they extract that structure without difficulty. And we hav
given examples of how our algorithms can be used to a
lyze networks whose structure is otherwise difficult to co
prehend. The networks studied include a collaboration n
work of scientists, in which our methods allow us to gener
schematic depictions of the overall structure of the netw
and collaborations taking place within and between comm
nities, other social networks of people and of animals, an
network of links between pages on a corporate web site.

The primary remaining difficulty with our algorithms i
the relatively high computational demands they make. T
fastest of them, the one based on shortest-path between
operates inO(n3) time on a sparse graph, which makes
usable for networks up to about 10 000 vertices, but
larger systems it becomes intractable. Although the ev
improving speed of computers will certainly raise this lim
in coming years, it would be more satisfactory if a fas
version of the method could be discovered. One possibilit
parallelization: the betweenness calculation involves a s
over source vertices and the elements of that sum can
distributed over different processors, making the calculat
trivially parallelizable on a distributed-memory machin
However, a better approach would be to find some impro
ment in the algorithm itself to decrease its computatio
complexity.

Since the publication of our first paper on this topic@25#,
several other authors have made use of the shortest-path
sion of our algorithm. Holmeet al. @43# have applied it to a
number of metabolic networks for different organisms, fin
ing communities that correspond to functional units with
the networks, while Wilkinson and Huberman@44# have ap-
plied it to a network of relations between genes, as es
lished by the co-occurrence of names of genes in publis
research articles. An interesting application to social n
works is the study by Gleiser and Danon@45# of the collabo-
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ration network of early jazz musicians. They found, amo
other things, that the network split into two communiti
along lines of race, with black musicians in one group a
white musicians in the other. Guimera` et al. @46# have ap-
plied the method to a network of email messages pas
between users at a university, and found communities
reflect both formal and informal levels of organization. Tyl
et al. @47# have also applied the algorithm to an email n
work, in their case at a large company, finding that the
sulting communities correspond closely to organizatio
units. The latter work is interesting also in that it suggest
method for improving the speed of the algorithm. Tyleret al.
calculate betweenness for only a subset, randomly chose
possible source vertices in the network, rather than summ
over all sources. The size of the subset is decided on the
by sampling source vertices until the betweenness of at l
one edge in the network exceeds a predetermined thres
This technique reduces the running time of the calculat
considerably, although the resulting estimate of betweenn
om

go

-

tl.

.
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necessarily suffers from the statistical fluctuations inheren
random sampling methods. This idea, or a variation of
might provide a solution to the problems mentioned above
the high computational demands of our algorithms.

We are, of course, delighted to see our methods applie
such a variety of problems. Combined with the algorithm
and measures described in this paper, we hope to see m
more applications in the future.
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