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Abstract

Schelling [Schelling, T., 1969. Models of segregation. American Economic Review 59, 488–493;
Schelling, T., 1971a. Dynamic models of segregation. Journal of Mathematical Sociology 1, 143–186;
Schelling, T., 1971b. On the ecology of micromotives. The Public Interest 25, 61–98; Schelling, T., 1978.
Micromotives and Macrobehavior. W.W. Norton and Company, New York] considered a model with indi-
vidual agents who only care about the types of people living in their own local neighborhood. The spatial
structure was represented by a one- or two-dimensional lattice. Schelling showed that an integrated society
will generally unravel into a rather segregated one even though no individual agent strictly prefers this.
We generalize this spatial proximity model to a proximity model of segregation, examining models with
individual agents who interact ‘locally’ in a range of more general social network structures. The levels of
segregation attained are in line with those reached in the lattice-based spatial proximity model.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Segregation has been for some time one of the most important socio-political and public
economic issues in the USA and has also increasingly become one in many Western-European
countries. As segregation has increasingly been recognized as one of the most important public
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policy issues in countries such as the UK, the Netherlands, France, and Germany, various countries
have started evaluating and questioning the effectiveness of decades of integration policies (see
e.g., Baldwin and Rozenberg, 2004; Commissie Blok, 2004). The widely accepted view is that
these policies have essentially been failures as integration simply did not happen. As Phillips
(2005), chairman of the Commission for Racial Equality in the UK, puts it, “we are sleepwalking
our way to segregation”. The main objective of this paper is to improve our understanding of this
issue.

The prevalent form of integration policy in countries such as the UK and the Netherlands has
been one of promoting multiculturalism by focusing on the individual citizens’ preferences.1 The
idea was that promoting openness and tolerance with respect to diversity would allow integration
to take place.

Individual preferences are exactly what the spatial proximity model of Schelling (1969, 1971a,
b, 1978) focuses on. Schelling considered a simple model with individual agents who only care
about the types of people living in their own local neighborhood. The spatial structure was rep-
resented by a one- or two-dimensional lattice. Schelling showed that an integrated society will
generally unravel into a rather segregated one even though no individual agent strictly prefers
this. This segregation seemed due to the spontaneous dynamics of the economic forces, with all
individuals following their incentives to move to the most attractive locations. In doing so, they
create externalities for other people, who will respond to their changed incentives, and so on.

The preferences considered in the spatial proximity model are said to be mild, as everybody
would be happy in a perfectly integrated society.2Pancs and Vriend (2007) examined the robustness
of the spatial proximity model. They showed that the model can be further simplified (rendering
the individual preferences even more salient as an explanatory variable of segregation) and that
these proximity preferences may be even more extreme in favor of integration. This focus on mild
individual preferences or preferences that even favor integration is not to say that institutional
constraints or racism may not hinder integration. But what the model shows is that even without
such obstacles one should perhaps expect segregation. It seems that any integration policy must
be based on a good understanding of these spontaneous dynamics.

The idea that people care about their spatial proximity can be justified by the fact that this is
where people mow their lawns, where their children play outside, where they do their shopping,
and where they park their car. The social environment is, however, not limited to this spatial
proximity. People also interact through networks of friends, relatives, and colleagues, and through
virtual communities on the Internet, and they are likely to have preferences with whom they do
this, just as they have preferences regarding their spatial proximity. Similarly, segregation need
not necessarily occur at the spatial (neighborhood) level. One might conceive of people who are
socially segregated despite being spatially integrated.3 Therefore, a better understanding of the
phenomenon of segregation in more general network structures seems desirable.

In this paper we will make some steps to generalize the spatial proximity model to a proximity
model of segregation. That is, we will examine models with individual agents who interact ‘locally’
in a range of network structures with topological properties that are different from those of regular
lattices, while having mild preferences regarding with whom they interact. We stick to standard

1 This focus can be explained by the practical difficulties with other policy measures aimed at integration (see Pancs
and Vriend, 2007, for details).

2 As this occurs without any of the individuals involved explicitly designing this outcome, the sleepwalking metaphor
may seem appropriate.

3 This appeared to be the case with some of the recent terror suspects in the Netherlands and the UK.
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assumptions as far as types and preferences are concerned, and we study best-response dynamics.
Apart from the socio-political interest in this, this seems also intellectually interesting as, after
all, a lattice is just a special type of network, and we may want to know whether mild proximity
preferences can explain segregation also in more general types of networks.

The paper is organized as follows. In Section 2 we present the model. Section 3 discusses in
more detail the classes of networks that we consider in our analysis. The various indices used
to measure segregation in social networks are introduced in Section 4. Section 5 contains our
analysis of the model, including a sensitivity analysis of the parameter setup. Finally, Section 6
concludes.

2. The model

Consider a society composed of N agents who can locate themselves in one of the M ≥ N ≥ 3
available locations. Each location can contain at most one agent. Locations can be connected or
not. We model locations and connections through a non-directed graph (NDG) G composed of
M nodes and a collection of non-directed edges linking any pair of nodes. Edges are described
by the (symmetric) M × M sociomatrix W = {wkh}, where wkk = 0 ∀k = 1, . . . , M and wkh =
whk = 1 if and only if there is an edge connecting nodes k and h, and zero otherwise. We define
the “neighborhood” Vk (or the “interaction group”) of a node k as the set of nodes that node k
is linked to

Vk = {h ∈ IM : wkh = whk = 1}, (1)

where IM = {1, . . . , M}.
We suppose that each node is empty (i.e., it does not contain an agent) with probability θ ∈ (0, 1),

while it is occupied with probability 1 − θ. Therefore, on average, there are N = (1 − θ)M agents
in the society. Each agent can be one of two types, say −1 and +1. Time is discrete, and time
ticks are labeled by t = 0, 1, 2, . . .

Agents have standard, binary, Schelling-type preferences: they are happy if and only if the
relative frequency of agents of their own type is greater or equal than 0.50 in their neighborhood.
More formally, if node i is occupied by an agent of type s ∈ {−1, +1} at time t,

uit = uit(s) =
{

1 if xit(s) ≥ 0.5

0 otherwise
, (2)

where uit = uit(s) is the utility of agent i (of type s) at time t and xit(s) is the current relative
frequency of agents (i.e., filled nodes) of type s in Vi.4

The initial state of the system is characterized by (i) an instance of the network structure, that
is, a graph G0 = {IM, W0} (more on that below), and (ii) an allocation of agents and types across
the M available nodes. The initial allocation of agents and types across the M nodes is drawn
uniform randomly. Thus, at t = 0, each node i ∈ IM will either be empty or occupied. If it is
occupied, this will be either a −1 or a +1 agent, each with probability 0.5. Thus, in the society
there will be, on average, N/2 agents of type −1 and N/2 agents of type +1.

The dynamics is as follows. At each t > 0, an agent is drawn at random (and independently)
from IN = {1, . . . , N}. This agent checks every available node in the network G0 (i.e., his current

4 In line with Pancs and Vriend (2007), we assume that the utility associated with an empty neighborhood is zero.
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node plus all empty nodes) and computes the utility that he could earn at each of these nodes. The
agent chooses the node that provides the highest achievable utility level. Agents resolve ties by
randomizing among all nodes providing the same maximal utility level.

Notice that we assume no inertia in the agents’ choices. That is, the agents’ current locations
do not bias their choices (e.g., because of moving costs). We also assume that agents can move
to any empty node in the network (i.e., there are no information or moving constraints or costs).
In Section 5.3 we will study the effect of removing these assumptions.

3. Network structures

To investigate the scope of proximity preferences explaining segregation, we do not constrain
the graph G0 to be a lattice-type of network. Instead, we explore a number of classes of NDGs
characterized by very different structural and topological properties. This allows us to investi-
gate how segregation levels, emerging out of the best-response dynamics described above, may
depend on the type of network. We study six classes of NDGs: two-dimensional lattices with Von-
Neumann neighborhoods (2D-VN), two-dimensional lattices with Moore neighborhoods (2D-M),
regular NDGs (REG), and random (RAND), small-world (SW) and scale-free (SF) NDGs. We
now discuss each of these network structures in more detail.

3.1. Two-dimensional boundary-less lattices with Von-Neumann neighborhoods (2D-VN)

The two lattice-type networks are considered to benchmark our analysis against the standard
Schelling model. The difference between these two classes of lattices lies in the metrics employed
to compute the distance among any two nodes. Neighborhoods are accordingly defined as con-
taining all nodes that lie within a certain integer interaction radius r ≥ 1. In the 2D-VN lattice, the
“Manhattan” metrics is used and neighborhoods of radius r ≥ 1 have a “diamond” shape. That
is, if any node h has coordinates (xh, yh), the distance is defined as

δ(k, k′) = |xk − xk′ | + |yk − yk′ |, (3)

where k and k′ are any two nodes. We avoid singularities in the lattice by placing nodes on a torus.
A node’s neighborhood is thus defined as

Vk(r) = {h = 1, . . . , M : δ(k, h) ≤ r}, (4)

where r is the neighborhood radius. Notice that the degree dk of any node k; that is, the number
of inward (and outward) links to (and from) k, is

dk(r) = |Vk(r)| = 2r(r + 1). (5)

See Fig. 1, panel (a), for an example of the shape of Vk(r) for r = 1 in the case of 2D-VN.
Notice that the links actually in place in a 2D-VN lattice with r > 1 differ from those present in
the lattice (with r = 1). In fact, any agent is connected through additional direct links with all
agents placed 2, . . . , r steps away. For example, if r = 2, the agent placed in the node (x, y) is
not only linked with the agents placed in (x − 1, y), (x + 1, y), (x, y − 1), (x, y + 1) (whose links
with (x, y) are present in the lattice), but also with agents placed two steps away in the underlying
lattice.
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Fig. 1. An example of neighborhood shapes with 2-dimensional (a) Von-Neumann (2D-VN) and (b) Moore (2D-M)
lattices for r = 1.

3.2. Two-dimensional boundary-less lattices with Moore neighborhoods (2D-M)

In this case, the lattice is endowed with the “spherical” metrics, which entails “box-shaped”
neighborhoods:

δ(k, k′) = max{|xk − xk′ |, |yk − yk′ |}, (6)

where k and k′ are any two nodes. Again, we avoid singularities in the lattice by placing nodes on
a torus. Here, the degree dk of any node k is

dk(r) = |Vk(r)| = 4r(r + 1), (7)

where Vk(r) is defined as in (4). Notice that given any interaction radius r ≥ 1, 2D-M lattices
have neighborhoods twice as large as those of 2D-VN lattices. An alternative way to put this (for
the case r = 1) is to say that the 2D-VN lattices have only lateral (horizontal and vertical) links,
whereas the 2D-M lattices have all diagonal links in place as well. An example of the shape of
Vk(r) for r = 1 in the case of 2D-M graphs is reported in Fig. 1, panel (b), where such additional
links for the agent concerned are shown with dashed lines.

As happens with 2D-VN lattices, also here for r > 1 there are additional links in place. For
example, for r = 2, also agents that would be two steps away from each other in the 2D-M lattice
with r = 1 are directly linked.

3.3. Regular NDG (REG)

Two-dimensional lattices are regular NDGs (i.e., NDGs where all nodes have the same degree,
as they hold the same number of edges). Lattices, however, possess further spatial homogeneity and
symmetry properties, such as invariance to roto-translation (i.e., all neighborhoods are invariant
up to a translation in space and/or a rotation around their center). Therefore, the third class of
NDG we explore is the one of regular NDGs, which are simply defined as NDGs where all
nodes have the same degree d, but do not necessarily satisfy the additional spatial homogeneity
and symmetry properties that lattices do. At time t = 0, we choose at random a regular NDG of
degree d using the algorithm proposed by Steger and Wormald (1999). Under this routine, regular



G. Fagiolo et al. / J. of Economic Behavior & Org. 64 (2007) 316–336 321

Fig. 2. An example of a regular graph with degree d = 4 and M = 20 nodes. Notice how all nodes hold exactly four
links.

Fig. 3. An example of a random graph with average degree d = 4 and M = 20 nodes. Nodes color depends on node
degree. Black nodes: d > 4. Grey nodes: d = 4. White nodes: d < 4.

graphs of degree d are generated (approximately) uniformly at random. A graphical instance of a
regular NDG with d = 4 and M = 20 is shown in Fig. 2.5

3.4. Random NDG (RAND)

We, then, discard the hypothesis of regularity, by considering the class of random NDGs. Given
an average degree equal to (M − 1)p, we generate the graph by allowing each edge to be in place,
independently of all other edges, with a probability p. Therefore, unlike regular NDGs, nodes will
generally have different degrees. In fact, the degree distribution is symmetric, appears to be quite
dispersed over the support {0, . . . , M − 1}, and has average degree d̄ = (M − 1)p. See Fig. 3 for
an example.

3.5. Small-world NDG (SW)

Next, we consider two additional NDG classes that, due to their close relationships with empir-
ically observed social and economic networks (for an introduction, see e.g., Barabási, 2003), have

5 This and all subsequent network graphs have been plotted using UCINET 6.
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Fig. 4. An example of a small-world graph obtained from M = 100 nodes originally lying on a circle and interacting with
their nearest neighbors only (r = 1). Rewiring probability β = 0.2. Nodes color depends on degree after rewiring. Black
nodes: d ≥ 3. Grey nodes: d = 2. White nodes: d = 1.

received increasing attention over the last decade. First, we study small-world NDGs (SW). The
main features of SW networks (Watts, 1999, 2003) are that they tend to have a small “path length”
(i.e., average distance between any two nodes) and a large “clustering coefficient” (i.e., likelihood
that any two neighbors of an agent are also neighbors of each other). To generate a small-world
NDG, we start from a two-dimensional boundary-less lattice with Von-Neumann neighborhoods
as in Section 3.1 above, for a certain value of r. Then, each edge (h, k) is independently rewired
to a randomly chosen node, say k′, outside Vh(r) with some probability β ∈ (0, 1). In case of
rewiring, the edge (h, k) is deleted and replaced by the new edge (h, k′). If β is close to one and
M is very large, this procedure yields a random NDG. Otherwise, the degree distribution will be
symmetric, centered around 2r(r + 1) but less dispersed than the one associated with a random
NDG. In the results presented, we employ β = 0.2.6 A graphical example of a SW graph is in
Fig. 4, where a population of M = 100 nodes initially lying on a one-dimensional boundary-less
lattice (i.e., a circle) with r = 1 is rewired using β = 0.2. Notice how a small fraction of nodes
(in black) hold more than two links, with some of their links being to nodes located arbitrarily far
from them on the circle, while the other nodes (in grey or white) who kept only one or two links
are usually linked to their direct neighbors only.

3.6. Scale-free NDG (SF)

Finally, we consider scale-free NDGs (SF). A scale-free NDG has a skewed, power-law degree
distribution, with few nodes holding a large number of edges (i.e., the hubs of the network) and
many nodes with few edges. To build a SF graph, we employ a standard “preferential attachment”
procedure (Barabási and Albert, 1999), starting with M0 nodes linked through a 2D-VN lattice
with r = 1 (and thus an initial degree d = 4). One node at a time is added until a size M is reached.
In any step, the additional node is allowed to form four links. Each new link is formed by choosing
one of the existing nodes with a probability proportional to its current degree. The larger the initial
number of nodes, the smaller is the degree heterogeneity (the less skewed the degree distribution).
The underlying assumption of this setup is that any node can hold at no cost any arbitrarily large

6 This value for the rewiring probability typically yields NDGs with the small-world property, see Watts and Strogatz
(1998) However, our results are not altered if one tunes β in a wider range of values. More on that below.
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Fig. 5. An example of a scale-free graph obtained by applying a preferential attachment algorithm. The initial population
size is M0 = 16. Final population size is M = 100. All initial nodes have degree d = 4. White nodes are the “hubs”.

number of nodes (as M increases). When a SF network is in place, there is a small set of agents
that hold a large number of links, while all the others hold a small number of links. Thus, the
degree distribution is skewed to the right, with a relatively small average and a fat right tail. As
Fig. 5 shows for an instance of a scale-free NDG obtained by applying the above procedure for
M = 100, a few “hubs” (in white) holding a large number of links coexist with many nodes (in
black) connected with a small number of other nodes, and possibly with the hubs. As expected,
the average degree of a SF network generated from an initial node size M0 always tends to have
the same average degree. Moreover, this average degree is not monotonically increasing in M0.
In fact, our analysis shows that the following (approximate) relation holds:

d � 0.00003M3
0 − 0.0062M2

0 + 0.3485M0 + 3.1916. (8)

Hence, D grows for M0 ≤ 39 and decreases for M0 ≥ 40.

3.7. System- and network-specific parameters

Given a certain class within this range of networks, we need to specify the system- and network-
specific parameters. System parameters are M (number of nodes) and θ (average percentage
of empty nodes). Given the class of networks to be implemented, network-specific parameters
characterize the set of possible networks from which the one actually in place will be drawn (see
Table 1).

Table 1 also shows how the node degrees depend on the chosen network-specific parameter
values. When we compare segregation levels in networks from different classes, we will keep
the system parameters and the average node degree constant across the networks considered. We
achieve this by tuning the network-specific parameters. Thus, the values for the radius r in the
2D-VN and 2D-M lattices, the probability p in the random graphs, the radius r in the starting
lattice for the small-world networks, and M0 in the scale-free networks are all chosen such that
the ensuing (average) node degrees d match those considered for the other network classes. In
other words, implicitly the only network-specific parameter to be considered is the (average) node
degree d.

In the lattice-case (i.e., 2D-VN and 2D-M), the initial graph is automatically defined once one
specifies the interaction radius r (and consequently the degree d). In all other cases, given a choice
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Table 1
Network classes and system parameters: M: number of nodes; θ average percentage of empty nodes; d: graph average
degree; r: interaction radius; p: link probability; M0: initial number of nodes in a preferential-attachment graph formation
mechanism

Network Parameters Node degree

System Network-specific

2D-VN r d = 2r(r + 1)
2D-M r d = 4r(r + 1)
REG (M, θ) d d
RAND p d̄ = (M − 1)p
SW r d̄ = 2r(r + 1)
SF M0 See (8)

for the network class and for the network-specific parameters of that class (e.g., the degree d in
a regular graph), each time we draw G0 (uniform) randomly from the set of all possible graphs
belonging to that class and with the given network-specific parameters (e.g., all regular graphs
with degree d).

4. Measuring segregation in social networks

A number of indices have been suggested in the literature to measure segregation when the
agents are located on generic NDGs (see e.g., Freeman, 1972, 1978; Mitchell, 1978; Fershtman,
1997; Echenique and Fryer, 2005, and references therein). We mainly employ two indices. The
first one is Freeman’s segregation index (FSI) (Freeman, 1972, 1978); see the appendix (available
on the JEBO website) for details. The rationale underlying the computation of the FSI is that if a
given agent-attribute (in our case the type +1 or −1) does not matter for social relationships (i.e.,
for the link structure as described by G0), then the links among the agents should be distributed
randomly with respect to that attribute. Therefore, suppose we observe a given allocation of agent
types across the M nodes, connected through the NDG G0. Let us, then, split the agents in two
groups according to their type and, for each type, let us count the number of cross-group links
(i.e., the number of links connecting any pair of agents of different types), as well the number of
within-group links (i.e., the number of links connecting any pair of agents of the same type). This
gives us a 2 × 2 contingency table whose generic entry lxy gives us the number of links between
type-x and type-y agents in G0. Similarly, one can compute the expected contingency table for a
random allocation of agent types on G0. The difference between the number of cross-group ties
expected by chance and the number of observed ties (divided by expected ones) gives us the FSI.
The index ranges between −1 and 1, with the highest segregation level obtained when there are
no cross-group links in place.

Second, we compute the more sophisticated (but less intuitive) “spectral” segregation index
(SSI) for social networks recently proposed in Echenique and Fryer (2005). The index has two
remarkable properties: (i) it disaggregates at the level of individuals and types (that is, one can
compute the extent to which each single individual, or a given type, is segregated in the society),
and (ii) the level of segregation of any individual increases linearly with the level of segregation
of his neighbors. Notice that the FSI does not possess this “linearity” feature. In fact, the FSI
counts indiscriminately any within- and cross-group link among any two agents belonging to a
cluster of connected agents of the same type. The SSI, on the other hand, takes into account the
fact that agents located close to the fringe of such a cluster are less segregated that those near its
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center. More formally, the SSI associated with a given type s ∈ {−1, +1} is defined as the largest
eigenvalue of the sub-matrix obtained from the sociomatrix W0 by considering only the rows and
the columns associated with the nodes whose current type is s. In our analysis, we report the
average SSI, computed over the two types s ∈ {−1, +1} and suitably rescaled to have an index
ranging in the unit interval (see the appendix in the supplementary material for details).

We also check our results against a number of alternative segregation indices, such as those
proposed in Fershtman (1997) and Freeman (1978), and some of those originally developed in
the lattice-case (see Pancs and Vriend, 2007), for example the average mix deviation index (MD).
The latter is defined as the absolute deviation between a 50–50 neighborhood and the current
frequency of like agents in the neighborhood, averaged over all agents. As we discuss in more
details below, our main results are not qualitatively altered if one considers these additional
segregation measures. Therefore, in what follows we will mainly focus on FSI and SSI as our
measures of segregation in networks.

5. Analysis of the model

In this section, we present an analysis of our model for a society of M = 100 nodes. Initially,
we set the average percentage of empty nodes θ = 0.3, and for any given network class we choose
the network-specific parameters. Section 5.2 presents a sensitivity analysis across the parameter
space as described in Table 1. Our analysis will take the form of a Monte Carlo (MC) analysis.
The procedure is as follows.

For each choice of network class and network-specific parameters we generate a number
of independent runs. For each run, where necessary, we randomly select a specific instance of
the network class, and we generate an initial allocation of agents and types across the network
uniformly at random. We, then, let the best-response dynamics run and collect system statistics
when either segregation measures or the configuration of types across the M nodes have reached
a steady-state.7 This typically happens well before T = 50, 000 time-steps with probability one.
We independently repeat this exercise 1000 times, computing the Monte Carlo (MC) average and
standard deviation for the relevant measures. Since across-run variability turns out to be very
small (across-run standard deviations are of an order of magnitude of 10−5) and MC distributions
appear to be symmetric, we report below MC averages of segregation measures only.

5.1. Some benchmark results

The main question we are interested in here is whether mild proximity preferences can explain
segregation also in more general network structures, for example, when the underlying network
is not necessarily a proxy of geographic space but it rather has structural properties that make
it resemble more of a social network. Second, we also want to know whether segregation levels
emerging in non-lattice NDG vary across different families of networks, and if so, how.

To begin answering these questions, we compare MC averages of the FSI and SSI in the
benchmark case θ = 0.3 where agents are placed in one of our six different classes of NDGs (see
Table 1). Initially, we restrict our attention to network-specific parameters implying NDGs with

7 Notice that whenever the system does not seem to converge to a stable configuration of types across the M nodes, a
cyclical behavior is typically observed with agents who keep switching among a small set of locations. In these cases,
segregation levels do converge to stable levels well before the system begins cycling.
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Fig. 6. Average Freeman’s segregation index (FSI) vs. network classes. Average degree d = 4. Parameters: M = 100,
θ = 0.3. MC sample size = 1000.

Fig. 7. Average Freeman’s segregation index (FSI) vs. network classes. Average degree d = 8. Parameters: M = 100,
θ = 0.3. MC sample size = 1000.

(average) degree d̄ ∈ {4, 8}. This allows us to compare non-lattice NDGs directly with either a
2D-VN lattice or a 2D-M lattice with r = 1 (and thus d = 4 or 8).

As Figs. 6–9 show, segregation levels are rather similar in all network classes considered.
Lattice-type networks seem to display a higher average FSI, but this effect is weaker for the
SSI. This means that once one takes into account “linearity” in segregation (that is, an indi-
vidual’s segregation level increases with that of his peers), little difference in segregation can
be detected across different network structures.8 The structural properties of the network do

8 According to standard statistical tests for the difference between two means, all reported values are not statistically
different. Notice, however, that one can make any pair of average segregation levels statistically different by sufficiently
increasing the MC sample size. Therefore, we do not report statistical tests for the difference between any two average
indices.
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Fig. 8. Average spectral segregation index (SSI) vs. network classes. Average degree d = 4. Parameters: M = 100,
θ = 0.3. MC sample size = 1000.

Fig. 9. Average spectral segregation index (SSI) vs. network classes. Average degree d = 8. Parameters: M = 100,
θ = 0.3. MC sample size = 1000.

not seem to engender a strong impact on segregation levels attained in the long-run by the
system.

To put the values of the segregation indices found into perspective, we make the following
two observations. First, for each network class and combination of network-specific parameters,
we compare the values of the FSI and SSI obtained through best-response dynamics with the
distribution of values for these indices over the set of all possible allocations of agents and types
across M = 100 nodes (keeping θ = 0.3 as above). We numerically generated proxies for these
“theoretical” distributions by computing our segregation indices over 100,000 random allocations
of agents and types for each given network class and network-specific parameters. Consider,
for example, the FSI distributions (similar results hold also for SSI). The resulting simulated
“theoretical” distribution of the FSI appears to be symmetric around 0. The corresponding MC
distributions obtained by running our model lie clearly to the right of the simulated “theoretical”
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Fig. 10. FSI levels generated by the model (solid line) vs. FSI simulated theoretical distribution (dashed line). Network: 2D-
M lattice with r = 1 (d = 8). Parameters: M = 100, θ = 0.3. Sample sizes: model = 1000; simulated index distribution =
100, 000.

Fig. 11. FSI levels generated by the model (solid line) vs. FSI simulated theoretical distribution (dashed line). Network:
regular lattice with d = 8. Parameters: M = 100, θ = 0.3. Sample sizes: model = 1000; simulated index distribution =
100, 000.

distributions (see Figs. 10 and 11 for the case of the FSI in 2D-M and REG networks with
degree d = 8).9

Second, to benchmark our results against those reported in Pancs and Vriend (2003), we
computed the average “mix deviation” index (see Section 4). Pancs and Vriend (2003) find an
average mix deviation level of 0.19 for a 2D-M lattice without boundaries in the case r = 1 (and
thus d = 8) and θ = 0.2. As Fig. 12 shows, our model yields average mix-deviation levels that
are similar to Pancs and Vriend’s values. Moreover, the mix-deviation index seems to be quite

9 All densities have been estimated using a normal kernel with a 0.20 bandwidth.
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Fig. 12. Average mix deviation index vs. network classes. Average degree d = 8. Parameters: M = 100, θ = 0.2.
MC sample size = 1000. PV: average values reported in Pancs and Vriend (2003) for the case 2D-M without boundaries
and same parameter values.

Fig. 13. Average mix deviation index vs. network classes. Average degree d = 4. Parameters: M = 100, θ = 0.2.
MC sample size = 1000.

stable across all network classes we employed (including the 2D-M one), as well as for other
degree values (see Fig. 13). This result corroborates our choice of focusing on FSI and SSI as
segregation measures.

5.2. Sensitivity analysis: empty spaces, connectivity, and network size

The findings of previous sections show that proximity preferences can explain segregation
in a wide range of networks. In this section we turn to a sensitivity analysis of the model. We
are interested in assessing how, for each given class of networks, segregation levels depend on
the particular parameterization as far as the average percentage of the empty nodes (θ) and the
connectivity of the network (measured by its average degree d̄) are concerned. Therefore, we first
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consider a range of different values of θ and d̄, and compute MC averages of the FSI and SSI over
1000 independent runs for each combination of parameter values. Fig. 14 shows the SSI against
average degree d̄ for various fractions of empty nodes θ, with each panel concerning one of the
network classes considered.10,11

We see that segregation levels are decreasing with the average degree in every network class
and for any value of θ. Very high segregation levels are attained by the system when the society is
poorly connected and there is a small percentage of empty nodes. As the connectivity increases,
segregation becomes somewhat less pronounced, but even in very connected societies, segregation
levels remain significantly higher than the expected level for random allocations.

Fig. 14 also shows that the SSI decreases with the percentage of empty nodes. This is, however,
not true for the FSI. The FSI, unlike the SSI, declines for small values of θ and then remains fairly
stable in each given network class. Fig. 15 presents a comparison of FSI and SSI against θ for the
case of small-world networks. This difference seems due to the linearity taken into account by the
SSI. That is, only if one measures segregation by taking into account the structure of emerging
clusters does a higher percentage of empty nodes negatively affect the measured segregation
levels. This means that the larger the degrees of freedom the agents have in their moving choices,
the less the society ends up in “thick” segregated clusters, where many agents are “far” from the
fringe. When θ is very large, the society tends to be segregated in less structured clusters with
many agents located on the “border” between clusters of agents of the same type and an empty
space. That is why the FSI does not detect large drops of segregation levels even for large values
of θ.

It must be noticed that the foregoing findings about small-worlds are not affected by the par-
ticular choice of the rewiring probability β employed to build the network. As Fig. 16 shows,
both SSI and FSI display a low sensitivity to varying β for different average degrees. This is not
surprising, as previous results indicated statistically not significant differences between segrega-
tion levels in 2D-VN lattices and random NDGs (as we noted in Section 3, a small-world NDG
recovers the lattice case when β = 0, while it tends to a random NDG when β → 1).

The inverse relation between degree of the network (number of links per agent) and measures
of segregation may appear puzzling. In fact, one might think that the higher the number of links
an agent controls, the higher the number of affected agents at any time an agent makes a move
is; those losing a neighbour and those gaining one. Since any move is more likely to bring about
an increment of segregation, we may expect higher segregation, not lower, for higher degree
networks. In fact, this is not the case. The reason is that when agents have many links, a change of
state of one of those links is relatively less relevant than when agents are linked with fewer nodes.
In other words, the relative impact on an agent by one individual change is inversely related to the
number of links. While in a low degree network, the move by one agent is very likely to trigger
further moves by affected agents, in high degree networks it is far more likely that changes are
absorbed by affected agents, since the change will be small.

The same line of reasoning provides an explanation for the relatively low segregation levels
generated by “sparse” populations, where agents are thinly scattered over a large number of (mostly
empty) nodes. In these conditions, the choice of an agent to move is likely to affect a smaller
number of agents, other things being equal, and therefore agents can easily find a configuration
that makes them happy without the need to form thick homogeneous clusters.

10 For the scale-free networks, we employed values for M0 ∈ {9, 16, 25, 36}, which implies approximate average node
degrees d ∈ {5.82, 7.36, 8.50, 9.11}.
11 Similar results are obtained also for the FSI.
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Fig. 14. SSI vs. average degree for different levels of θ. Parameters: M = 100, MC sample size = 1000.
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Fig. 15. Small-world networks. SSI (left) and FSI (right) vs. θ for different average degrees. Parameters: M = 100,
MC sample size = 1000.

Fig. 16. Small-world networks. SSI (left) and FSI (right) vs. different rewiring probabilities β and alternative average
degrees. Parameters: M = 100, MC sample size = 1000.

Fig. 17. SSI (left) and FSI (right) vs. network size (M) for different levels of network density (d̄/M). Random NDG.
Parameters: θ = 0.3, MC sample size = 1000.
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Next, we analyze what happens when the network size (M) increases. In particular, we consider
different network sizes, while we fix the network density (i.e., the ratio between average degree
d̄ and network size M) at various levels. We allow for more time to let the dynamics settle (close)
to a steady-state, and we collect segregation measures across 1000 independent simulations as
before.

Our results (see Fig. 17 for the case of a RAND NDG) show a mild size effect. For a given
network density (d̄/M), segregation is generally weaker the larger the absolute size of the society,
but there seems to be some lower bound that is quickly reached as networks get larger. Fig. 17
also confirms the fact that segregation levels decrease with average degrees, as we found in the
case M = 100. As we see, for a given network size, societies characterized by a larger (absolute)
average degree tend to reach lower segregation levels.

5.3. Sensitivity analysis: inertia and local moves

In the basic model presented in Section 2, agents choose pure best-responses. That is, if an
agent is drawn at time t to revise his current state, he constructs his choice set, which includes his
current location plus all vacant locations, and chooses the best option in this set, randomizing in
case the best-response is not unique. Although our analysis shows that mild proximity preferences
alone are sufficient to explain segregation in a wide range of general network structures, it may be
interesting to analyze whether additional constraints on the individual behavior lead to different
segregation levels.

Therefore, we first examine the effect of introducing inertia in individual decisions. Suppose
that at time t > 0 the agent of type slocated in node i is drawn at random from IN = {1, . . . , N}.
With inertia, this agent stays put if there is no vacant location that he would strictly prefer to his
current location. The idea of inertia is based on the implicit modelling assumption of some small
costs of moving (smaller than the smallest possible difference in satisfaction between any two
locations, but otherwise arbitrarily small). Notice that under the inertia rule, satisfied agents will
never move.

Second, we restrict the choices of the individual agents to local-moves-only. With local-moves-
only the agents’ moves are restricted to the agents’ direct neighborhoods only. Suppose the agent
drawn, say the one located in node k, considers to move. He checks every node that is currently
empty in his interaction group Vk only, and then behaves as in the basic model as far as his
decision is concerned. This can be based either on the additional assumption of moving costs that
increase with the distance travelled in the network such that they are greater than the greatest
possible improvement in utility derived from the neighborhood for any move beyond the current
neighborhood, or on some information costs preventing agents from observing anything that is
outside their current neighborhood. Notice that in both cases, the agents will tend to explore a
smaller number of options and the ensuing dynamics will be more ‘sticky’.

Fig. 18 presents the average degree in four network classes (with θ = 0.3) for three cases: (i)
the basic model without inertia and allowing global moves, (ii) the model with inertia and global
moves, and (iii) the model with inertia and local-moves-only.12 As expected, segregation levels
decrease when one introduces subsequently the assumptions of inertia and local-moves-only,
especially in lattice-type of networks. In all other cases, the effect is relatively small.

12 These results do not qualitatively vary if one considers the SSI.



334 G. Fagiolo et al. / J. of Economic Behavior & Org. 64 (2007) 316–336

Fig. 18. FSI vs. average degree in three alternative setups: (i) basic model; (ii) inertia in individual decision rules;
(iii) inertia in individual decision rules and local moves. See Section 5.3 for details. Parameters: M = 100, θ = 0.3,
MC sample size = 1000.
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6. Conclusions

Considering six different classes of networks, we generalized the spatial proximity model by
Schelling (1969, 1971a, b, 1978). For each network structure, we considered two types of agents
who occupy nodes in the network, with some nodes being empty. The agents have preferences
regarding the composition of their own neighborhood in the network and move to available vacant
locations following myopic best-responses. We analyzed the ensuing dynamics, performing also
a sensitivity analysis of a range of parameter values and setups. The main result of our analysis is
an affirmative answer to the question whether mild proximity preferences as such may suffice to
explain segregation in a wide range of network structures. In other words, our analysis confirms
mild proximity preferences as an important possible explanation of segregation not only in regular
spatial networks, but also in more general social networks.

Schelling’s original results on the emergence of segregation were obtained in a model with a
specific topology of the space in which the agents were allowed to move. In fact, a lattice is a
very peculiar topology, with a rigid and regular structure constraining the interaction possibilities
among the agents. Hence, it is not clear from Schelling’s spatial proximity model how far the
emerging segregation depended on the dynamic behavior of the agents and how far it depended
on the structural properties of the environment in which the agents interacted. Our contribution
in this respect suggests that the spatial proximity model’s explanation of segregation lies in the
dynamic part of the model (the best-response dynamics based on mild preferences) rather than
the very rigid topological constraints used in the original model.

Apart from the general policy importance to improve our understanding of the phenomenon
of segregation, this has also some more specific possible policy relevance. Potential policies to
favor integration may include initiatives meant to alter the “topology” in which people interact.
That is, for example, building communication links to allow a wider possibility of contacts among
people from distant communities. In this way, one may think, people would be offered different
potential “social links” and their diversity may contribute to reduce segregation. Although our
analysis is not explicitly concerned with policy issues, our results suggest that such measures, as
long as they do not affect people’s preferences, are likely to have limited relevance.

An example of social interactions fitting this kind of model is a network of professional
relationships, such as interactions with colleagues, suppliers, customers, and so on. Typically an
agent searching for a job needs to find a vacancy (empty node), and when starting a new job he
‘inherits’ the links that come with his new position while severing ties related to his previous job.
A similar pattern applies to positions in sports clubs or, say, orchestras. Although by far most
such moves seem to take place in existing networks, obviously, not all social interactions are
adequately described by a given network structure. People may build new houses, start their own
firm, school, football team or orchestra. Therefore, the next step of our research will be to study
models of segregation based on proximity preferences in which the network structure may evolve
endogenously, with individual agents forming new ties or severing existing ones according to
their proximity preferences in response to their environment.
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Appendix

A Segregation Indices

In this appendix we formally define the segregation indices that we employ in our analysis.

• Freeman Segregation Index (FSI)

Consider a NDG G over M nodes described by the sociomatrix W . Nodes can be

of three types: +1, −1 or 0 (with 0 meaning that the node is empty). Let NA and

NB be the number of agents of types A = +1 and B = −1. Let us define the 2x2

mixing matrix P where entry pab with a, b ∈ {A,B} counts the number of links

connecting an a-type node with a b-type node. It is easy to see that

P = E ′AE,

where A is the N × N socio-matrix obtained from W by deleting rows/columns

associated with empty nodes, and E is the N · 2 matrix (state indicator matrix)

where columns refer to the type {A,B} and rows to the node. Any row i can either

be (1, 0) if node i is of type A or (0, 1) if node i is of type B. Given the mixing

matrix of cross-group ties P , define the expected matrix of cross-group ties by E(P )

using the standard expected contingency matrix. Operationally, let

P =

[
pAA pAB

pBA pBB

]

be the mixing matrix. Freeman (1972) asked how we could identify segregation in

a social network. Theoretically, he argues, if a given attribute (group label) does

not matter for social relations, then relations should be distributed randomly with

respect to the attribute. Thus, the difference between the number of cross-group

ties expected by chance and the number of observed ties (divided by expected ones)

measures segregation:

FSI =
[E(pAB) + E(pBA)] − [pAB + pBA]

E(pAB) + E(pBA)
.

1



To compute expected values, consider the row and column sums:

pA· = pAA + pAB

pB· = pBA + pBB

p·A = pAA + pBA

p·B = pAB + pBB

p·· = pAA + pAB + pBA + pBB

and let

E(pAB) =
pA· × p·B

p··

E(pBA) =
pB· × p·A

p··

Notice that in principle Freeman’s index should be computed as:

FSI∗ = max{FSI, 0}

because it measures whether there are fewer cross-group links than expected. As

Mitchell (1978) argues, there is no way to compute systematic integration. Freeman

(1978) then suggest computing two different indices, one for segregation and one

for integration, namely,

FSI∗∗ =
[E(pAB) + E(pBA)] − [pAB + pBA]

E(pAB) + E(pBA) − min{E(pAB) + E(pBA)} .

Since min{E(pAB) + E(pBA)} = 0, this means that when measuring systematic

segregation we have FSI∗∗ = FSI. Similarly, the index measuring systematic

integration is

FII =
[E(pAB) + E(pBA)] − [pAB + pBA]

E(pAB) + E(pBA) − max{E(pAB) + E(pBA)} ,

where max{E(pAB)+E(pBA)} = NA ·NB. We compute FSI and FII for agents of

types A = −1 and B = +1. A larger value for any of the two indices means “more”

of what it measures.

• Spectral Segregation Index (SSI)

The Spectral segregation index is computed as follows (see Echenique and Fryer,

2005, for additional details and applications). Consider the M ×M socio-matrix W

and the current configuration of types across the M nodes. Define as Ax the sym-

metric, square sub-matrix obtained from W by considering only the rows/columns

2



associated with agents of type x ∈ {−1, +1}. If there are K = N/2 agents of each

type (assuming N even), both A−1 and A+1 are K × K symmetric matrices. For

each type x ∈ {−1, +1}, define the Spectral segregation index with SSI(x) as the

largest eigenvalue of Ax. The entries of the eigenvector associated with SSI(x),

suitably scaled so that the average of the entries are equal to the eigenvalue SSI(x),

give the segregation levels of the individuals belonging to group x. Notice that

dmin(x) ≤ d(x) ≤ SSI(x) ≤ dmax(x),

where dmin(x), d(x) and dmax(x) are, respectively, the minimum, average and max-

imum degree of the nodes associated with agents of type x in the sub-graph W

composed of nodes hosting an agent of type x. Therefore, to have an index ranging

in the unit interval, one can employ

SSI∗(x) =
SSI(x) − dmin(x)

dmax(x) − dmin(x)
.

In our results, we typically get that SSI∗(−1) and SSI∗(+1) are very close in each

run and parametrization. This is because of symmetry between types in the initial

random allocation, with equal numbers of agents of each type. Therefore, we report

the average SSI index,

SSI =
SSI∗(−1) + SSI∗(+1)

2
,

as our spectral measure of segregation for the society as a whole.

3
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