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A Brief History of
Generative Models for
Power Law and Lognormal
Distributions
Michael Mitzenmacher

Abstract. Recently, I became interested in a current debate over whether file size

distributions are best modelled by a power law distribution or a lognormal distribution.

In trying to learn enough about these distributions to settle the question, I found a rich

and long history, spanning many fields. Indeed, several recently proposed models from

the computer science community have antecedents in work from decades ago. Here,

I briefly survey some of this history, focusing on underlying generative models that

lead to these distributions. One finding is that lognormal and power law distributions

connect quite naturally, and hence, it is not surprising that lognormal distributions

have arisen as a possible alternative to power law distributions across many fields.

1. Introduction

Power law distributions (also often referred to as heavy-tail distributions, Pareto

distributions, Zipfian distributions, etc.) are now pervasive in computer science;

See, for example, [Broder et al. 00, Crovella and Bestavros 97, Faloutsos et al.

99]. Numerous other examples can be found in the extensive bibliography of this

paper.

This paper was specifically motivated by a recent paper by Downey [Downey

01] challenging the now conventional wisdom that file sizes are governed by a
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power law distribution. The argument was substantiated both by collected data

and by the development of an underlying generative model which suggested that

file sizes were better modeled by a lognormal distribution.1 In my attempts

to learn more about this question, I was drawn to the history of lognormal

and power law distributions. As part of this process, I delved into past and

present literature, and came across some interesting facts that appear not to

be well known in the computer science community. This paper presents what I

have found, focusing specifically on the models of processes that generate these

distributions.

Perhaps the most interesting discovery is that much of what we in the computer

science community have begun to understand and utilize about power law and

lognormal distributions has long been known in other fields, such as economics

and biology. For example, models of a dynamically growing Web graph that

result in a power law distribution for in- and outdegrees have become the focus

of a great deal of recent study. In fact, as I describe below, very similar models

date back to at least the 1950s, and arguably back to the 1920s.

A second discovery is the argument over whether a lognormal or power law

distribution is a better fit for some empirically observed distribution has been

repeated across many fields over many years. For example, the question of

whether income distribution follows a lognormal or power law distribution also

dates back to at least the 1950s. The issue arises for other financial models, as

detailed in [Mandelbrot 97]. Similar issues continue to arise in biology [Jain and

Ramakumar 99], chemistry [Nakajima and Higurashi 98], ecology [Allen et al.

01, Sole et al. 00], astronomy [Wheatland and Sturrock 96], and information

theory [Li 96, Perline 96]. These cases serve as a reminder that the problems we

face as computer scientists are not necessarily new, and we should look to other

sciences both for tools and understanding.

A third discovery from examining previous work is that power law and log-

normal distributions are intrinsically connected. Very similar basic generative

models can lead to either power law or lognormal distributions, depending on

seemingly trivial variations. There is, therefore, a reason why this argument as

to whether power law or lognormal distributions are more accurate has arisen

and repeated itself across a variety of fields.

The purpose of this paper is to explain some of the basic generative models

that lead to power law and lognormal distributions, and specifically, to cover

how small variations in the underlying model can change the result from one to

the other. A second purpose is to provide along the way (incomplete) pointers

to some of the recent and historically relevant scientific literature.

1I elaborate on this specific model in another paper [Mitzenmacher 02].
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This survey is intended to be accessible to a general audience; that is, it is

intended for computer science theorists, computer scientists who are not theo-

rists, and hopefully also people outside of computer science. Therefore, while

mathematical arguments and some probability will be used, the aim is for the

mathematics to be intuitive, clean, and comprehensible rather than rigorous and

technical. In some cases, details may be suppressed for readability; interested

readers are referred to the original papers.

2. The Distributions: Basic Definitions and Properties

We begin by reviewing basic facts about power law and lognormal distributions.

For our purposes, a nonnegative random variable X is said to have a power

law distribution if

Pr[X ≥ x] ∼ cx−α
for constants c > 0 and α > 0. Here, f(x) ∼ g(x) represents that the limit of the
ratios goes to 1 as x grows large. Roughly speaking, in a power law distribution

asymptotically the tails fall according to the power α. Such a distribution leads to

much heavier tails than other common models, such as exponential distributions.

One specific commonly used power law distribution is the Pareto distribution,

which satisfies

Pr[X ≥ x] = x

k

−α

for some α > 0 and k > 0. The Pareto distribution requires X ≥ k. The

density function for the Pareto distribution is f(x) = αkαx−α−1. For a power
law distribution, usually α falls in the range 0 < α ≤ 2, in which case, X has

infinite variance. If α ≤ 1, then X also has infinite mean.

If X has a power law distribution, then in a log-log plot of Pr[X ≥ x], also
known as the complementary cumulative distribution function, asymptotically

the behavior will be a straight line. This provides a simple empirical test for

whether a random variable has a power law given an appropriate sample. For

the specific case of a Pareto distribution, the behavior is exactly linear, as

ln(Pr[X ≥ x]) = −α(lnx− ln k).
Similarly, on a log-log plot, the density function for the Pareto distribution is

also a straight line:

ln f(x) = (−α− 1) lnx+ α ln k + lnα.

A random variable X has a lognormal distribution if the random variable

Y = lnX has a normal (i.e., Gaussian) distribution. Recall that the normal
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distribution Y is given by the density function

f(y) =
1√
2πσ

e−(y−µ)
2/2σ2

where µ is the mean, σ is the standard deviation (σ2 is the variance), and the

range is −∞ < y < ∞. The density function for a lognormal distribution

therefore satisfies

f(x) =
1√
2πσx

e−(ln x−µ)
2/2σ2 .

Note that the change of variables introduces an additional 1/x term outside of the

exponential term. The corresponding complementary cumulative distribution

function for a lognormal distribution is given by

Pr[X ≥ x] =
∞

z=x

1√
2πσz

e−(ln z−µ)
2/2σ2dz.

We will say that X has parameters µ and σ2 when the associated normal distrib-

ution Y has mean µ and variance σ2, where the meaning is clear. The lognormal

distribution is skewed, with mean eµ+
1
2σ

2

, median eµ, and mode eµ−σ
2

. A log-

normal distribution has finite mean and variance, in contrast to the power law

distribution under natural parameters.

Despite its finite moments, the lognormal distribution is extremely similar in

shape to power law distributions, in the following sense: If X has a lognormal

distribution, then in a log-log plot of the complementary cumulative distribution

function or the density function, the behavior will appear to be nearly a straight

line for a large portion of the body of the distribution. Indeed, if the variance

of the corresponding normal distribution is large, the distribution may appear

linear on a log-log plot for several orders of magnitude.

To see this, let us look at the logarithm of the density function, which is

easier to work with than the complementary cumulative distribution function

(although the same idea holds). We have

ln f(x) = − lnx− ln
√
2πσ − (lnx− µ)

2

2σ2
(2.1)

= − (lnx)
2

2σ2
+

µ

σ2
− 1 lnx− ln

√
2πσ − µ2

2σ2
. (2.2)

If σ is sufficiently large, then the quadratic term of equation (2.2) will be small

for a large range of x values, and hence, the logarithm of the density function

will appear almost linear for a large range of values.

Finally, recall that normal distributions have the property that the sum of

two independent normal random variables Y1 and Y2 with means µ1 and µ2 and



230 Internet Mathematics

variances σ21 and σ
2
2 , respectively, is a normal random variable with mean µ1+µ2

and variance σ21 +σ
2
2 . It follows that the product of two lognormally distributed

random variables also has a lognormal distribution.

3. Power Laws via Preferential Attachment

We now move from mathematical definitions and properties to generative models.

For the power law distribution, we begin by considering the World Wide Web.

The World Wide Web can naturally be thought of as a graph, with pages corre-

sponding to vertices and hyperlinks corresponding to directed edges. Empirical

work has shown that indegrees and outdegrees of vertices in this graph obey

power law distributions. There has subsequently been a great deal of theoretical

work on designing random graph models that yield Web-like graphs [Barabási

et al. 99, Broder et al. 00, Cooper and Frieze 01, Drinea et al. 00, Kleinberg et

al. 99, Krapivsky and Redner 01, Kumar et al. 99a, Kumar et al 00]. An im-

portant criterion for an appropriate random graph model is that it yields power

law distributions for the indegrees and outdegrees.

Most models are variations of the following theme. Let us start with a single

page, with a link to itself. At each time step, a new page appears, with outdegree

1. With probability α < 1, the link for the new page points to a page chosen

uniformly at random. With probability 1−α, the new page points to page chosen
proportionally to the indegree of the page. This model exemplifies what is often

called preferential attachment; new objects tend to attach to popular objects. In

the case of the Web graph, new links tend to go to pages that already have links.

A simple, if slightly nonrigorous, argument for the above model goes as follows

[Barabási et al. 99, Drinea et al. 00, Krapivsky and Redner 01, Kumar et al 00].

Let Xj(t) (or just Xj where the meaning is clear) be the number of pages with

indegree j when there are t pages in the system. Then, for j ≥ 1, the probability
that Xj increases is just

αXj−1/t+ (1− α)(j − 1)Xj−1/t;

the first term is the probability a new link is chosen at random and chooses a

page with indegree j − 1, and the second term is the probability that a new link

is chosen proportionally to the indegrees and chooses a page with indegree j− 1.
Similarly, the probability that Xj decreases is

αXj/t+ (1− α)jXj/t.
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Hence, for j ≥ 1, the growth of Xj is roughly given by
dXj

dt
=
α(Xj−1 −Xj) + (1− α)((j − 1)Xj−1 − jXj)

t
.

Some mathematical purists may object to utilizing a continuous differential

equation to describe what is clearly a discrete process. This intuitively appealing

approach can be justified more formally using martingales [Kumar et al 00] and

in particular, the theoretical frameworks of Kurtz and Wormald [Drinea et al.

00, Kurtz 81, Wormald 95].

The case of X0 must be treated specially, since each new page introduces a

vertex of indegree 0.
dX0

dt
= 1− αX0

t
.

Suppose in the steady state limit that Xj(t) = cj · t; that is, pages of indegree
j constitute a fraction cj of the total pages. Then we can successively solve for

the cj . For example,

dX0

dt
= c0 = 1− αX0

t
= 1− αc0,

from which we find c0 =
1

1+α . More generally, using the equation for dXj/dt,

we find that for j ≥ 1,

cj(1 + α+ j(1− α)) = cj−1(α+ (j − 1)(1− α)).

This recurrence can be used to determine the cj exactly. Focusing on the as-

ymptotics, we find that for large j

cj

cj−1
= 1− 2− α

1 + α+ j(1− α) ∼ 1−
2− α
1− α

1

j
.

Asymptotically, for the above to hold, we have cj ∼ cj−
2−α
1−α for some constant

c, giving a power law. To see this, note that cj ∼ cj−
2−α
1−α implies

cj

cj−1
∼ j − 1

j

2−α
1−α
∼ 1− 2− α

1− α
1

j
.

Strictly speaking, to show it is a power law, we should consider c∗k = j≥k cj ,
since we desire the behavior of the tail of the distribution. However, we have

c∗k ∼
j≥k

cj−
2−α
1−α ∼

∞

j=k

cj−
2−α
1−α dj ∼ cIk− 1

1−α
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for some constant cI. More generally, if the fraction of items with weight j falls
roughly proportionally to j−α, the fraction of items with weight greater than or
equal to j falls roughly proportionally j1−α, a fact we make use of throughout.
Although the above argument was described in terms of degree on the Web

graph, this type of argument is clearly very general and applies to any sort of

preferential attachment. In fact, the first similar argument dates back to at

least 1925. It was introduced by Yule [Yule 25] to explain the distribution of

species among genera of plants, which had been shown empirically by Willis to

satisfy a power law distribution. While the mathematical treatment from 1925 is

different than modern versions, the outline of the general argument is remarkably

similar. Mutations cause new species to develop within genera, and more rarely

mutations lead to entirely new genera. Mutations within a genus are more likely

to occur in a genus with more species, leading to the preferential attachment.

A clearer and more general development of how preferential attachment leads

to a power law was given by Simon [Simon 55] in 1955. Again, although Simon

was not interested in developing a model for the Web, he lists five applications

of this type of model in his introduction: distributions of word frequencies in

documents, distributions of numbers of papers published by scientists, distribu-

tion of cities by population, distribution of incomes, and distribution of species

among genera. Simon was aware of Yule’s previous work, and suggests his work

is a generalization. Simon’s argument, except for notation and the scaling of

variables, is painfully similar to the outline above.

As one might expect from Simon’s list of applications, power laws had been

observed in a variety of fields for some time; Simon was attempting to give a

mathematical argument explaining these observations. The earliest apparent ref-

erence is to the work by Pareto [Pareto 1896] in 1897, who introduced the Pareto

distribution to describe income distribution. The first known attribution of the

power law distribution of word frequencies appears to be due to Estoup in 1916

[Estoup 1916], although generally the idea (and its elucidation) are attributed

to Zipf [Zipf 32, Zipf 35, Zipf 39]. Similarly, Zipf is often credited with noting

that city sizes appear to match a power law, although this idea can be traced

back further to 1913 and Auerbach [Auerbach 1913]. Lotka (circa 1926) found

in examining the number of articles produced by chemists that the distribution

followed a power law [Lotka 26]; indeed, power laws of various forms appear in

many places in informetrics [Bookstein 90].

Although we now associate the argument above with the Web graph, even be-

fore the Web graph became popular, more formal developments of the argument

above had been developed as part of the study of random trees. Specifically,

consider the following recursive tree structure. Begin with a root node. At each

step, a new node is added; its parent is chosen from the current vertices with
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probability proportional to one plus the number of children of the node. This is

just another example of preferential attachment; indeed, it is essentially equiv-

alent to the simple Web graph model described above with the probability α

of choosing a random node equal to 1/2. That the degree distribution of such

graphs obey a power law (in expectation) was proven in 1993 in works by Mah-

moud, Smythe, and Szymański [Mahmound et al. 93]. See also the related [Lu

and Feng 98, Szymański 87, Pittel 94, Smythe and Mahmound 95].

Of course, in recognizing the relationship between the recent work on Web

graph models and this previous work, it would be remiss to not point out that

modern developments have led to many new insights. Perhaps most impor-

tant is the development of a connection between Simon’s model, which appears

amenable only to limiting analysis based on differential equations, and purely

combinatorial models based on random graphs [B. Bollobás et al. 01, Mahmound

et al. 93, Smythe and Mahmound 95]. Such a connection is important for further

rigorous analysis of these structures. Also, current versions of Simon’s arguments

based on martingales provide a much more rigorous foundation [B. Bollobás et

al. 01, Cooper and Frieze 01, Kumar et al 00, Lu and Feng 98]. More recent

work has focused on greater understanding of the structure of graphs that arise

from these kinds of preferential attachment model. It has been shown that in

the Web graph model described above, where new pages copy existing links, the

graphs have community substructures [Kumar et al 00], a property not found in

random graphs, but amply found in the actual Web [Gibson et al. 98, Kumar et

al. 99b]. The diameter of these random Web graphs have also been the subject

of recent study [Albert et al. 99, Bollobás and Riordan to appear]. Still, it is

important to note how much was already known about the power law phenom-

enon in various fields well before the modern effort to understand power laws on

the Web, and how much computer scientists had to reinvent.

4. Power Laws via Optimization

Mandelbrot had developed other arguments for deriving power law distribu-

tions based on information theoretic considerations somewhat earlier than Si-

mon [Mandelbrot 53]. His argument is very similar in spirit to other recent

optimization-based arguments for heavy tailed distributions [Carlson and Doyle

99, Fabrikant et al. 02, Zhu et al. 01].

We sketch Mandelbrot’s framework, which demonstrates a power law in the

rank-frequency distribution of words. That is, the frequency pj of the jth most-

used word, given as a fraction of the time that word appears, follows a power

law in j, so pj ∼ cj−α. This is a slightly different flavor than the type power law
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than we considered previously; Simon’s model considers the fraction of words

that appear j times. But, of course, the two are related. We clarify this by

following an argument of Bookstein [Bookstein 90].

Suppose we have a text where the number of words qk that appear k times is

given by qk = Qk−α for α > 1. Further, suppose for convenience we have one

most frequent word that appears km times, so that we may write qk = (k/km)
−α.

The number of words that appear k or more times is then approximately

km

k

x

km

−α
dx,

and hence, the rank j of a word that appears k times is approximately

j =
jm

α− 1
jm

k

α−1
− 1 .

Now solving for k in terms of j, we find that the jth most-used word appears

approximately

k = jm
(α− 1)j
jm

+ 1

−1/(α−1)

times, yielding a power law for the frequency pj as a function of j.

We now begin Mandelbrot’s argument. Consider some language consisting of

n words. The cost of using the jth word of the language in a transmission is Cj .

For example, if we think of English text, the cost of a word might be thought of

as the number of letters plus the additional cost of a space. Hence, a natural cost

function has Cj ∼ logd j for some alphabet size d. Suppose that we wish to design
the language to optimize the average amount of information per unit transmission

cost. Here, we take the average amount of information to be the entropy. We

think of each word in our transmission as being selected randomly, and the

probability that a word in the transmission is the jth word of the language is pj .

Then, the average information per word is the entropy H = − n
j=1 pj log2 pj ,

and the average cost per word is C =
n

j=1 pjCj . The question is how would

the pj be chosen to minimize A = C/H . Taking derivatives, we find

dA

dpj
=
CjH + C log2(epj)

H2
.

Hence, all the derivatives are 0 (and A is, in fact, minimized) when pj =

2−HCj/C/e. Using Cj ∼ logd j, we obtain a power law for the pj .
2 Mandel-

2The eagle-eyed reader might note that technically the result above does not quite match

a power law as we have defined it; just because Cj ∼ logd j does not strictly give us pj ∼ j−α.
In this case, this is a minor point; really Cj is within an additive constant of logd j, and we
therefore find that pj is within a constant multiplicative factor of a power law. We ignore this
distinction henceforth.
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brot argues that a variation of this model matches empirical results for English

quite well.

Carlson and Doyle suggest a similar framework for analyzing file sizes and

forest files [Carlson and Doyle 99]. Fabrikant, Koutsoupias, and Papadimitriou

introduce combinatorial models for the Internet graph (which should not be

confused with the Web graph; the Internet graph consists of the servers and links

between them as opposed to Web pages) and file sizes based on local optimization

that also yield power laws [Fabrikant et al. 02].

As an aside, I found when reviewing the literature that Mandelbrot strongly

argued against Simon’s alternative assumptions and derivations based on pref-

erential attachment when his article came out. This led to what is in retrospect

an amusing but apparently at the time quite heated exchange between Simon

and Mandelbrot in the journal Information and Control [Mandelbrot 59, Simon

60, Mandelbrot 61a, Simon 61a, Mandelbrot 61b, Simon 61b].3

It is worth noting that economists appear to have given the nod to Simon and

the preferential attachment model. Indeed, a recent popular economics text by

Krugman [Krugman 96] offers a derivation of the power law similar to Simon’s

argument.4 A more formal treatment is given by Gabaix [Gabaix 99].

5. Multiplicative Processes

Lognormal distributions are generated by processes that follow what the econo-

mist Gibrat called the law of proportionate effect [Gibrat 30, Gibrat 31]. We

use the term multiplicative process to describe the underlying model. In biology,

such processes are used to described the growth of an organism. Suppose we

start with an organism of size X0. At each step j, the organism may grow or

shrink, according to a random variable Fj , so that

Xj = FjXj−1.

3A few excerpts from the exchange are worth citing to demonstrate the disagreement. The

abstract of Mandelbrot’s initial note begins, “This note is a discussion of H. A. Simon’s model

(1955) concerning the class of frequency distributions generally associated with the name of G.

K. Zipf. The main purpose is to show that Simon’s model is analytically circular in the case of

the linguistic laws of Estouf-Zipf and Willis-Yule.” [Mandelbrot 59] The abstract of Simon’s

rebuttal begins, “This note takes issue with a recent criticism by Dr. B. Mandelbrot of a certain

stochastic model to explain word-frequency data. Dr. Mandelbrot’s principal empirical and

mathematical objections to the model are shown to be unfounded.” The subsequent abstracts

are similar in spirit.
4As an interesting example of the pervasiveness of power-law behavior, one review of Krug-

man’s book, written by an urban geographer, accuses the author of excessive hubris for not

noting the significant contributions made by urban geographers with regard to Simon’s model

[Berry 99].



236 Internet Mathematics

The idea is that the random growth of an organism is expressed as a percentage

of its current weight, and is independent of its current actual size. If the Fk, 1 ≤
k ≤ j, are all governed by independent lognormal distributions, then so is each
Fj , inductively, since the product of lognormal distributions is again lognormal.

More generally, approximately lognormal distributions may be obtained even

if the Fj are not themselves lognormal. Specifically, consider

lnXj = lnX0 +

j

k=1

lnFk.

Assuming the random variables lnFk satisfy appropriate conditions, the Central

Limit Theorem says that
j

k=1 lnFk converges to a normal distribution, and

hence, for sufficiently large j, Xj is well approximated by a lognormal distri-

bution. In particular, if the lnFk are independent and identically distributed

variables with finite mean and variance, then asymptotically Xj will approach a

lognormal distribution.

Multiplicative processes are used in biology and ecology to describe the growth

of organisms or the population of a species. In economics, perhaps the most well-

known use of the lognormal distribution derives from the Black-Scholes option

pricing model [Black and Scholes 73], which is a specific application of Ito’s

lemma (see, e.g., [Hull 97, Ito 51]). In a simplified version of this setting [Cox

et al. 79, Hull 97], the price of a security moves in discrete time steps, and the

price Xj changes according to Xj = FjXj−1, where Fj is lognormally distrib-
uted. Using this model, Black and Scholes demonstrate how to use options to

guarantee a risk-free return equivalent to the prevailing interest rate in a perfect

market. Other applications in, for example, geology and atmospheric chemistry

are given in [Crow and Shimizu 88]. More recently, as described below, Adamic

and Huberman suggest that multiplicative processes may describe the growth of

sites on the Web as well as the growth of user traffic on web sites [Huberman

and Adamic 99, Huberman and Adamic 00]. Lognormal distributions have also

been suggested for file sizes [Barford et al. 99, Barford and Crovella 98, Downey

01].

The connection between multiplicative processes and the lognormal distribu-

tion can be traced back to Gibrat around 1930 [Gibrat 30, Gibrat 31], although

Kapteyn described, in other terms, an equivalent process in 1903 [Kapteyn

1903], and McAlister described the lognormal distribution around 1879 [McAlis-

ter 1879]. Aitchison and Brown suggest that the lognormal distribution may be

a better fit for income distribution than a power law distribution, representing

perhaps the first time the question of whether a power law distribution or a log-

normal distribution gives a better fit was fully developed [Aitchison and Brown
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54, Aitchison and Brown 57]. It is interesting that when examining income dis-

tribution data, Aitchison and Brown observe that for lower incomes a lognormal

distribution appears a better fit, while for higher incomes a power law distrib-

ution appears better; this is echoed in later work by Montroll and Schlesinger

[Montroll and Schlesinger 82, Montroll and Schlesinger 83], who offer a possi-

ble mathematical justification discussed below. Similar observations have been

given for file sizes [Barford et al. 99, Barford and Crovella 98].

5.1. Multiplicative Models and Power Law Distributions

Although the multiplicative model is used to generate lognormal or approxi-

mately distributions, only a small change from the lognormal generative process

yields a generative process with a power law distribution. To provide a concrete

example, we consider the interesting history of work on income distributions.

Recall that Pareto introduced the Pareto distribution in order to explain in-

come distribution at the tail end of the nineteenth century. Champernowne

[Champernowne 53], in a work slightly predating Simon (and acknowledged by

Simon, who suggested his work generalized and extended Champernowne), of-

fered an explanation for this behavior. Suppose that we break income into dis-

crete ranges in the following manner. We assume there is some minimum income

m. For the first range, we take incomes between m and γm, for some γ > 1;

for the second range, we take incomes between γm and γ2m. We therefore say

that a person is in class j for j ≥ 1 if their income is between mγj−1 and mγj .
Champernowne assumes that over each time step, the probability of an individ-

ual moving from class i to class j, which we denote by pij , depends only on the

value of j − i. He then considers the equilibrium distribution of people among

classes. Under this assumption, Pareto distributions can be obtained.

Let us examine a specific case, where γ = 2, pij = 2/3 if j = i − 1, and
pij = 1/3 if j = i + 1. Of course, the case i = 1 is a special case; in this case,

p11 = 2/3. In this example, outside of class 1, the expected change in income

over any step is 0. It is also easy to check that, in this case, the equilibrium

probability of being in class k is just 1/2k, and hence, the probability of being in

class greater than or equal to k is 1/2k−1. Hence the probability that a person’s
income X is larger than 2k−1m in equilibrium is given by

Pr[X ≥ 2k−1m] = 1/2k−1,

or

Pr[X ≥ x] = m/x
for x = 2k−1m. This is a power law distribution.
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Note, however, the specific model above looks remarkably like a multiplicative

model. Moving from one class to another can be thought of as either doubling

or halving your income over one time step. That is, if Xt is your income after t

time steps, then

Xt = FtXt−1,

where Ft is 1/2 with probability 2/3 and 2 with probability 1/3. Again, E[Xt] =

E[Xt−1]. Our previous discussion therefore suggests that Xt should converge to
a lognormal distribution for large t.

What is the difference between the Champernowne model and the multiplica-

tive model? In the multiplicative model, income can become arbitrarily close

to zero through successive decreases; in the Champernowne model, there is a

minimum income corresponding to the lowest class below which one cannot fall.

This small change allows one model to produce a power law distribution while

the other produces a lognormal. As long as there is a bounded minimum that

acts as a lower reflective barrier to the multiplicative model, it will yield a power

law instead of a lognormal distribution. The theory of this phenomenon is more

fully developed in [Gabaix 99, Kesten 73].

6. Monkeys Typing Randomly

We return now to Mandelbrot’s optimization argument for the power law be-

havior of word frequency in written language. A potentially serious objection to

Mandelbrot’s argument was developed by the psychologist Miller [Miller 57], who

demonstrated that the power law behavior of word frequency arises even with-

out an underlying optimization problem. This result, explained below, should

perhaps serve as warning: Just because one finds a compelling mechanism to

explain a power law does not mean that there are not other, perhaps simpler,

explanations.

Miller suggests the following experiment. A monkey types randomly on a

keyboard with n characters and a space bar. A space is hit with probability q;

all other characters are hit with equal probability (1− q)/n. A space is used to
separate words. We consider the frequency distribution of words.

It is clear that, as the monkey types, each word with c (nonspace) characters

occurs with probability

qc =
1− q
n

c

q,

and there are nc words of length c. (We allow the empty word of length 0 for

convenience.) The words of longer length are less likely and hence, occur lower in
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the rank order of word frequency. In particular, the word with frequency ranks

1 + (nj − 1)/(n− 1) to (nj+1 − 1)/(n− 1) have j letters. Hence, the word with
frequency rank rj = n

j occurs with probability

qj = q
1− q
n

logn rj

= q (rj)
logn(1−q)−1 ,

and the power law behavior is apparent. Hence, the power law associated with

word frequency requires neither preferential attachment nor optimization; mon-

keys typing randomly would produce it.

Bell, Cleary, and Witten observe empirically that when the probabilities of

each letter are not equal, a smoother match to the power law develops [Bell et

al. 90]. I am currently unaware of a proof similar to the one above demonstrat-

ing that power law behavior occurs when the probabilities for each of the letters

are arbitrary. Indeed, to confuse the issue, one paper on the subject claims that

if the letter frequencies are not equal, a lognormal distribution occurs [Perline

96] (see also [Gong et al. 01], where this claim is repeated). It is worth ex-

amining this argument more carefully, since it demonstrates the confusion that

can arise in trying to distinguish models that generate power law and lognormal

distributions.

Perline notes that in the experiment with monkeys typing randomly, if we con-

sider words only of some fixed length m, for m sufficiently large their frequency-

rank distribution will approximate a lognormal distribution, following the par-

adigm of multiplicative processes. To see this, let the probabilities for our n

characters be p1, p2, . . . , pn. Consider the generation a random m-letter word.

Let Xi take on the value pj if the ith letter is j. Then Ym = X1X2 . . . Xm is

a random variable whose value corresponds to the probability that a word cho-

sen uniformly at random from all m-letter words appears as the monkeys type.

We have that lnYm =
m

k=1 lnXi; since the Xi are independent and identically

distributed, lnYm converges to a normal distribution by the Central Limit Theo-

rem, and hence, Ym converges to a lognormal distribution. Notice that this holds

true even if all letter frequencies are equal, although in this case, the resulting

distribution is trivial.

Perline then argues that if we consider all words of length up to m, we still

obtain asymptotic convergence to a lognormal distribution. This follows from a

generalization of the Central Limit Theorem due to Anscombe. Intuitively, this

is because most words have length close to m, so the words with small length

are just noise in the distribution. This result requires that some two letters have

different probabilities of being hit.

From this, it might be tempting to conclude that the distribution, if the word

length is unrestricted, is also lognormal when letters do not all have the same
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probabilities. However, this does not follow. The problem is that for each value

of m we obtain a slightly different lognormal distribution. Hence, it is not

necessarily true that in the limit as m increases we are getting closer and closer

to some final lognormal distribution. Rather, we have a sequence of lognormal

distributions that is converging to some distribution. To justify that the result

need not be lognormal, I present an amusing example of my own devising.

Consider an alphabet with two letters: “a” occurs with probability q, “b”

occurs with probability q2, and a space occurs with probability 1− q − q2. The
value q must be chosen so that 1− q− q2 > 0. In this case, every valid word the
monkey can type occurs with probability qj(1− q − q2) for some integer j. Let
us say a word has pseudorank j if it occurs with probability qj(1−q−q2). There
is 1 word with pseudorank 0 (the empty word), 1 with pseudorank 1 (“a”), 2

with pseudorank 2 (“aa” and “b”), and so on. A simple induction yields that

the number of words with pseudorank k is in fact the (k+1)st Fibonacci number

Fk+1 (where here we start with F0 = 0 and F1 = 1). This follows obviously from

the fact that to obtain the words with pseudorank k we append an “a” to a word

with pseudorank k − 1, or a “b” to a word with pseudorank k − 2.
Recall that Fk ≈ Φk/

√
5 for large k, where Φ = (1 +

√
5)/2. Also

k
i=1 Fk =

Fk+2 − 1. Now the argument is entirely similar to the case where all items have
the same probability. If we ask for the frequency of the rj = Fjth most frequent

item, it has pseudorank j − 2, and hence its frequency is

qj−2(1− q − q2) ≈ qlogΦ

√
5rj−2(1− q − q2) = rlogΦ q

j qlogΦ

√
5−2(1− q − q2),

and again we have power law behavior.

There is nothing special about having two characters for this example; one

could easily expand it to include more complex generalized Fibonacci sequences.

A suitable generalization appears feasible for any probabilities p1, p2, . . . , pn
associated with the n characters, although a formal proof is beyond the scope of

this survey.5 Roughly, let p1 be the largest of the pi, and let pj = p
γj
1 for j ≥ 1.

Then the number of words with frequency greater than or equal to pk1 grows

approximately proportionally to (1/c)k, where c is the unique real root between

0 and 1 of
n

j=1 x
γj = 1. This is all we need for the monkeys to produce a power

law distribution, following the arguments above.

5Brian Conrad and I have constructed a formal treatment of this argument, using some

nontrivial analytic number theory. This work has been submitted for publication.
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7. Double Pareto Distributions

Interestingly, there is another variation on the multiplicative generative model

that yields power law behavior. Recall that in the multiplicative model, if we

begin with value X0 and every step yields an independent and identically distrib-

uted multiplier from a lognormal distribution F , then any resulting distribution

Xt after t steps is lognormal. Suppose, however, that instead of examining Xt

for a specific value of t, we examine the random variable XT where T itself is

a random variable. As an example, when considering income distribution, in

seeing the data we may not know how long each person has lived. If different

age groups are intermixed, the number of multiplicative steps each person may

be thought to have undergone may be thought of as a random variable.

This effect was noticed as early as 1982 by Montroll and Schlesinger [Montroll

and Schlesinger 82, Montroll and Schlesinger 83]. They show that a mixture of

lognormal distributions based on a geometric distribution would have essentially

a lognormal body but a power law distribution in the tail. Huberman and

Adamic suggest a pleasantly simple variation of the above result; in the case

where the time T is an exponential random variable, and we may think of the

number of multiplicative steps as being continuous, the resulting distribution

of XT has a power law distribution [Huberman and Adamic 99, Huberman and

Adamic 00]. Huberman and Adamic go on to suggest that this result can explain

the power law distribution observed for the number of pages per site. As the

Web is growing exponentially, the age of a site can roughly be thought of as

distributed like an exponential random variable. If the growth of the number of

pages on a Web site follows a multiplicative process, the above result suggests a

power law distribution.

In more recent independent work, Reed provides the correct full distribution

for the above model, which yields what he calls a double Pareto distribution

[Reed 00]. Specifically, the resulting distribution has one Pareto tail distribution

for small values (below some point) and another Pareto tail distribution for large

values (above the same point).6

For example, consider for simplicity the case where if we stop a process at time

t the result is a lognormal random variable with mean 0 and variance t. Then,

if we stop the process at an exponentially distributed time with mean 1/λ, the

density function of the result is

f(x) =
∞

t=0

λe−λt
1√
2πtx

e−(ln x)
2/2tdt.

6For completeness, we note that Huberman and Adamic concentrate only on the tail of the

density function, and correctly determine the power law behavior. However, they miss the

two-sided nature of the distribution. Reed gives the complete correct form, as we do below.
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Using the substitution t = u2 gives

f(x) =
2λ√
2πx

∞

u=0

e−λu
2−(ln x)2/2u2du.

An integral table gives us the identity

∞

z=0

e−az
2−b/z2 =

1

2

π

a
e−2
√
ab,

which allows us to solve for the resulting form. Note that in the exponent√
2ab of the identity we have b = (lnx)2/2. Because of this, there are two

different behaviors, depending on whether x ≥ 1 or x ≤ 1. For x ≥ 1, f(x) =
λ/2 x−1−

√
2λ, so the result is a power law distribution. For x ≤ 1, f(x) =

λ/2 x−1+
√
2λ.

The double Pareto distribution falls nicely between the lognormal distribution

and the Pareto distribution. Like the Pareto distribution, it is a power law

distribution. But while the log-log plot of the density of the Pareto distribution

is a single straight line, for the double Pareto distribution the log-log plot of the

density consists of two straight line segments that meet at a transition point.

This is similar to the lognormal distribution, which has a transition point around

its median eµ due to the quadratic term, as shown in Equation (2.1). Hence, an

appropriate double Pareto distribution can closely match the body of a lognormal

distribution and the tail of a Pareto distribution. For example, Figure 1 shows

the complementary cumulative distribution function for a lognormal and a double

Pareto distribution. (These graphs have only been minimally tuned to give

a reasonable match.) The plots match quite well with a standard scale for

probabilities, as shown on the left. On the log-log scale, however, one can see

the difference in the tail behavior. The double Pareto distribution follows a

power law; the lognormal distribution has a clear curvature.

Reed also suggests a generalization of the above called a double Pareto-lognormal

distribution with similar properties [Reed 01]. The double Pareto-lognormal dis-

tribution has more parameters, but might allow closer matches with empirical

distributions.

It seems reasonable that in many processes the time an object has lived should

be considered a random variable as well, and hence, this model may prove more

accurate for many situations. For example, that the double Pareto tail phenom-

enon could explain why income distributions and file size distributions appear

better modeled by a distribution with a lognormal body and a Pareto tail [Aitchi-

son and Brown 54, Barford et al. 99, Barford and Crovella 98, Montroll and

Schlesinger 82, Montroll and Schlesinger 83]. Reed presents empirical evidence
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Figure 1. Shapes of lognormal and double Pareto distributions.

in favor of using the double Pareto and double-Pareto lognormal distributions

for incomes and other applications [Reed 00, Reed 01].

To give an idea of why it might be natural for the time parameter to be

(roughly) exponentially distributed, I briefly describe a model that I introduced

in [Mitzenmacher 02]. This model combines ideas from the theory of recursive

trees, preferential attachment, and the double Pareto framework. Consider a

graph process that works as follows: At each step, with probability γ, a new

node is introduced that becomes the root of a new tree. Each new node has

an associated size chosen independently and uniformly at random from a dis-

tribution D1. With probability 1 − γ, an existing node is chosen uniformly at

random, and it generates a child. The size of a child is equal to the size of its

parent, multiplied by some multiplicative factor chosen by a distribution D2. It
is easy to show that the distribution of the depths of the nodes generated in this

manner converges to a geometric distribution. Along each branch of the tree,

the size of the nodes follows a multiplicative process. If D1 and D2 are lognormal
distributions, then the size of a randomly chosen node is a geometric mixture of

lognormally distributed random variables, which closely matches the exponential

mixture required for a double Pareto distribution. In fact, the tail behaviors are

the same. I use this model to explain file size distributions in [Mitzenmacher

02]; [Reed and Hughes 02] analyzes other similar models.

This line of thought also ties back into the discussion of monkeys typing ran-

domly. In the case of unrestricted word lengths and unequal letter probabilities,

the word length is geometrically distributed, and the probability of a word of any

(large) fixed length is approximately lognormal, with the appropriate mean and

variance being proportional to the length of the word. Hence, the underlying

distribution of word lengths is a geometric mixture of approximately lognormal
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random variables as in the framework above, and hence, the resulting power law

is unsurprising.

8. Conclusions

Power law distributions and lognormal distributions are quite natural models

and can be generated from simple and intuitive generative processes. Because of

this, they have appeared in many areas of science. This example should remind

us of the importance of seeking out and recognizing work in other disciplines,

even if it lies outside our normal purview. Since computer scientists invented

search engines, we really have little excuse. On a personal note, I was astounded

at how the Web and search engines have transformed the possibilities for mining

previous research; many of the decades-old articles (including the 1925 article

by Yule!) cited here are, in fact, available on the Web.

It is not clear that the above discussion settles one way or another whether

lognormal or power law distributions are better models for things like file size

distributions. Given the close relationship between the two models, it is not clear

that a definitive answer is possible; it may be that in seemingly similar situations

slightly different assumptions prevail. The fact that power law distributions

arise for multiplicative models once the observation time is random or a lower

boundary is put into effect, however, may suggest that power laws are more

robust models. Indeed, following the work of Reed [Reed 00, Reed 01], we

recommend the double Pareto distribution and its variants as worthy of further

consideration in the future.

From a more pragmatic point of view, it might be reasonable to use whichever

distribution makes it easier to obtain results. This runs the risk of being inac-

curate; perhaps in some cases, the fact that power law distributions can have

infinite mean and variance are salient features, and therefore substituting a log-

normal distribution loses this important characteristic. Also, if one is attempting

to predict future behavior based on current data, misrepresenting the tail of the

distribution could have severe consequences. For example, large files above a

certain size might be rare currently, and hence, both lognormal and power law

distibutions based on current data might capture these rare events adequately.

As computer systems with more memory proliferate, and even larger files become

more frequent, the prediction from two models may vary more substantially. The

recent work [Gong et al. 01] argues that for at least some network applications

the difference in tails is not important. We believe that formalizing this idea

is an important open question. Specifically, it would be useful to know in a

more formal sense in what situations the small differences between power laws
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and lognormal distributions manifest themselves in vastly different qualitative

behavior, and in what cases a power law distribution can be suitably approxi-

mated by lognormal distributions.

For further reading, I strongly recommend the article by Xavier Gabaix [Gabaix

99], which provides both underlying mathematics and an economic perspective

and history. Similarly, Mandelbrot provides both history about and his own

perspective on lognormal and power law distributions in a recent book [Mandel-

brot 97]. Wentian Li has a web page devoted to Zipf’s law which is an excellent

reference [Li 99]. For lognormal distributions, useful sources include the text

by Aitchison and Brown [Aitchison and Brown 57] or the modern compendium

edited by Crow and Shimizu [Crow and Shimizu 88].
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