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Introduction
Our aim is to study the probable structure of a random graph I,
which has n given labelled vertices P, £, ..., P, and N edges; we suppose
that these N edges are chosen at random among the
s0 that all( N ) = O, y possible choices are supposed to be equiprobable. Thus

if G, y denotes any one of the €,  graphs formed from n given labelled points
and having N edges, the probability that the random graph I', ~ 1s identical

5 I possible edges,

with G,y is L3 If A4 is a property which a graph may or may not possess,
nN
we denote by P,y (4) the probability that the random graph I, \; possesses

ZnN where A4, denotes the

the property A, i. e. we put P,y (4)=
mN
number of those Gn y which have the property A.
An other equivalent formulation is the following: Let us suppose that

n labelled vertices Py, Py, ..., P, are given. Let us choose at random an edge

among the

;’ possible edges, so that all these edges are equiprobable. After

this let us choose an other edge among the remainiug'i’ — 1 edges, and

continue this process so that if already £ edges are fixed, any of the remaining

Mk edges have equal probabilities to be chosen as the next one. We shall

study the “evolution” of such a random graph if N is increased. In this investi-
gation we endeavour to find what is the “typical” structure at a given stage
of evolution (i. e. if A is equal, or asymptotically equal, to a given function
N(n) of n). By a "typical” structure we mean such a structure the probability
of which tends to 1 if n— + o= when N = N(n). If 4 is such a property
that lim P,y (4) =1, we shall say that ,almost all” graphs G, ney

n—++=

possess this property.
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The study of the evolution of graphs leads to rather surprising results.
For a number of fundamental structural properties 4 there exists a function
A(n) tending monotonically to + o= for n— - o such that

l 0 if lim Ain) =0

n——a A(n)
f1) ]:iIII] P, ney(d) = .
e l 1 if  lim () ==
n——a A(n)

If such a function A(n) exists we shall call it a "threshold function” of the
property A.

In many cases besides (1) it is also true that there exists a probability
distribution function F(z) so that if 0 < # < 4 oo and @ is a point of conti-
nuity of F(z) then

Rt n-+= A(n)

If (2) holds we shall say that A(n) is a ,,reqular threshold function’ for the
property A and call the function F(z) the threshold distribution function of the

property 4.
For certain properties A4 there exist two functions A,(n) and A,(n)
both tending monotonically to - oo for n—-co, and satisfying lim ‘izi“; —0
== 5 7
such that 1
0 if lim ‘mfél_(@_ —
i H=sfie Az(”)
(3) lim P, yoo(4) = . "
n—-—mwm N . ]
i W i A oy
n—+tw Ay(n)

Clearly (8) implies that

6 8 Tmapt e

n—-+m 1(??»
(4) lim Pn,N(n)(A) = T
e l 1 if liminf?® (m) >1.
-+ A.l(.*’i)

It (3) holds we call the pair(A4,(n), Ay(n))a pair of “sharp threshold”-functions
of the property A4. It follows from (4) that if (4,(n), Ay(n)) is a pair of sharp
threshold functions for the property 4 then A4,(n) is an (ordinary) threshold
function for the property 4 and the threshold distribution function figuring
in (2) is the degenerated distribution function

[0 for <1

Hal= |1 for a>1
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and convergence in (2) takes place for every x == 1. In some cases besides
(3) it is also true that there exists a probability distribution function G(y)
defined for —e0 < y < - oo such that if y is a point of continuity of G(y) then

(5) hith Py =8 ¥ T 20— i .

—iwm n—+-+ = A‘d(n}

1f (5) holds we shall say that we have a regular sharp threshold and shall call
Q(y) the sharp-threshold distribution function of the property A.

One of our chief aims will be to determine the threshold respectively
sharp threshold functions, and the corresponding distribution functions for
the most obvious structural properties, e. g. the presence in I, \; of subgraphs
of a given type (trees, cycles of given order, complete subgraphs ete.) further
for certain global properties of the graph (connectedness, total number of
connected components, etc.).

In a previous paper [7] we have considered a special problem of this
type; we have shown that denoting by C the property that the graph is con-

nected, the pair C(n) :%-n]og n, Cy(n) =n is a pair of strong threshold

functions for the property C, and the corresponding sharp-threshold distri-
bution func-ti(}n is e~ *; thus we have proved! that putting

N(n) = —n log n +yn+ o(n) we have
(6) lim P, ne(C) = e (—oo <y < 4 o0).

In the present paper we consider the evolution of a random graph in a
more systematic manner and try to describe the gradual development and
step-by-step unravelling of the complex structure of the graph I,y when
N increases while n is a given large number.

We succeeded in revealing the emergence of certain structural properties
of I', . However a great deal remains to be done in this field. We shall call in
§ 10. the attention of the reader to certain unsolved problems. It seems to us
further thatit would be worth while to consider besides graphs also more
complex structures from the same point of view, i. e. to investigate the laws
governing their evolution in a similar spirit. This may be interesting not only
from a purely mathematical point of view. In fact, the evolution of graphs
may be considered as a rather simplified model of the evolution of certain
communication nets (railway, road or electric network systems, etc.) of a country
ur some other unit. (Of course, if one aims at deseribing such a real situation,
one should replace the hypothesis of equiprobability of all connections by
some more realistic hypothesis.) It seems plausible that by considering the
random growth of more complicated structures (e. g. structures consisting
of different sorts of “points” and connections of different types) one could
obtain fairly reasonahble models of more complex real growth processes (e. g.

1 Partial result on this problem has been obtained already in 1939 by P. Erpls
and H., WaITXEY but their results have not been published.

2%
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the growth of a complex communication net consisting of different types of
connections, and even of organic structures of living matter, ete.).

§§ 1—3. contain the discussion of the presence of certain components
in a random graph, while §§ 4—9. investigate certain global properties of a
random graph. Most of our investigations deal with the case when N(n) ~cn
with ¢ > 0. In fact our results give a clear picture of the evolution of I’ vy

N(n . . . : .
when ¢ T (which plays in a certain sense the role of time) increases.
% 3

In § 10. we make some further remarks and mention some unsolved problems.

Our investigation belongs to the combinatorical theory of graphs,
which has a fairly large literature. The first who enumerated the number
of possible graphs with a given structure was A. Cayrey [1]. Next the impor-
tant paper [2] of G. PéryYa has to be mentioned, the starting point of which
were some chemical problems. Among more recent results we mention the
papers of G. E. Usrensrck and G. W. Forp [5] and E. N. GrLeerT [6].
A fairly complete bibliography will be given in a paper of F. Harary {8].
In these papers the probabilistic point of view was not explicitly emphasized.
This has been done in the paper [9] of one of the authors, hut the aim of the
probabilistic treatment was there different: the existence of certain types
of graphs has been shown by proving that their probability is positive. Random
trees have been considered in [14].

In a recent paper (10] T. L. Avstiw, R. E. Fagex, W, F. PexyEY and
J. Riorpan deal with random graphs from a point of view similar to ours.
The difference between the definition of a random graph in {10] and in the
present paper consists in that in [10] it is admitted that two points should
be connected by more than one edge ("parallel” edges). Thus in [10] it is
supposed that after a certain number of edges have already been selected,

the next edge to be selected may be any of the possible :} edges between

the » given points (including the edges already selected). Let us denote such
a random graph by I’;g‘ ~ - The difference between the probable properties
of I, tesp. I'# \, are in ‘most (but not in all) cases negligible. The correspond-
ing probablhtles* are in general (if the number N of edges is not too large)
asymptotically equal. There is a third possible point of view which is in most
cases almost equivalent with these two; we may suppose that for each pair
of n given points it is determined by a chance process whether the edge
connecting the two points should be selected or not, the probability for select-
ing any given edge being equal to the same number p > 0, and the decisions
concerning the different edges being completely independent. In this case of
course the number of edges is a random variable, having the expectation

s

the mean ¥ edges we have to choose the value of p equal to % We shall

p; thusif we want to obtain by this method a random graph having in

2

denote such a random graph by I'*%. In many (though not all) of the problems
treated in the present paper it does not cause any essential difference if we
consider instead of I' y the random graph I
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Comparing the method of the present paper with that of [10] it should
he pointed out that our aim is to obtain threshold functions resp. distributions,
and thus we are interested in asymptotic formulae for the probabilities con-
sidered. Exact formulae are of interest to us only so far as they help in determi-
ning the asymptotic behaviour of the probabilities considered (which is
rarely the case in this field, as the exact formulae are in most cases too compli-
cated). On the other hand in [10] the emphasis is on exact formulae resp.
on generating functions. The only exception is the average number of connected
components, for the asymptotic evaluation of which a way is indicated in
§ 5. of [10]; this question is however more fully discussed in the present paper
and our results go beyond that of [10]. Moreover, we consider not only the
number but also the character of the components. Thus for instance we

point out the remarkable change occuring at N m% N ~ne with ¢ < 1/2

then with probability tending to 1 for n — -+ oo all points except a hounded
number of points of I', y belong to components which are trees, while for

N ~mne¢ with ¢ > l) this is no longer the case. Further for a fixed value of

n the average number of components of I', ; decreases asymptotically in a

s i n i n . B
linear manner with N, when ¥ < 3’ while for N > ~— the formula giving

the average number of components is not linear in N.

In what follows we shall make use of the sysmbols O and 0. As usually
a(n) = o (b(n)) (where b(n) > 0 for » =1, 2, ...) means that lim %’?I =0,
A+« T

while a(rn) = 0 (b(n)) means that !—;:'((—n;—' is bounded. The parameters on
n

which the bound of l;ﬁ))—i may depend will be indicated if it is necessary;
n
sometimes we will indicate it by an index. Thus a(r) = O, (b(n)) means that

la(m)| < K(e) where K(e) is a positive constant depending on e. We write

b(n)
a(n) ~ b(n) to denote that lim .ot R L
n-+= b(n)

We shall use the following definitions from the theory of graphs. (For
the general theory see [3] and [4].)

A finite non-empty set V of labelled points P;, P, ..., P, and a set
E of different unordered pairs (P, P) with P, ¢V, P,eV, i=s£j is called
a graph; we denote it sometimes by G ={V, E}; the number = is called
the order (or size) of the graph; the points Py, P,, ..., P, are called the vertices
and the pairs (P, P} the edges of the graph. Thus we consider non-oriented
finite graphs without parallel edges and without slings. The set E may be empty,
thus a collection of points (especially a single point) is also a graph.

A graph G, ={V,, E;}is called a subgraph of a graph G, ={V,, £}
if the set of vertices V, of G, is a subset of the set of vertices V', of G, and the
set B, of edges of G, is a subset of the set E,; of edges of G,.
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A sequence of k edges of a graph such that every two consecutive edges
and only these have a vertex in common is called a path of order k.

A cyclic sequence of k edges of a graph such that every two
consecutive edges and only these have a common vertex is called a cycle of
order k.

A graph G is called connected if any two of its points belong to a path
which is a subgraph of G.

A graph is called a tree of order (or size) k if it has £ vertices, is connected
and if none of its subgraphs is a cycle. A tree of order £ has evidently & — 1
edges.

k
:
by an edge.

A subgraph @’ of a graph G will be called an dsolated subgraph if all
edges of G one or both endpoints of which belong to &', belong to G'. A con-
nected isolated subgraph G’ of a graph G is called a component of G. The
number of points belonging to a component ' of a graph G will be called the
size of G'.

Two graphs shall be called #somorphic, if there exists a one-to-one mapp-
ing of the vertices carrying over these graphs into another.

The graph G shall be called complementary graph of G if G consists
of the same vertices P, P,, ..., P, as G and of those and only those edges
(P, P;) which do not oceur in G.

The number of edges starting from the point P of a graph G will be called
the degree of P in G.

A graph G is called a saturated even graph of type (a, b) if it consists of
a -+ b points and its points can be split in two subsets V; and V, consisting
of a resp. b points, such that G contains any edge (P, @) with P €V, and
@ € V, and no other edge.

A graph is called planar, if it can be drawn on the plane so that no two
of its edges intersect.

We introduce further the following definitions: If a graph @ has n

]if it has £ vertices and

2

A graph is called a complete graph of order {k

edges. Thus in a complete graph of order k any two points are connected

vertices and N edges, we call the number L the “degree”” of the graph.
n

(As a matter of fact 2l is the average degree of the vertices of () If a graph

T

G has the property that G has no subgraph having a larger degree than G
itself, we call G a balanced graph.

We denote by P (...) the probability of the event in the brackets, by
M(&) resp. D2(&) the mean value resp. variance of the random variable &.
In cases when it is not clear from the context in which probability space the
probabilities or respectively the mean values and variances are to be under-
stood, this will be explicitly indicated. Especially M,y resp. D will denote
the mean value resp. variance calculated with respect to the probabilities
P,
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We shall often use the following elementary asymptotic formula:

K2 k2
(n) nfe 2 o
ﬁt] k!

Our thanks are due to T. Garrar for his valuable remarks.

valid for & = o(n'ly).

(7)

§ 1. Thresholds for subgraphs of given type

It N is very small compared with n, namely if N =o (J/n) then it is
very probable that I', y is a collection of isolated points and isolated edges,
i. e. that no two edges of I', ;, have a point in common. As a matter of fact
the probability that at least two edges of Iy, shall have a point in common
isby (7) clearly

n
2Nt
S A &

T
2NN!( 2 ]
N

If however N ~ ¢ |/n where ¢ > 0 is a constant not depending on 7, then the
appearance of trees of order 3 will have a probability which tends to a posi-
tive limit for n — 4~ oo, but the appearance of a connected component consist-
ing of more than 3 points will be still very improbable. If ¥ is increased while n
is fixed, the situation will change only if N reaches the order of magnitude
of n%2. Then trees of order 4 (but not of higher order) will appear with a pro-
bability not tending to 0. In general, the threshold function for the presence
k=2

| n

of trees of order kis nk—1 (k =3, 4, ...). This result is contained in the
following

Theorem 1. Let bk = 2 and I [k —1l<l< ‘i“ be positive integers. Let

By, denote an arbitrary not empty class of connected balanced graphs consisting
of k points and | edges. The threshold function for the property that the random

graph considered should contain at least one subgraph isomorphic with some ele-
k

ment of &, 1S T,
The following special cases are worth mentioning

Corollary 1. The threshold function for the property that the random graph
k-2
contains a subgraph which is a tree of order k is n*'(k =3, 4, ...).

Corollary 2. The threshold function for the property that a graph contains
a connected subgraph consisting of k = 3 points and k edges (i. e. containing
exactly one cyele) is n, for each value of k.

Corollary 3. The threshold function for the property that a graph contains
a cycle of order k is m, for each value of k = 3.
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Corollary 4. The threshold function for the property that a graph contains

1

a complete subgraph of order k = 3 is an(l i) .

Corollary 5. The threshold function for the property that a graph contains
a saturated even subgraph of type (a, b) (i. e. a subgraph consisting of a 4 b

atb

points Py, ..., P, @, ... @, and of the ab edges (P}, ) is n @,

To deduce these Corollaries one has only to verify that all 5 types of
graphs figuring in Corollaries 1—5. are balanced, which is easily seen.

Proof of Theorem 1. Let B, , = 1 denote the number of graphs belong-
ing to the class .%,; which can be formed from % given labelled points. Clearly
if P,y (%) denotes the probability that the random graph I’y contains
at least one subgraph isomorphic with some element of the class %, then

(1.1) P, ~n(%y) =

different

N
Bﬁ',l ‘—‘-‘T'— =0(;‘;’2-1—-;] .
l’n

As a matter of fact if we select k& points (which can be done in 5

ways) and form from them a graph isomorphic with some element of the class
B, (which can be done in B, different ways) then the number of graphs
G,~ which contain the selected graph as a subgraph is equal to the number

of ways the remaining N — [ edges can be selected from the (;] — 1 other

possible edges. (Of course those graphs, which contain more subgraphs iso-
morphic with some element of %, , are counted more than once.)

Now clearly if N = o(nzn_‘-) then by
P n(H, ) = o(1)

which proves the first part of the assertion of Theorem 1. To prove the second
part of the theorem let #) denote the set of all subgraphs of the complete
graph consisting of n# points, isomorphic with some element of %, ;. To any
S let us associate a random variable &(8) such that &(8)=1 or &(8)=0
according to whether § is a subgraph of I,y or not. Then clearly (we write
in what follows for the sake of brevity M instead of M, )

inh
s
(1.2) M(Z‘ a(S)] ~ S MEs) - n] 5 YU By N

k n k1 ni—k
Ses{™ sesy) ' (tg ]
-

—1
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On the other hand if §; and &8, are two elements of &% and if 8; and
8, do not contain a common ed,ge then
2
N—21

i

If 8, and 8, contain exactly s common points and 7 common edges (1<r<{—1)
we have

M(‘—'(Sl) 3(83)) =

i ;

— 21
N—-2l+r]
- ==

&
¥,

On the other hand the intersection of S; and S, being a subgraph of 8, (and 8,)

by our supposition that each § is balanced, we obtain & < 7 ie. s 2%

8
and thus the number of such pairs of subgraphs 8, and S, does not exceed

w3 Bk

(3 o)~

séa)

Nzl—r‘
n-ﬂ—:.’.rJ :

M(s('gl) S(Ss)) =

Thus we obtain

(1.3)

é =g
) *
_ 2 M(S(S))+k!2(;~:%!_33;k)! N;]T+O( N ]23‘[#—; '].
3
N'#)

seafs)
('; - 21._)
n! — 21

k12(n — 2k)! (l ]) l ])

Now clearly

7
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If we suppose that
i-\.-'

— ) =W — o,

it follows that we have

(> M
(1.4) D > #(8)) =0 SE‘%—).

SElﬁ(") £}

1t follows by the inequality of Chebysheff that

. 1 | 18
Po( |2 e®) — 3 ME®) > X M) =0 !_]
Seéﬁ(") SE‘ﬁ(ﬁ} = se,ﬁs(;z} ) L@
and thus
(1.5) P [ 2 ezt 3 M ] 0[
sesl) 2 seall @,

As clearly by (L1.2) if o — + oo then 3 M(&(8))— + o= it follows not only
ses)

that the probability that I' , contains at least one subgraph isomorphic

with an element of .8, tends to 1, but also that with probability tending

to 1 the number of subgraphs of F ~ isomorphic to some element of &£, ,

will tend to 4-co with the same order of magnitude as o'

Thus Theorem 1 is proved.

It is interesting to compare the thresholds for the appearance of a sub-
graph of a certain type in the above sense with probability near to 1, with
the number of edges which is needed in order that the graph should have
necessarily a subgraph of the given type. Such “compulsory” thresholds
have been considered by P. TurAn [11] (see also [12]) and later by P. Erpés
and A. H. Stoxu [17]). For instance for a tree of order k clearly the compulsory
threshold is ?l(_?ﬁ;_QJ - 1; for the presence of at least one cycle the com-
pulsory threshold is » while according to a theorem of P. TuriAn [11] for

r— 2
complete subgraphs of order & the compulsory threshold is =2 (n? — 2 4

+ 'Z where r =n — (k— 1) }:_n_l . In the paper [13] of T. Kd&vigr,

V. T. S6s and P. TurAx it has been shown that the compulsory threshold

for the presence of a saturated even subgraph of type (a, a) is of order of magni-
1

tude not greater than n° @, In all cases the “compulsory” thresholds in
TUrRAN’s sense are of greater order of magnitude as our “probable’ thresholds.



OX THE EVOLUTION OF RANDOM GRAPHS 27

§ 2. Trees

Now let us turn to the determination of threshold distribution funections

for trees of a given order. We shall prove somewhat more, namely that if
k=2

N ~pn¥~! where o > 0, then the number of trees of order x contained

in I, has in the limit for n — 4- c© a Poisson distribution with mean value

(7 Jk=1 k-2
. This implies that the threshold distribution function for

trees of order & is 1 — ¢~

In proving this we shall count only ésolated trees of order k in I', y, i. e.
trees of order k which are isolated subgraphs of I, y. According to Theorem 1.
this makes no essential difference, because if there would be a tree of order
% which is a subgraph but not an isolated subgraph of I, v, then I, \ would
have a connected subgraph consisting of £ 4 1 points and the pmbablllt}

k-1
of this is tending to 0 if N =0 (n k) which condition is fulfilled in our
k—2
case as we suppose N ~ pnk—1.
Thus we prove
N(n)

Theorem 2a. /f lim — — = p>0 and 1, denoles the number of isolated
n——w ‘nk
trees of order k in I, n, then

Ae—?
(21) lim Pn.N(n)(rJ‘.‘:?.) - .
N tm 7!
or §=0,1, ..., where
9 k=1 1k —2
2.2) PRI
k!

For the proof we need the following
Lemma 1. Let ¢,,. €,,,..., €, be sets of random variables on some pro-
bability space; suppose that £,(1 < 7 < 1) takes on only the values 1 and 0. If

(2.3) lim = Ml e senemli—2
Mot o 1Sh <l <., <=, E 7!
uniformly in r for r =1, 2, ..., where A > 0 and the summation is extended
over all combinations (iy, iy, ..., i,) of order r of the integers 1, 2, ..., l,, then
lim P S A 0,1
(2.4) Jim P 3o, = ?} — (=01,...)

IFB
i. e. the distribution of the sum X', tends for n—+ oo fo the Poisson-distri-
i=1

bution with mean value A.
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Proof of Lemma 1. Let us put

e
@3 Py =P [Sen =]
P
Clearly
(2.6 = M(e,, i+ - - Eniy |2,
) I<i < T <ir <l (€ i gi | i
thus it follows from (2.3) that
(2.7) h:m 2Pn(g l ] = (r=L12...)
e j-r

uniformly in r.
It tollows that for &ny z with | 2] <1

. < o Az)r "
(2.8) n_l.lflx f\l ” =& —1.
But
£ + o
(2.9) )z’:: SPH A+ 1.
r=1 \j=r j=0

Thus choosing z =2 — 1 with 0 < 2 < 1 it follows that

—_—

(2.10) lim X P,(j) af = eix-1) for 0<x< 1.

N =0
It follows easily that (2.10) holds for # =0 too. As a matter of fact
o ,
putting G,(z) = 3 P.(j) 2/, we have for 0 <2< 1
j=o
|Po0) ~ 64 < | Gyle) — €=D] + [ G,@) — P,(0)| + | =D — e].
As however
G, (@) —P0)| s 2 ZP) < =

J=1
and similarly

[et=1) —e~4| <
it follows that
[P0} —e— | < |G ) — ™1 | + 2.
Thus we have
lim sup |P,(0) —e?| < 2x;

A=
as however 2 > 0 may be chosen arbitrarily small it follows that

lim P, (0) =e~?
AR
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i, e. that (2.10) holds for 2 =0 too. It follows by a well-known argument
that

Aig—t ;
(2.11) lim P,(jj = —— {F=0.1s.0)s

n-—++4 o }!

As a matter of fact, as (2.10) is valid for z =0, (2.11) holds for j = 0. If
(2.11) is already proved for j < s —1 then it follows from (2.10) that

+= 1 ..‘e—’-

(2.12) lim Z‘P () xi— 3—-2

n—-.—mj 5 j=5

pi—s for 0<a< 1.

By the same argument as used in connection with (2.10) we obtain that
(2.12) holds for = 0 too. Substituting z = 0 into (2.12) we obtain that (2.11)
holds for § = s too. Thus (2.11) is proved by induction and the assertion of
Lemma 1 follows.

Proof of Theorem 2a. Let T¢ denote the set of all trees of order & which
are subgraphs of the complete graph having the vertices Py, P,, ..., P,.
If S¢T{M let the random variable &(8) be equal to 1if § is an Zsolated subgraph
of I', ; otherwise &(S) shall be equal to 0. We shall show that the conditions
of Lemma 1 are satisfied for the sum ' &(8) provided that N= N(n) ~

ser{™
k-2

~ pn*=1 and A is defined by (2.2). As a matter of fact we have for any
SeTim

F (n—Ek

[ "2 )

N—k+1 g Nk—1 2Nk
2.13) M(e(8)) = =T~ = ‘ = ] e (

)
N

More generally if S, S,, . 8, (S;€ T{) have pairwise no point in common

then clearly we have for each flxed k=1 and r = 1 provided that n—--oo,
N—>+too

n —rk
( - )
y — r(& —1)
where the bound of the O term depends only on k. If however the 8; (j =

=1,2,..., r) are not pairwise disjoint, we have

(2.14) M(e(8)) &(S,). . .&(8,) = [«)Ar

n2

(k—1yr _ 2Nrk{ 277
e n (1—%0[&”
nd

(2.15) M(e(S,) &(8,) - . - £(S,)) =0.
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Taking into account that according to a classical formula of Cavrey [1]
the number of different trees which can be formed from k labelled points is
equal to k%2, it follows that

Y T B e ] Tork—1 _ 2Nrk | 2;
(2.16)  S'M(e(S)) &(Sy) ... &(8,) = -;?-— ”'_ 2y e (1+0‘%)
n

?‘T n?

where the summation onthe left hand side is extended over all r-tuples of
trees belonging to the set 7% and the bound of the O-term depends only on k.
Note that (2.16) is valid independently of how N is tending to -}oo. This
will be needed in the proof of Theorem 3.

Thus we have, uniformly in r

(2.17) Nl(fff‘ ' M(e(8,) (S,) a(S,J)— il for r=1,2,...

k=3
nk—l

where 4 is defined by (2.2).

Thus our Lemma 1 can he applied; as 7, = 3 &(S) Theorem 2 is
proved. ser{M

We add some remarks on the formula, resulting from (2.16) for r =1

l2 N -—-J k=2
72 | N
2.18 M(t,) = — —_— 14+ 0 —
(2.18) Sy Kl ["’ ln_,
pk—2 gh—1 g—kt
Let us investigate the functions m(f) =—T- =1, 2,...). Accord-

ing to (2.18) nm, l 2 is asymptotically equal to the average number of trees of
n

order kin I', . For a fixed value of %, considered as a function of #, the value

—1 and decreases for ¢ > L—Z—I : thus for a fixed

of m,(t) increases for ¢ < -

value of n the average number of trees of order % reaches its maximum for

N NE(I——I); ; the value of this maximum is
2
[1 — lr—l g—(k—1) Lk—2
_ k|
ME~ 7l .
For large values of k we have evidently
7
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It is easy to see that for any ¢t > 0 we have
my(t) = my (1) k=12...).

The functions y = m,(f) are shown on Fig. 1.
It is natural to ask what will happen with the number 7, of isolated

trees of order % contained in I, y if A El—-» + o=, As the Poisson distribution

nh—1
(A e
7!
that 7, will be approximately normally distributed. This is in fact true, and
is expressed by

| is approaching the normal distribution if 2 — + oo, one can guess

!
15y k*"{.?ce"")*
Y=xlc)= P S
9 A
Z
Figure la.
!
e
|
|
1
|
|
|
|
i
1)
1
! }
0 x(c) ! 2¢

Figure 1b.
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Theorem 2b.

(2.19) B0 s s

k=1

but at the same time

1 E—1
Nn) — —nlogn — n loglog n
(m) 7 g 5k glog

(2.20) im —MM————— —— — o,
Rt n
then denoting by t, the number of disjoint trees of order k contained as subgraphs
in Iy ey (B =1, 2, ...), we have for — oo < < + o
(2.21) lim P, M,,,[ — Mne x} =@ (z)
forfiom \ V*‘fn,h(n)

where

k-2 k—1 _ZN
(2.22) . N, 35} ¢ n

k! 7
and
(2.23) D(x) = 2t xe“ %ldu

‘ V2 J '

—

Proof of Theorem 2b. Note first that the two conditions (2.19) and
(2.20) are equivalent to the single condition hm M,, Ney= + ©°, and as

M (v,) ~ M, this means that the assertion of Theorem 2b can be expressed
by saying that the number of isolated trees of order % is asymptotically nor-
mally distributed always if » and N tend to <o so, that the average number
of such trees is also tending to J-oo. Let us consider

M(z}) = M(( Z 8)))-

ser{"
Now we have evidently, using (2.16)
2N & 7! M}
Plt)-— 1%_0( ) j;' mi
s ( ))&l = hylhy! ... BY) g
_‘-:k;=r, Bt

where M, y is defined by (2.22). Now as well known (see [16], p. 176)

1 7l

2.24 — —
A8 j!,z hylhy! ... Ay

(_-};hi-r, Bzl

= o)
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where o are the Stirling numbers of the second kind (see e. g. [16], p. 168)
defined by

(2.25) o= SeDa@—1)...(x—j+1).
=1

Thus we obtain !

(2.26) M(}) — (1 + o[ ] Zom M.

Now as well known (see e. g. [16] P- 202)

(2.27) SV ) _
= l r= r=I
Thus it follows that .
= 1k
(2.28) 20(1321 [— i G U] = +>' A— e~k
dx’ x=0 f=ok!

We obtain t-herefrom

- ({7, — M, 7 1 == Mk, rPN
2.29 M|[|£ N = N BN oMy (f — y 11+L0 ]
s ( VM, n ) (M;’m-a TR s s

t= gk
Now ev1dent]y2 e~*(k— 2)" is the r-th central moment of the Poisson
distribution mth mean value A. It can be however easily verified that the
moments of the Poisson distribution appropriately normalized tend to the
corresponding moments of the normal distribution, i. e. we have forr =1, 2,...
+ o

o gka=1 =2
(2.30) lim ']? 2_"1 - (k— A)" =—1—_- [mre 2dx.
it Aé k=1 k! V2 =

—_

In view of (2.29) this implies the assertion of Theorem 2b.
In the case N (n) =i nlogn + k_z_k—l n loglog n + yn + o(n) when

the average number of isolated trees of order £ in I, y(,) is again finite, the
following theorem is valid.

Theorem 2c. Let t, denote the number of isolated trees of order k in I, y
k=1,2, ...). Then if

(2.31) Nin) = ;—knlog n-}-l klnloglogn + yn -+ o(n)
where —o° < y < + oo, we have
Me? :
(2.32) Jm P (=) = G=0,1,...)
where
(2.33) P
' T

3 A Matematikai Kutato Intézet Kozleményei V, Af1-2,
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Proof of Theorem Z2e. It is easily seen that under the conditions of Theo.
rem 2¢
lim My (7) = 2.
Similarly from (2.16) it follows that for r =1, 2, .
j".'
lim 3 M,ne(eS,) e(Sy) - .. &(8)) = =
" ser(® r

and the proof of Theorem 2¢ is completed by the use of our Lemma 1 exactly
as in the proof of Theorem 2a.

Note that Theorem 2c generalizes the results of the paper [7], where
only the case &k =1 is considered.

§ 3. Cycles

Let us consider now the threshold function of eycles of a given order,
The situation is described by the following
Theorem 3a. Suppose that

(8.1) N(n) ~cn where ¢ > 0,

Let v, denote the number of cycles of order k contained in I',  (k=3, 4, ...).
Then we have

Adg—2

(3.2) im Py (7 =) = ?! (G=0,1,...)
where
(3.3) -
2k
Thus the threshold distribution corresponding to the threshold function 1A(n) =
@t

Jor the property that the graph contains a cycle of order k is 1 —e %
It is interesting to compare Theorem 3a with the following two theorems:

Theorem 3b. Suppose again that (3 1) holds. Let y§ denote the number of
isolated cycles of order k contained in I', \ (k =3, 4, ...). Then we have

jg—a .
(3.4) im PG mﬁﬂ_’”?i (=0,1,...)
where
3.5) _(2¢c g2y
2k

Remark. Note that according to Theorem 3b for isolated cycles there

does not exist a threshold in the ordinary sense, as 1 — e~# reaches its maxi-
1

mum 1 — e 2% for ¢ =% i. e. for N(n) m% and then again decreases;
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thus the probability that I' , contains an isolated cycle of order k never

approaches 1.
Theorem 3e¢. Lel 6, denote the number of components of I, \ consisting
of k = 3 points and k edges. If (3.1) holds then we have

wle—

(36} niln_n P_n-N(n) (5& — ?) = ?‘I (1= 0,1, )
where
(2 ¢ e~ )" [ ., k2 je—3
3.7 w=-" 14+kF+—+ ... + ;
@7 2k TP = 3)!)

Proof of Theorems 3a., 3h. and 3c. As from % given points one can form

1 (k— 1) I cycles of order & we have evidently for fixed & and for N= O(n)
2

(.
’2' _L) 21\*)*
\ N —k { n |

1 n
(3.8) M(y,) = 5 |kl (k 1) ) "-’W
&)
N
while
n—k
) py
(3.9) Moh=- ["“' L T a9 l_” ]
' 2tk

As regards Theorem 3¢ it is known (see [10] and [15]) that the number
of connected graphs G, (i. e. the number of connected graphs consisting
of k labelled vertices and & edges) is exactly

1 k2 k=3
3.10 O, =—(k—D1+E4+—+ ... ‘
(3.10) - )|‘+ o T(k_g)!]
Now we have clearly

ijn—k

| ] (ﬂe—?*‘

n N~k n 2 Jok—3

(3.11) M(3,) = k]@,{. i ke -{1 FEA T e (k_—@]

i

I

3=
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For large values of & we have (see [15])

(3.12) 0, ~ V% k=
and thus
BN fa 2
g n
(3.13) M@ )N_"__]_
‘ § 4k

For N wi;- we obtain by some elementary computation using (7) that

for large values of % (such that & = o (%4).

3.14) MG~
(3.14) (04) Y

Using (3.8), (3.9) and (3.11) the proofs of Theorems 3a, 3b and 3¢ follow
the same lines as that of Theorem 2a, using Lemma 1. The details may be
left to the reader.

Similar results can be proved for other types of subgraphs, e. g. complete
subgraphs of a given order. As however these results and their proofs have
the same pattern as those given above we do not dwell on the subject any
longer and pass to investigate global properties of the random graph I, \ .

§ 4. The total number of points belonging to trees

We begin by proving

Theorem 4a. If N =o(n) the graph I, \ is, with probability tending to
1 for n— oo, the union of disjoini trees.

Proof of Theorem 4a. A graph consists of disjoint trees if and only if
there are no eycles in the graph. The number of graphs G, , which contain
at least one cycle can be enumerated as was shown in § 1 for each value %
of the length of this cycle. In this way, denoting by T the property that the
graph is a union of disjoint trees, and by T the opposite of this property,
i. e. that the graph contains at least one cycle, we have

5

N—F, =O‘f’\_f"

%)

i £

. AT < "nﬁn k1! .
@.1) P ‘T’Eg(k]‘ 1) :

It follows that if ¥ = o(n) we have lim P, y(7') =1 which proves Theorem 4a.

If N is of the same order ot"};xggnitude as n 1. e, N ~e¢n with ¢ > 0,
then the assertion of Theorem 4a is no longer true. Nevertheless if ¢ < 1/2,
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still almost all points (in fact » —O(1) points) of I  belong to isolated
trees. There is however a surprisingly abrupt change in'the structure of N

with N ~ ¢n when ¢ surpasses the value é If ¢>1/2 in the average only a

positive fraction of all points of I', 5 helong to isolated trees, and the value
of this fraction tends to 0 for ¢ — + oo.
Thus we shall prove

Theorem 4b. Let V,, \ denote the number of those points of I, \ which
belong to an isolated tree contained in T, . Let us suppose that
N(n)

(4.2) =¢>0.

Then we have

for e< 1/2

n—-—-=x T

)
( 4‘3] Il m n ’\l(ﬂ) ( 1
l —L  for ¢>—
2
where ¥ = x(c) is the only root satisfying 0 < @ < 1 of the equation
(4.4) Te—X=2ce-%,
which can also be obtained as the sum of a series as follows:

[ J. 1

(4.5) z(c) 2—(?ce—2c)"

Proof of Theorem 4b. We shall need the well known fact that the inverse
function of the function

(4.6) y=we* O<z<1)
has the power series expansion, convergent for 0 < y < 1
e
o Lk—lyk
(4.7) PR )i
=1 k!

Let 7, denote the number of isolated trees of order & contained in I, 5. Then
clearly '

n
(4.8) Vo= Yhv
k=1
and thus
n
(4.9) MV .n) = S EM(zy) .
k=1

By (2.18), if (4.2) holds, we have

1 Ek=2
(4.10) lim — M(‘r,l) = —— (2ce~%)k,
2¢ kI

4= 1N
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Thus we obtain from (4.10) that for ¢ < 1/2

L ) 1 5 E-1(2ce-Z)k
4.11 lim inf "~ N0V o Z 77 MOF U for any s> 1.
( ) netw n = 2c£ k! ¥
As (4.11) holds for any s = 1 we obtain
= —-1 —2eyk
(4.12) i T i) 5 L. S B@RTTT
n—s b n .?c;?:i k!

But according to (4.7) for ¢ < 1/2 we have
o kk—f(zce—ﬂc)k
=t k!

Thus it follows from (4.12) that for ¢ < 1/2

=2,

/4
(4.13) lim inf MY nne) > 1.

n-—w= 7

As however V, yi»y < m and thus lim sup LV ) < 1 it follows that

n—~—e n
if (4.2) holds and ¢ < 1/2 we have
(4.14) tim M nve) _
n—to n
Now let us consider the case ¢ > % It follows from (2.18) that if (4.2)

holds with ¢ > 1/2 we obtain

n2 n o k—-109 AT(H-) 2N(n)
4.15 MV —_— e
(4.15) (V nnte) oN = B [

where the bound of the term O(1) depends only on ¢. As however for N(n) ~
~mne¢ with ¢ > 1/2

] +oq)

n

‘{.: et 21\*{?1)8—21\?(1;)]*:0( 1]
x=ne1 k! n - n'ls
it follows that
2 (N(n)
4.16 M o 01
(4.16) V ) = N”(n]+(1
N(n)

is the only solution with 0 < # < 1 of the equation

where z =2 ‘

n
2N(m) —20

ze*= n . Thus it follows that if (4.2) holds with ¢ > 12
n

we have

(4'17) lim M(VH.N(M)) :ic)

L n 2¢
where 2(c) is defined by (4.5).
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The graph of the function #(c) is shown on Fig. 1a; its meaning is shown
by Fig. 1b. The function

I 1 for e < 1/2
= I(C)
% for ¢ > 1[2

is shown on Fig. 2a.

!
/ rorcs’/z
Y= 2 4
2c fore>72
0 1
?
Figure 2a.
J
o . XE
y=6lc) !3{:_!
0 1
é

Figure 2b.
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Thus the proof of Theorem 4b is complete. Let us remark that in the
same way as we obtained (4.16) we get that if (4.2) holds with ¢< 1/2 we have

(4.18) MV, no) =1 —O(1)

where the bound of the O(1) term depends only on ¢. (However (4.18) is not.
true for ¢ ZT;‘ as will be shown below.)

It follows by the well known inequality of Markov

(4.19) P& >a) < iM(é)

valid for any nonnegative random variable & and any a > M(£), that the
following theorem holds:

Theorem 4e. Let V, , denote the number of those points of I', \ which
belong to isolated trees confamecf in I'y . Then if w, tends arbetrardy slowly
to +° for n— +-oc and if (4.2) holds with ¢ < 1/2 we have

(4.20) hm PV, nnzn—o,)=1.

i

The case ¢ > 1/2 is somewhat more involved. We prove

Theorem 4d. Let V,~ denote the number of those points of I', n which
belong to an isolated tree contained in I, . Let us suppose that (4.2) holds with
c>1/2. It follows that 2}‘ w, tends arbe!ram‘y slowly to +o=, we have

2 A in ) -2
(4.21) lim P ZVH,N(N) O ¥(n) >|nw,|=0
N _ 2 N(n)
Nn)| : ; :
where © = x[ ) is the only solution with 0 < & < 1 of the equation
n |
2N(n) = mﬂ)
Te—r —
n

. v Sk ;
Proof. We have clearly, as the series E‘E(Q ce— %)k is convergent,
Fim] s

D2 (V, ) = O(n). Thus (4.21) follows by the inequality of Chebyshew.

Remark. It follows from (4.21) that we have for any ¢>1/2 and any
g
(4.22) lim P VoG _ 2
L . n 26:

E{ =1

where x(c) is defined by (4.5).
As regards the case ¢ =1/, we formulate the theorem which will be
needed latter.
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Theorem 4de. Let V,, y(r) denote the number of those points of I, , which
belong to isolated trees of order =z r andz, \(r) the number of isolated trees of

. . % n
order = r contained in I', . If N(n) o X6 have for any 6 > o

s +a Lk—1 |
(4.23) lim P [|Vnven) _SE )
n—-+e T R=l’ k! |
and
G k=2
(4.24) lim P[ ) _ SR <a]=1.
=i i::r

The proof follows the same lines as those of the preceding theorems.

§ 5. The total number of points belonging to cycles
Let us determine first the average number of all cycles in I, 5. We
prove that this number remains bounded if ¥(n) ~c¢n and ¢ < 1, but not

if o=
Theorem 5a. Let H,  denote the number of all cycles contained in I, .

Then we have if N(n) ~ en holds with ¢ < 2
2

. : 1
5.1 lim M(H, i) = 10 PR S|
.1 n— e i 2 gl 2¢

while we have for ¢ =l
2

; 1
(5.2) M(HnrN(n)) =2 I l(}gn

Proof. Clearly if y, is the number of all cycles of order % contained in
~ we have

2

,
n
P %)

Hn,N - 2 Yie
LE!

Now (5.1) follows easily, taking into account that (see (3.8))
-
B e
— f 2|
kel o SR LY SO iJ :
( n ) 2k n
N

(5.3) M(y,) = %[kj (k — 1!

2
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If ¢ =1/, we have by (3.8)
3

T =K
5.4 M(y,)~—e 2.
(5.4) V) 5k
] =48
As ) Zke o —log n, it follows that (5.2) holds. Thus Theorem 5a
k-=3

is proved.

Let us remark that it follows from (5.2) that (4.18) is not true for ¢ = 1/,.

Similarly as before we can prove corresponding results concerning
the random variable H, \ itself.

We have for instance in the case ¢ =1/, for any £ > 0

|
(3.5) lim P | Hunt _ 1'<s =1.

n-+o | logn 4|

This can be proved by the same method as used above: estimating the variance
and using the inequality of Chebyshev.

An other related result, throwing more light on the appearance of cycles
in I', 5 runs as follows,

Theorem 5h. Let K denote the property thatagraph contains at least one
cycle. Then we have if N(n) ~ ne holds with ¢ < Y/,

(5.6} lim P, aoy(BK) =1 — Y1 —2cecte.

P

Thus for ¢ —_-% it is ,,almost sure” that U, n(,, contains at least one cycle, while

for ¢ < %ﬂze limit for n— + oo of the probability of this is less than 1.
Proof. Let us suppose first ¢ < —;‘. By an obvious sieve (taking into

account that accor, dlng to Theorem 1 the probability that there will bein I', v,
with N(n) ~ ne (¢ < /5) two circles having a point in common is negligibly
small) we obtain

— lim M{Hu x) -
(5.7) lim P,y )(K) =¢ n+= =1 —2ce+,
e
Thus (5.6) follows for ¢ < 1,. As for ¢ — 1/, the function on the right of (5.6)
tends to 1, it follows that (5.6) holds for ¢ =1/, too. The function y =
=1— Vl — 2¢ et ig shown on Fig. 3.
We prove now the following

Theorem 5c. Let H¥ y denote the total number of points of I', \ whichk
belong to some cycle. Then we have for N = N(n) ~cen with 0 < ¢ < 1,

4c3
(5'8) 1111'1 M(Hn,N(n)) = 1

-+t = —2¢c
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i V,_zc'_e.cfcz

——

-

0 —_— 0

LT

Figure 3.

Proof of Theorem 5e¢. As according to Theorem 1 the probability that
two cycles should have a point in common is negligibly small, we have by (5.3)

n (2¢)? 4¢3
M(H yop) ~ 3 k7~ = :
M)~ 2 V™ o ~ 120

The size of that part of I', 5 which does not consist of trees is still more
clearly shown by the following

Theorem 5d. Let &, denote the number of those points of I', y which
belong to components containi ng exactly one cycle. Then we have for N = N(n) ~
~cn in case ¢ 1,

kk—s
(k —3)Y)

{5.9) lim M(ﬁn,N(n)) 2%

—~—+ o

“'/a

oL+ b

while for ¢ =1, we have

ab
(5.10) M@,y ~ 95 n¥3

where I'(x) denotes the gamma-function I'(z) = ft"—l e~tdi for z > 0.
4]
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Proof of Theorem 5d. (5.9) follows immediately from (3.11); for ¢=1/2
we have by (3.14)

1wy =8 Fl ’
M(ﬁn..‘\’(n)) TS 2 n A
4=

Remark. Note that for ¢ — 1/,

() ce—zc}k‘ _|_ =t + kk_:! e ___1_
’ (L —3)!) 41 —2¢)

TI\/ 8

.3
2i
Thus the average number of points belonging to components containing
exactly one cycle tends to +oc as —~—— for e—>1f, .
41 — 2¢)®
We now prove

Theorem 3e. For N(n) ~cn with 0 < ¢ <, all components of I,
are with probability tending to 1 for n — --oo, either trees or components contain-
ing exactly one cycle.

Proof. Let 3,  denote the number of points of I', \; belonging to com-
ponents which contain more _edges than vertices and the number of vertices

of which is less than |/ log n. We have clearly for N(n) ~cn with ¢ < 1,

&)

1
Pynne = 1):0(—t lfﬁi)‘
n -

M ('Pm!\r‘(n)) =

( |n—£ )
[llogn]x' ] (g) N—k —1) O[n%ngI)'

Thus

On the other hand by Theorem 4¢ the probability that a component con-

sisting of more than |/ log n points should not he a tree tends to 0. Thus the
assertion of Theorem 5e follows.

§ 6. The number of components

Let us turn now to the investigation of the average number of compo-
nents of I', . It will be seen that the above discussion contains a fairly com-
plete solution of this question. We prove the following
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Theorem 6. If {, \ denotes the number of components of I', \ then we have
if N(n) ~cn holds with 0 < ¢ <§

(6.1) M ne) =n —N(n) + O(1)
where the bound of the O-term depends only on c. If N(n) m%we have
(6.2) M(Z,,nm) = 1 — N(n) + Olog n).

1f N(n) ~en holds with ¢ > %we have

o5 im MGaney) _ 1 ( (}_:ﬂg}]
n-to n 2¢ 2

where x = x(c) s the only solution satisfying 0 < & < 1 of the equation xe=™ =
=2¢e7%, i e
= k=1
(6.4) ) = F——(2ea¥)k.
= k!

Proof of Theorem 6. Let us consider first the case ¢ < —; Clearly if we

add a new edge to a graph, then either this edge connects two points belong-
ing to different components, in which case the number of components is
decreased by 1, or it connects two points belonging to the same component
in which case the number of components does not change but at least one
new cycle is created. Thus?

(6.5) Con—(n—N)< H, 5

where H,  is the total number of cycles in I', . Thus by Theorem 3a it
follows that (6.1) holds.
Similarly (6.2) follows also from Theorem 5a. Now we consider the case

& —
2
It is easy to see that for 0 < y < -16—\\‘9 have (see e. g. [14])
Lo LE-2 .k 2
(6.6) N
ﬁ:' k! 2
where
4w k-1 gk
(6.7) o i
k=;l :{'!

2 In fact according to a well known theorem of the theory of graphs (see [4], p. 29)
bemg a genemlizatlon of Euler's theorem on polyhedra we have N —n 4 [ony =
= upn, where xp Ny — the ,eyclomatic number” of the graph I'ny — is equal to
the maximal number of independent cyeles, in I'nny (For a definition of independent
cycles see [4] p. 28).
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2 can be characterized also as the only solution satisfying 0 < z < 1 of the
equation xe ¥ = y.
It ftollows that it N(r) ~ ne¢ holds with ¢ <~ 1/, we have

nt (2N 4N%n)

. 4+ 0(1) =n — N(n) + 0(1
2Nmn) | =n 2 nt { ! bl B

(68) M(in,N(rr)} ==

which leads to a second proof of the first part of Theorem 6.
To prove the second part, let us remark first that the number of compo-

nents of order greater than A is clearly < % Thus if 7, y(4) denotes the

number of components of order < A of I, y we have clearly

2
A"

The average number of components of fixed order £ which contain

{6'9) M(:n,,-\-') = M(:mN(A)) + O

Iq'-v k
at least £ edges will be clearly according to Theorem 1 of order (-?— , 1. e.
- in

bounded for each fixed value of k. As 4 can he chosen arbitrarily large we
obtain from (6.9) that

h
(6] 0) M{:n..'\.") e }_ Ml:‘l,'_,'_} -
k=1
According to (2.18) it follows that
ng s k2 gN 2Lk

(6.11 M e BT BB ST
3.11) (5nn) SN | n

and thus, according to (6.6) it N(n) ~en holds with ¢ > 1/, we have

(6.12) lim M) =1 rm(c} .
n~—= n 2¢| 2

where a(c) is defined by (6.4). Thus Theorem 6 is completely proved.
Let us add some remarks. Theorem 6 illustrates also the fundamental

change in the structure of I, ,, which takes place if N passes E While the
2
average number of components of I, y (as a function of N with » fixed)

_ - o .. s R
decreases linearly if N < = this is no longer true for N > —2 the average

number of components decreases from this point onward more and more
slowly. The graph of

1—¢ for (}gcg-l-

z 2
(6.13) z(c) = lim MCone) _ ]
N, l 1 2(c)
s = [x(c) A8
2¢ 2

for ¢>1,
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as a function of ¢ is shown by Fig. 4.
From Theorem 6 one can deduce easily that in case N(n) ~ en with
¢ < 1/, we have for any sequence w, tending arbitrarily slowly to infinity

(614) lim P(lcn.N(n) —n—+ iv(ﬂ)l <w,)=1

n—— e

(6.14) follows easily by remarking that clearly £,y = n— N.

4
,-

-cfor 0scs 2

Z=2(c)=

[.l’ff') x(c) for g)‘?"g

0 ! c
7 1
Figure 4.

For the case N(n) ~¢n with ¢ =1/, one obtains by estimating the
variance of £, v, and using the inequality of Chebyshev that for any & > 0

sJ:].

The proof is similar to that of (4.21) and therefore we do not go into details,

(6.15) lim P

§ 7. The size of the greatest tree

If N ~¢n with ¢ < 1/, then as we have seen in § 6 all but a finite num-
ber of points of ', ; belong to components which are trees. Thus in this case
the problem of determmmg the size of the largest component of I',  reduces
to the easier question of determining the greatest tree in 7', y. This question
is answered by the following.

Theorem 7a. Let A, \ denote the number of points of the greatest tree which
is a component of I, . Suppose N = N(n) ~ en with ¢ == 1/,. Let w, be a sequence
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tending arbitrarily slowly to + oo. Then we have

(7.1) lim P (A,,,N(ﬂ) = L 'log n — ilogl(:og n| + con] =0
netwm o 2
and
(7.2) lim P( alNG) = — flogn ——loglogn — ] 1
=+ a 2
where
(7.3) e~% = 2 cel™% (ie. a=2¢c—1—1log2¢
and thus a > 0.)
Proof of Theorem 7a. We have clearly
(7.4) P, = 2 [2 T2 1] = > M@y
k=2 k>z
and thus by (2.18)
(75) P(An.N(n) = Z) =0 [.neﬁ' ] '
i
; 1] 5
It follows that if z, = — |logn — 5 loglog #| + w,
o 2 |
we have
(7.6) P(d, N Z 7)) = Ofe=n).

This proves (7.1). To prove (7.2) we have to estimate the mean and variance

of z, where z, = L] [logn — gloglog nl —w,. We have by (2.18)
o !

a’lz
(7.7) M(zz,) ~ 20V2nm ghen
and
(7.8) D%(z;,) = O(M(z2,)).
Clearly

P(A:x,N(n) = 22) = P(ng = =1 = P(‘l-"zg =0)
and it follows from (7.7) and (7.8) by the inequality of Chebyshev that

(7'9) P(ng =t 0) = O(e““fﬂn) i
Thus we obtain
(7.10) P([dn.N(n) g 22) g 1— O(e—umn) .

Thus (7.2) is also proved.

Remark. If ¢ <% the greatest tree which is a component of I', , with

N ~c¢n is — as mentioned above — at the same time the greatest component
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of I', n, as I',  contains with probability tending to 1 besides trees only com-
ponents containing a single circle and being of moderate size. This follows
evidently from Theorem 4c. As will be seen in what follows (see § 9) for

¢ > éthe situation is completely different, as in this case I', y contains

a very large component (in fact of size G(c)n with G(c) > 0) which is not a
. 1

tree. Note that it we put ¢ =~2—1£log n we have « =%]0g nand — logn~k
! a

in conformity with Theorem 2c.
We can prove also the following

Theorem 7h. If N~ cn, where ¢ < é— and e=® = 2¢e'—%¢ then the number

of isolated trees of order h = L logn — gloglog ﬂ-] + 1 resp. of order = h (where
oL

1 is an arbitrary real number such that h is a positive integer) contained in
T, n has for large n approzimately a Poisson distribution with the mean value
" asieg—al a2 p—al
=——— TESP. = = .
2¢)2x v 2¢)/2a (1 —e )

Corollary. The probability that I, v, with N(n)~ nc where c:{:-;—

does not contain a tree of order = 1 log n ——i)- loglogn| 41 tends to
@ 2

a.’),-"ﬁe—a! '

for n — 400, where o = 2¢ — 1 — log 2e.

exp

2

2¢l2a(l —e9)
The size of the greatest tree which is a component of I,  is fairly large

if N wg. This could be guessed from the fact that the constant factor in the

expression Lt of the ,,probable size”” of the greatest compo-

log n — 2 loglog »
o 2

nent of I, y figuring in Theorem 7a becomes infinitely large if ¢ =%.

For the size of the greatest tree in I, , with N m% the following

result is valid:
Theorem Te. /f N N% and A,y denotes again the number of points

of the greatest tree contained in I', y, we have for any sequence w, tending to
+oo for n— 4o

(1.11) lim P4, = n¥3w,) =0
and !
[ 2/3
(1.12) lim P4,y =2 ) =T
-+ = J wn

4 & Malematikal Kutatd Intézet Kozleményei V. A/1—2.
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Proof of Theorem 7e. We have by some simple computation using (7)

n—k
e-fs L)
k N—k+1/ nkk2e* e_i’»

oo

(7.14) Py zn80)< > Mr)=0 (l_/l:}
wn

(7.13) M(z,) =

Thus it follows that

k=ntPaoy,

which proves (7.11).
On the other hand, considering the mean and variance of =% = Z Tis
n’].

ke=—

W

it follows that
M(7*) = A w32 where 4 > 0 and D*7%) = O(w3?)

and (7.12) follows by using again the inequality of Chebyshev. Thus Theorem
7e¢ is proved.

The following theorem can be proved by developing further the above
argnment and using Lemma 1.

Theorem 7d. Let 1(u) denote the number of trees of order > un®? contained
in [ niy where 0 < p < 40 and N(n) m%. Then we have

: . . Ae—? :
(7.15) lim P, ne(T() =j) = e (G=01,...)
n++ao .

where

1 Fexd

e~ *dx
7.16 A=—— .

( ) V12 n [ 2372

l:
ﬁ'u

§ 8. When is I', 5 a planar graph?

We have seen that the threshold for a subgraph containing % points
k

and k& + d edges isn’ %+ ; thus if N ~cn the probability of the presence
of a subgraph having & pomts and k + d edgesin I',, y tends to 0 for n — oo,

for each particular pair of numbers % = 4, d > I. This however does not
imply that the probability of the presence e of a graph of arbitrary order having
more edges than vertices in I", y with N ~ 7c¢ tends also to 0 for »— 4-oo.

In fact this is not true for ¢ =/, as is shown by the following
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Theorem 8a. Let y, y(d) denote the number of cycles of G, y of arbitrary
order which are such that ewactly d diagonals of the cycle belong also to I, N

Then if N(n) n—]—AVn lf—) where —o0 < 1 < 40, we have

jg—ﬁ :
(8.1) tim (g, nod) =7) = € i ((=01,...)
where
+ o _ e
: = 2d—1 13 1
(8.2) @ ﬁd P jy e dy.

Proof of Theorem 8a. We have clearly as the number of diagonals of a

(k —3)

n| k

o (B1-L2)

(8.3) M(xn,N(d))=2%‘:] (k—l)!( fi );’l’:k~d,
k=4 . ‘

%)

k — gon is equal to

and thus if ¥ (n) =" +;' /n + o()/n)

: i a1 ~n
(8.4) M(%n (@) ~ md (1 Faz ) A
It follows from (8.4) that
3 i
-1 ,¥3 2
(8.5) nllm M(x, v (d))= wTE fyzd le dy .

The proof can be finished by the same method as used in proving Theorem 2a.
Remark. Note that Theorem 8a implies that if N(n) =% +w,Vr

with @, — 4-°° then the probability that I', n(,) contains cycles with any
prescribed number of diagonals tends to 1, while if N(n) = E_ w, Jn

the same probability tends to 0. This shows again the fundamental difference
in the structure of I, y between the cases N < % and N > g This differ-

ence can bhe expressed also in the form of the following

Theorem 8b. Let us suppose that N(n) ~mne. If ¢ < %tke probability

4*
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that the graph Iy, n,y 18 planar is tending to 1 while for ¢ > %ffu’s probability tends

to 0.
Proof of Theorem 8h. As well known trees and connected graphs contain-

ing exactly one cycle are planar. Thus the first part of Theorem 8b follows
from Theorem 5e. On the other hand if a graph contains a cycle with 3 dia-
gonals such that if these diagonals connect the pairs of points (P, P}) (i =
=1, 2, 3) the cyclic order of these points in the cycle is such that each pair
(P, P}) dissects the cycle into two paths which both contain two of the other
points then the graph is not planar. Now it is easy to see that among the
(k —3)

k
( g )triples of 3 diameters of a given cycle of order k there are at least 6]
triples which have the mentioned property and thus for large values of &
approximately one out of 15 choices of the 3 diagonals will have the mentioned

property. It follows that if N(n) =;—i' + o, Jn with @, > 4o, the proba-

bility that I, ¢, is not planar tends to 1 for n — +co. This proves Theorem
8b. We can show that for N(n) =i 4+ 2Yn with any real A the probability

of ', ¢y not being planar has a posfme lower limit, but we cannot calculate
ts value. It may even be I, though this seems unlikely.

§ 9. On the growth of the greatest component

We prove in this § (see Theorem 9b) ‘rhat the size of the greatest com-
ponent of I', ., is for N(n) ~ cn with ¢ > 1/, with probability tending to 1
approximately G(¢)n where
9.1) Gy =129

2¢

and @(c) is defined by (6.4). (The curve y = G(c) is shown on Fig. 2b).
Thus by Theorem 6 for N(n) ~ en with ¢ > 1/, almost all points of
L' newy (1. e. all but o(n) points) belong either to some small component which

is a tree (of size at most 1fa (logn — gloglogn) + O(1) where o= 2¢ —1 —log 2¢

by Theorem 7a) or to the single “giant” component of the size ~G(c)n.
Thus the situation can be summarized as follows: the largest component

( n) N(n)
n

of '), n¢y is of order logn for —— ~ ¢ < 1,, of order 2%* for=———"

I (n
of order » for‘?\f) ~¢ >1,. This double ““jump’ of the size of the largest

component, when A_'?(%n_) passes the value !/, is one of the most striking facts

concerning random graphs. We prove first the following
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Theorem 9a. Let .57, (A) denote the set of those points of I',  which belong
to components of size > A, and let H, n(A) denote the number "of elements of
the set S, n(A). If Ny(n) ~(c — €)n “where e>0, c — & = Y, and N,(n) ~cn
then with probabzhty tending to 1 for n— —}—oo from the H, na(A) points
belonging to .37, ny(A) more than (1 — 6) H, . ( A) points will be contained
in the same component of I', yun for any & with 0 < o < 1 provided that

= o0 ‘
TR
Proof of Theorem 9a. According to Theorem 2b the number of points

belonging to trees of order < 4 is with probability tending to 1 for n — + oo
equal to

(9.2)

A Jh-l
'S [2(e — )1 e X)) +o(n)

k=1

On the other hand, the number of points of I, v, belonging to components
of size <A and Lontammg exactly one cycle is according to Theorem 3e
o(n) for c—e = 1/, (with probability tending to 1), while it is easy to see, that
the number of points of I, vin belonging to components of size <A and
containing more than one cycle is also bounded with probability tending to 1.)

Our last statement follows by using the inequality (4.19) from the fact
that the average number of components of the mentioned type is, as a mmple

ralculation similar to those carried out in previous§§, shows, of 0rderO| ]

Let EY denote the event that
(9.3) | H, il 4) — nf(d, ¢ — &)] < Taf(4, 0 —e)
where 7 > 0 is an arbitrary small positive number which will be chosen later
and
it

(9.4) fld,e) =1 — —2 L (2ee7%) >0

2ie fem=1 -.
and let £® denote the contrary event. It follows from what has been said
that

(9.5) lim P(ED) =0.

R+ =

We consider only such I'nN G for which (9.3) holds.
Now clearly I', yy) 18 obtained from I now by adding Ny(n)— Ny(n) ~ne
new edges at random to I', v ¢y The probabﬂlt} that sueh a new edge should

n Nl(n)(A) ] ‘NZ( n)

connect two points belonging to <%, v, 4), is at least
‘ n

2

and thus by (9.3) is not less than (1 — 27) f2 (4, ¢ — ¢), if » is sufficiently
large and 7 sufficiently small.
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As these edges are chosen independently from each other, it follows
by the law of large numbers that denoting by », the number of those of the
Ny(n) — Ny(n) new edges which connect two points of %, y,.» and by E@
the event that

(9.6) v,ze(l—370)f (4, e—e)n

and by E® the contrary event, we have

(9.7) lim P(E®) =0.

n—+ =
We consider now only such I', v, for which E® takes place. Now let us
consider the subgraph I'} v,y of I', n,,) formed by the points of the set

) A4) and only of those edges of I', y,(,) Which connect two such points.
‘We shall need now the following elementary

r
Lemma 2. Let ay, ay, . .., a, be positive numbers, ¥a;=1. If maxag;< a

j=1 1=j=r
then there can be found a value k(1 £ k < r — 1) such that
: o k
L_Eé "a}.é ! +a
2 = 2
(9.8) and
S n
1—a < 3 4 < 14+ a
2 j:+| 2

Jj
Proof of Lemma 2. Put §; =Ja;(j=12 ...,7). Let j, denote the

i=1
least integer, for which §;>1/,. In case 8;, —1, >y — 8;_, choose
k =j,— 1, while in case 8, —, <, — 8;,_, choose k =j, In both
cases we have | §, —1/,| < ‘-;i“- =< %which proves our Lemma.
Let the sizes of the components of I'% v, be denoted by b,, by, ..., b.
Let E® denote the event

(9.9) max b; > H,_ y»(4) (1 —9)

and E® the contrary event. Applying our Lemma with @ =1 — & to the

numbers a; = L it follows that if the event E® takes place, the
H n»Nl(n)(A)

set < ¥, nym(4) can be split in two subsets %, and 5%’ containing Hj and
H} points such that H;, + H; = H, x,,(4) and

o
(9.10)  H,y,0(4) % < min (H;, H;) < max (Hy, H7) < Hyo(4) |1 — gj

further no point of .57, is connected with a point of ) in I'f ..y
It follows that if a point P of the set <%, y,(4) belongs to #, (resp.
;) then all other points of the component of I', v, to which P belongs are
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also contained in %) (resp. <#°;). As the number of components of size > 4
of Iy, nyny 18 clearly < IL;;’(A—) the number of such divisions of the set

5 Huaum(A)
Hpnmy(A) does not exceed 24

If further EQ®) takes place then every one of the », new edges connect-
ing points of %, n,y(4) connects either two points of 3, or two points
of #;. The possible number of such choices of these edges is clearly

()+(%)

Y

As by (9.10)

21+ ()
2 2 52 6'2 62 a
(9-11) “Hn] =7 +( 2] o & /
2
it follows that
% “ e(1—3r)fY(A,c—e)
(9.12) P(Eﬁi)) < 94 Hy iy A) '1 - %] 1-3r)fYA,c—en

and thus by (9.3) and (9.6)

9.13) P(ED) < exp [nﬂA, c—e) 'I(—l—+ 2 R I]

2
Thus if
(9.14) Aed(l —37)f(Ad,c—e)>(1-+7)log4
then
(9.15) lim P(E®) =0.

n—++=

As however in case ¢ — ¢ > 1/, we have f(d,c —¢) > G (¢ —¢€) >0
for any 4, while in case ¢ — ¢ =1y

A k-1 m ke 1

1
9.158 A,——|=1— s > ifd> 4
@) f‘ 2 ,Z,mek k;;k!e" 2y 4 2
the inequality (9.13) will be satisfied provided that = <1—10- and 4 > %;—2.
&

Thus Theorem 9a is proved.
Clearly the “giant” component of I', .., the existence of which (with
probability tending to 1) has been now proved, contains more than

(I—7){l—d)nf(d,c—e)
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points. By choosing &, 7 and 0 sufficiently small and A sufficiently large,
(1 — ) (1 — 8) f(A, ¢ — &) can be brought as near to G(c) as we want. Thus
we have incidentally proved also the following

Theorem 9b. Let o,  denote the size of the greatest component of I'y
If N(n) ~cn where ¢ > 1, we have for any n > 0

(9.18) lim PHM’ —G(c) .' < nl =1
-1t n
x(e) 0l ; o
where G(c) =1 — — and z(c) = g (2¢ e—2)% 4s the solution satisfying

=C k=1 R
0 < x(c) < 1o0ofthe equation x(c) =X = 2ce=2.

Remark. As G(¢) — 1 for ¢ — + oo it follows as a corollary from Theorem
9b that the size of the largest component, will exceed (1 —a)n if ¢ is suffi-
ciently large where a > 0 is arbitrarily small. This of course could be proved
directly. As a matter of fact, if the greatest component of I', v, with N¥(n) ~n¢
would not exceed (1 —a)n (we denote this event by B, («, ¢)) one could by
Lemma 2 divide the set V of the n points P, ..., P, in "two subsets V” resp.
V” consisting of »” resp. n”” points so that no two point-s belonging to different
subsets are connected and

(9.17) - < min(n',n") £ max (', n") < ‘1 — % 7.

But the number of such divisions does not exceed 27, and if the n points
are divided in this way, the number of ways V edges can be chosen so that
only points belonging to the same subset V'’ resp. V" are connected, is

(L(’Z ;[’Z’]).

As [n'I + [”’ } < 13_2 '
2 2 2

cj] . it follows

o | NG _ Nin)

(9.18) P(B,(2,c)) < z”|1— 2 < ome 2

Thus if «¢ > log4, then
(9.19) Iim P(B,(a,¢)) =0

n—=dlmo
S g ; log 4 S
which implies that for ¢ > —=2"and N(n) ~c¢n we have
o

(9.20) lim P(o, n(p = (1 —a)n) =1.

f—-+—m
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We have seen that for N(n) ~ cn with ¢ > 1/, the random graph I v,
consists with probability tending to 1, neglecting o(n) points, only of isolate
2

k_..
trees (there being approxima\,‘c,elygl ;-G}{-?— (2e e~2)% trees of order k) and of
¢ k!

a single giant component of size ~G(c)n.
Clearly the isolated trees melt one after another into the giant compo-
nent, the “danger’’ of being absorbed by the “giant’’ being greater for larger

components. As shown by Theorem 2c¢ for N(n) w;—knlog n only isolated

trees of order <%k survive, while for 3’_{’&12_”_10_3__?_‘__*_]_00 the whole
n
graph will with probability tending to 1 be connected.
An interesting question is: what is the “life-time’ distribution of an
isolated tree of order & which is present for N(n) ~c¢n ? This question is
answered by the following

Theorem 9c. The probability that an isolated tree of order k which is present
in Iy nyoy where No(n) ~con and ¢ > 1, should still remain an isolated tree
in Iy noeny where No(n) ~ (¢ ) n (6 > 0) is approximately e=?*; thus the
Wlifestime’” of a tree of order k has approvimately an exponential distribution
with mean value Sni and is independent of the “age” of the tree.

Proof. The probabhility that no point of the tree in question will he
connected with any other point is

n— kj

Na(n)
n,.
J=Ny(ny+1 { ] —
\ 2
This proves Theorem 9c.

§ 10. Remarks and some unsolved problems

We studied in detail the evolution of I', y only till & reaches the order
of magnitude n log »n. (Only Theorem 1 embraces some problems concerning
the range N(n) ~n® with 1 < @ < 2.) We want to deal with the structure
of I', nim for N(n) ~cn® with a > 1 in greater detail in a fortcoming paper;
here we make in this direction only a few remarks.

First it is easy to see that I" ., i) is really nothing else, than the
Az -

complementary graph of I', ;. Thus each of our results can he reformulated
to give a result on the probable structure of I', \ with N being not much

less than [:) For instance, the structure of I', , will have a second ahrupt

- n .
change when N passes the value —cn with ¢ > 1,

=P i N e ["’
2 2

=

then the complementary graph of I,  will contain a connected graph of order
fleyn, while for ¢ < 1/, this (missing) “giant’” will disappear.
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To show a less obvious example of this principle of getting result

for N near to [Z‘ , let us consider the maximal number of pairwise independent

points in I', x. (The vertices P and @ of the graph I" are called independent
if they are not connected by an edge).

Evidently if a set of £ points is independent in I', y(,, then the same
points form a complete subgraph in the complementary graph I', n.. As
however I', ¢, has the same structure as I"n, () - N it follows by Theorem

1, that there will be in I', y.,y almost surely no & independent points if [:] —

—--N@mn)=o0 [nz(] N k_-l?) i. e. if N(n) = |:

1
— g(nz(] - k_-"l)] but there wil be in

/ 1
I', neny 2lmost surely k independent points if N(n) = l;’\ — o, .nzt' - k':_l) where

o, tends arbitrarily slowly to +oo. An other interesting question is: what
can be said about the degrees of the vertices of I, y. We prove in this direction
the following

Theorem 10. Let D, y . (P) denote the degree of the point Py in I', y,
(i.e. the number of points of I, n(, which are connected with P\ by an edge). Put

D, = min D, y»(P,) and D, = max D, ye,(P)).

l=k=n 1<k=n

Suppose that

(10.1) lim R.A = -} oo
n-+=nlogn

Then we have for any & > 0

(10.2) 1imP('_%-1 <s]=1.
Lo |-..D_n
We have further for N(n) ~cn for any k
, i (Refe® .
(10.3) Jim B(Doip (P =) = 2 =0k

Proof. The probability that a given vertex P, shall be connected by
exactly r others in I, y is

n—1
n-l]( 2 ]) s
r N —r

n |

B

[ g—
e n




ON THE EVOLUTION OF RANDOM GRAPHS 59

thus if N(n) ~ cn the degree of a given point has approximately a Poisson
distribution with mean value 2¢. The number of points having the degree r
is thus in this case approximately

W (2¢) e
r!
If N(n) = (nlogn) w, with @, 4o then the probability that the degree of

(r=01,...).

a point will be outside the interval NG (1 — &) and 2 1+ e is ap-
n n
proximately
(2 0, logn)k e—2ealoan —O[ i ]
k—2l0gn-on = ¢-2logn o, k! neen

and thus this probability is o ‘l] , for any 6> 0.
n

Thus the probability that the degrees of not all # points will be between
the limit (1 + &) 2w, log n will be tending to 0. Thus the assertion of Theorem
10 follows.

An interesting question is: what will be the chromatic number of I, 5 ?
(The chromatic number Ch(I") of a graph I is the least positive integer % such
that the vertices of the graph can be coloured by & colours so that no two
vertices which are connected by an edge should have the same colour.)

Clearly every tree can be coloured by 2 colours, and thus by Theorem
4a almost surely Ch (I, ) =2 if N =o(n). As however the chromatic
number of a graph having an equal number of vertices and edges is equal
to 2 or 3 according to whether the only cycle contained in such a graph is
of even or odd order, it follows from Theorem 5e that almost surely Ch (I', 5) < 3
for N(n) ~ne with ¢ < 1/,.

For N(n) m-;l we have almost surely Ch (I, n¢p) = 3.
As a matter of fact, in the same way, as we proved Theorem 5b, one
can prove that I, v, contains for N(n) w% almost surely a cycle of odd

order. It is an open problem how large Ch (17, n,) is for N(n) ~cn withe>1/,?

A further result on the chromatic number can be deduced from our
above remark on independent vertices. If a graph I" has the chromatic number
h, then its points can be divided into % classes, so that no two points of the

same class are connected by an edge; as the largest class has at Ieast% points,
it follows that if f is the maximal number of independent vertices of I" we have

1
—oln” i “‘J almost surely

[z -2 Now we have seen that for N(n) ‘—”[:

1
f < k; it follows that for N(n) = [:] —o0 nz(z - k)] almost surely Ch (I, () >

n
>
k
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Other open problems are the following : for what order of magnitude
of N(n) has I, y,, with probability tending to 1 a Hamilion-line (i.e. a path
which passes through all vertices) resp.in case n is even a factor of degree 1
(i.e. a set of disjoint edges which contain all vertices).

An other interesting question is : what is the threshold for the appear-
ance of a ‘“topological complete graph of order £ i.e. ot k points such that
any two of them can be connected by a path and these paths do not inter-
sect. For & > 4 we do not know the solution of this question. For L =4

it follows from Theorem 8a that the threshold is % It is interesting to

compare this with an (unpublished) result of G. Dirac according to which
if N =2n—2 then G, contains certainly a topological complete graph
of order 4.

We hope to return to the above mentioned unsolved questions in an other

paper.

Remark added on May 16, 1960. It should be mentioned that N. V.
SMIRNOV (see e. g. Mamemamuueckuii Cooprux 6(1939) p. 6) has proved a
lemma which is similar to our Lemma 1.

(Received December 28, 1959.)
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0 PA3BEPTBIBAHUE CJIVUAHHBIX N'PA®OB
P. ERDOS u A. RENYI
Pe3iome

I[lyeTh aaHbl 1 TOUKU Py, Py, . . ., P, v BeiDupaem cayuaiino apyr sa Apyrom
N u3 BO3MOKHBIX G] pebep (P, P;) TaK 4to nocje Toro 4ro BeibpaHsl k pedpa

"

KaK/pli U3 j1pyrux ol ™ k pefep umeeT 0JMHAKOBYI BEPOSATHOCTH ObITh Bbl-

OpaHHbIM Kak craejytoiuu. PaloTa 3aHumaercsl BepOSITHOH CTPYKTYpOH Tak
noaydaemoro caydaisoro rpapa I', y npu ycnoBuu, uto N = N(n) u3BectHas
Gyuxuust or n M 1 ovyeHb Donbmoe uynucno. OcoDEHHO MCCIEyeTCst M3MEHEHMe
oToit cTpyKTypsl eciu N Hapacraer NpH JaHHOM OdeHb Gosipiiom n. CiyudaiiHo
pasBépThiBatoLuit rpad MoxeT ObITL PACCMOTPEH KaK YNPOUIEHHLIH MO1eNbL pocTa
peasnbHBIX ceTelf (Hanpumep cereil CBfA3HI).
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