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We consider methods for quantifying the similarity of vertices in networks. We propose a measure of similarity based
on the concept that two vertices are similar if their immediate neighbors in the network are themselves similar. This
leads to a self-consistent matrix formulation of similarity that can be evaluated iteratively using only a knowledge of
the adjacency matrix of the network. We test our similarity measure on computer-generated networks for which the
expected results are known, and on a number of real-world networks.
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I. INTRODUCTION AND BACKGROUND

The study of networked systems, including computer net-
works, social networks, biological networks, and others, has at-
tracted considerable attention in the recent physics literature (Al-
bert and Barabási, 2002; Dorogovtsev and Mendes, 2002; New-
man, 2003). A number of structural properties of networks
have been the subject of particularly intense scrutiny, includ-
ing the lengths of paths between vertices (Watts and Strogatz,
1998; Chung and Lu, 2002; Cohen and Havlin, 2003; Fron-
czak et al., 2004), degree distributions (Barabási and Albert,
1999; Dorogovtsev et al., 2000; Krapivsky et al., 2000), com-
munity structure (Girvan and Newman, 2002; Radicchi et al.,
2004; Guimerà et al., 2004; Donetti and Muñoz, 2004), and
various measures of vertex centrality (Watts and Strogatz, 1998;
Newman, 2001; Goh et al., 2001; Holme et al., 2002).

Another important network concept that has received com-
paratively little attention is vertex similarity. There are many
situations in which it would be useful to be able to answer ques-
tions such as “How similar are these two vertices?” or “Which
other vertices are most similar to this vertex?” Of course, there
are many senses in which two vertices can be similar. In the net-
work of the World Wide Web, for instance, in which vertices
represent Web pages, two pages might be considered similar if
the text appearing on them contains many of the same words.
In a social network representing friendship between individu-
als, two people might be considered similar if they have similar
professions, interests, or backgrounds. In this paper we con-
sider ways of determining vertex similarity based solely on the
structure of a network. Given only the pattern of edges between
vertices in a network, we ask, can we define useful measures that
tell us when two vertices are similar? Similarity of this type is
sometimes called structural similarity, to distinguish it from so-
cial similarity, textual similarity, or other similarity types. It is
a basic premise of research on networks that the structure of a
network reflects real information about the vertices the network
connects, so it seems reasonable that meaningful structural sim-
ilarity measures might exist. Here we show that indeed they do
and that they can return useful information about networks.

The problem of quantifying similarity between vertices in a
network is not a new one. The most common approach taken
in previous work has been to focus on so-called structural equiv-
alence (Lorrain and White, 1971). Two vertices are considered
structurally equivalent if they share many of the same network

neighbors. For instance, it may be reasonable to conclude that
two individuals in a social network have something in common
if they share many of the same friends. Let Γi be the neighbor-
hood of vertex i in a network, i.e., the set of vertices that are
directly connected to i via an edge. Then the number of com-
mon friends of i and j is

σunnorm = |Γi ∩ Γj |, (1)

where |x| indicates the cardinality (i.e., number of elements in)
the set x, so that |Γi |, for instance, is simply equal to the degree
of vertex i.

The quantity σunnorm can be regarded as a rudimentary mea-
sure of similarity between i and j. It is, however, not entirely
satisfactory. It can take large values for vertices with high degree
even if only a small fraction of their neighbors are the same, and
in many cases this runs contrary to our intuition about what con-
stitutes similarity. Commonly therefore one normalizes in some
way—for instance so that the similarity is one when Γi = Γj .
We are aware of at least three previously-proposed ways of doing
this (Jaccard, 1901; Salton, 1989; Ravasz et al., 2002):

σJaccard =
|Γi ∩ Γj |
|Γi ∪ Γj |

, (2a)

σcosine =
|Γi ∩ Γj |√
|Γi | |Γj |

, (2b)

σmin =
|Γi ∩ Γj |

min(|Γi | |Γj |)
. (2c)

The first of these, commonly called the Jaccard index, was pro-
posed by Jaccard over a hundred years ago (Jaccard, 1901); the
second, called the cosine similarity, was proposed by Salton in
1983 and has a long history of study in the literature on cita-
tion networks (Salton, 1989; Salton and McGill, 1983; Hamers
et al., 1989). (Measures nonlinear in σunnorm are also possible.
For example, Refs. (Burt, 1976) and (Goldberg and Roth, 2003)
propose measures involving

√
σunnorm andσ2

unnorm, respectively.)
There are, however, many cases in which vertices occupy sim-

ilar structural positions in networks without having common
neighbors. For instance, two store clerks in different towns oc-
cupy similar social positions by virtue of their numerous pro-
fessional interactions with customers, although it is quite likely
that they have none of those customers in common. Two CEOs
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FIG. 1 A vertex j is similar to vertex i (dashed line) if i has a network
neighbor v (solid line) that is itself similar to j.

of companies occupy similar positions by virtue of their con-
tacts with other high-ranking officers of the companies for which
they work, although again none of the individual officers need be
common to both companies. Considerations of this kind lead us
to an extended definition of network similarity known as regular
equivalence. In this case vertices are said to be similar if they are
connected to other vertices that are themselves similar. It is upon
this idea that the measures developed in this paper are based.

Regular equivalence is clearly a self-referential concept: one
needs to know the similarity of the neighbors of two vertices
before one can compute the similarity of the two vertices them-
selves. It comes as no surprise to learn, therefore, that traditional
algorithms for computing regular equivalence have an iterative
or recursive nature. Two of the best known such algorithms,
REGE and CATREGE (Borgatti and Everett, 1993), proceed
by searching for optimal matching between the neighbors of the
two vertices, while other authors have formulated the calculation
as a optimization problem (Batagelj et al., 1992).

In this paper, we take a different approach, constructing mea-
sures of similarity using the methods of linear algebra. The
fundamental statement of our approach is that vertices i and
j are similar if either of them has a neighbor v that is similar
to the other—see Fig. 1. Coupled with the additional assump-
tion that vertices are trivially similar to themselves, this gives,
as we will see, a sensible and straightforward formulation of the
concept of regular equivalence for undirected networks. The
method has substantial advantages over other similarity mea-
sures: it is global—unlike the Jaccard index and related mea-
sures, it depends on the whole graph and allows vertices to be
similar without sharing neighbors; it has a transparent theoret-
ical rationale, which more complex methods like REGE and
CATREGE lack (Borgatti and Everett, 1993); it avoids the con-
vergence problems that have plagued optimization methods; and
it is comparatively fast, since its implementation can take advan-
tage of standard, hardware optimized, linear algebra software.

Some previous authors have also considered similarity mea-
sures based on matrix methods (Jeh and Widom, 2002; Blondel
et al., 2004). We discuss the differences between our measure
and these previous ones in Section II.C.

This paper is organized as follows: In Section II we present the
derivation of our structural similarity measure. Section III we
test the measure on a number of networks, including computer-
generated graphs (Sections III.A and III.B) and real-world ex-
amples (Sections III.C and III.D). In Section IV we give our
conclusions.

II. A MEASURE OF SIMILARITY

The fundamental starting point for our measure of similarity
is the assumption that the edges in a network themselves indi-
cate a similarity between the vertices they connect. Thus, for in-
stance, we assume that two people in a social network are more
likely to be connected if they are similar, in some social sense,
than if they are dissimilar. The edges of the network provide
the raw data from which we will deduce more subtle similarity
values, including values for pairs of vertices that are not directly
connected.

It is worth noticing that it is not always the case that the edges
in a network fall between similar vertices. Some networks are
said to be “disassortative” (Newman, 2003), meaning that edges
preferentially connect vertices that are different in some way. Al-
though the measures derived in this paper may convey useful
information even in these cases, we will for the purposes of ar-
gument assume that the networks we are looking at are not disas-
sortative; rather they are “assortative” and edges tend to connect
vertices that are fundamentally similar.

This then leads us immediately to the idea of regular equiva-
lence: a pair of vertices i, j are similar to one another if any pair
u, v of their neighbors are similar. This follows by simple re-
peated application of the principle above: i is similar to u, which
is similar to v, which is similar to j.

In fact, an even simpler one-step expression of the principle is
possible: vertex i is similar to j if i has any network neighbor v
that is itself similar to j. This idea is illustrated in Fig. 1 and it
forms the basis for the measure of similarity developed here. At
first glance this definition might appear less satisfactory than the
two-step version, having an asymmetry between i and j that the
two-step definition lacks. As we will see, however, it makes no
difference to the results if we swap vertices i and j: the mathe-
matical expression for the similarity turns out to be the same and
hence the definition is in fact symmetric.

This definition of similarity is clearly recursive and hence we
need to provide some starting point for the recursion in order to
make the results converge to a useful limit. The starting point we
choose is to make each vertex similar to itself, which is natural in
most situations. Our definition of similarity will thus have two
components: the neighbor term of the previous paragraph and
the self-similarity.

Thus our first guess at the form of the similarity (we will im-
prove it later) is to write the similarity Sij of vertex i to vertex j
as

Sij = φ
∑

v

AivSvj + ψδij , (3)

where δij is Kronecker’s function and Aij is an element of the
adjacency matrix of the network, taking the value

Aij =

{
1 if there is an edge between i and j,
0 otherwise,

(4)

and φ and ψ are free parameters whose values control the balance
between the two components of the similarity.

Considering Sij to be the ij element of a similarity matrix S,
we can write Eq. (3) in matrix form as

S = φAS + ψI, (5)
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where I is the identity matrix. Rearranging, this can also be writ-
ten S = ψ[I − φA]−1. As we see, the parameter ψ merely con-
tributes an overall multiplicative factor to our similarity. Since
in essentially all cases we will be concerned not with the absolute
magnitude of the similarity but only with the relative similarity
of different pairs of vertices, we can safely set ψ = 1, eliminating
one of our free parameters, and giving

S = [I − φA]−1. (6)

This expression for similarity bears a close relation to the matrix-
based centrality measure of Katz (Katz, 1953). In fact, the Katz
centrality of a vertex is equal simply to the sum of that vertex’s
similarities to every other vertex. This is a natural concept: a
vertex is prominent in a network if it is closely allied with many
other vertices.

We can also consider the similarity of i and j when j has a
neighbor v that is similar to i. In that case,

Sij = φ
∑

v

SivAvj + ψδij . (7)

It is trivial to show however that this leads to precisely the same
expression, Eq. (6), for the similarity in the end. Thus, as we
claimed above, our definition provides only one similarity value
for any pair of vertices, given by the symmetric matrix S of
Eq. (6).

The remaining parameter φ in Eq. (6) is still free. To shed
light on the appropriate value for this parameter, let us expand
the similarity as a power series thus:

S = I + φA + φ2A2 + · · · (8)

Noting that the element
[
Al ]

ij is equal to the number of (possi-

bly self-intersecting) network paths of length l from i to j, this
equation gives us an alternative, term-by-term interpretation of
our similarity measure. The first term says that a vertex is iden-
tically similar to itself. The second term says that vertices that
are immediate neighbors of one another have similarity φ. The
third term says that vertices that are distance two apart on the
network have similarity φ2. And so forth.

But notice also that vertices that have many paths of a given
length are considered more similar than those that have few. The
similarity of vertices i and j acquires a contribution φ2 for every
path of length 2 from i to j. We note however that some pairs
of vertices are expected to have one or even many such paths
between them: vertices with very high degree, for instance, will
almost certainly have one or several paths of length two connect-
ing them, even if connections between vertices are just made at
random. So simple counts of number of paths are not enough
to establish similarity. We need to know when a pair of vertices
has more paths of a given length between than we would expect
by chance.

This suggests a strategy for choosing φ. We will normal-
ize each term in our series by dividing the number of paths of
length l (given by the power of the adjacency matrix) by the
expected number of such paths, were vertices in the network
connected at random. Then each term will be greater or less
than unity by a factor representing the extent to which the cor-
responding vertices have more or fewer paths of the appropriate

length than would be expected by chance. In fact, there is no
single choice of the parameter φ that will simultaneously achieve
this normalization for every term in the series but, as we will
show, there is a choice that achieves it approximately for every
term and exactly in the asymptotic limit of high terms in the
series, if we allow a slight (and with hindsight sensible) modifi-
cation of Eq. (6).

A. Expected number of paths

Let us generalize the series, Eq. (8), to allow an independent
coefficient for each term and for each vertex pair i, j:

Sij =
∞∑

l=0

C
ij

l

[
Al ]

ij . (9)

And let us choose (for the moment) each coefficient to be equal
to 1 over the expected number of paths of the corresponding
length between the same pair of vertices on a network with
the same degree sequence as the network under consideration,
but in which the vertices are otherwise randomly connected.
Such a network is called a configuration model, and the config-
uration model has been widely studied in the networks litera-
ture (Łuczak, 1992; Molloy and Reed, 1995; Newman et al.,
2001).

It is possible to derive exact values for the expected number
of paths between vertices of given degree in the configuration
model, and for the interested reader we give some results in the
appendix. But the expressions become more complicated as path
length increases and the numbers of distinct topologies of the
paths multiply. This makes such calculations useful only for
rather short paths and not applicable for the infinite series of
Eq. (9). Instead, therefore, we here proceed by deriving an ap-
proximate expression for the expected number of paths that can
be evaluated at any order.

The expected number of paths of length l from i to j can be
written as the jth element of the vector pl given by

pl = Al v, (10)

where the vector v has all elements zero except for vi = 1. In the
limit of large l , the vector pl tends toward (a multiple of ) the
leading eigenvector of the adjacency matrix, and hence in this
limit we have pl+1 = λ1pl , where λ1 is the largest eigenvalue of
A. Thus the number of paths from i to j increases by a factor of
λ1 each time we add one extra step to the path length. The first
step of the path violates this rule: we know the number of paths
increases by exactly a factor of ki on the first step. Furthermore,
since our paths are constrained to end at vertex j, the last step
must end at one of the kj edges emanating from j, out of a total
of 2m possible places that it could end. This introduces a factor
of kj /2m into the expected number of paths. Thus, to within a
multiplicative constant, the number of paths of length l from i
to j, for large l , should be (kikj /2m)λl−1

1 .
This expression is not in general correct for small l . It is how-

ever correct for the particular case l = 1 of paths of length one
(see Eq. (A1)) and we expect it to be approximately correct for
other intermediate values of l > 1. Guided by these results, we
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therefore choose the constants C
ij

l
appearing in Eq. (9) to take

the values:

C
ij

l
=

2m

kikj
λ−l+1

1 , (11)

for l ≥ 1, with C
ij
0 = δij . These values approximate the desired

values based on expected numbers of paths and are asymptoti-
cally correct in the limit of large l .

B. Derivation of the similarity

There is one more issue we need to deal with with before we
arrive at a final expression for our similarity. If we simply sub-

stitute C
ij

l
from Eq. (11) into Eq. (9) we produce a series that

unfortunately does not converge. To see this, note that in the
limit of very long path lengths most networks will have roughly
the same number of paths between vertices as would be expected
by chance. (The local structure around the vertices in question is
unimportant in this case, because the length of the path means
that correlation with its start and end points is weak for most
of its length.) This means that the terms in the series (9) will
tend to unity for large l and, since there are an infinite number
of them, the sum will therefore diverge. On the other hand, if,
rather than being constant, consecutive terms were to decrease
by even the tiniest factor at each order, the sum would converge,
as do all series with exponentially decreasing terms. Thus, we
can ensure convergence by introducing an extra numerical fac-
tor α, giving a series thus:

Sij = δij +
2m

kikj

∞∑

l=1

αlλ−l+1
1

[
Al ]

ij

=
[
1 −

2mλ1

kikj

]
δij +

2mλ1

kikj

[(
I −

α

λ1
A
)−1]

ij
. (12)

In physical terms, the effect of the parameter α is to reduce the
contribution of long paths relative to short ones. That is, for
0 < α < 1, our similarity measure considers vertices to be more
similar if they have a greater than expected number of short paths
between them, than if they have a greater than expected number
of long ones. While this is a natural route to take, it does mean
we have introduced a new free parameter into our calculations.
This seems a fair exchange: we have traded the infinite number
of free parameters in the expansion of Eq. (9) for just a single
such parameter. We discuss the appropriate choice of value for
α in Section III.B.

The first term in Eq. (12) is diagonal in the vertices i and j and
hence affects only the similarity of vertices to themselves, which
we are not usually interested in, so we will henceforth drop it.
Thus, our final expression for the similarity is

Sij =
2mλ1

kikj

[(
I − α

λ1
A
)−1]

ij
. (13)

Equivalently, we could write this in matrix form thus:

S = 2mλ1D−1
(
I −

α

λ1
A
)−1

D−1, (14)

where D is the diagonal matrix having the degrees of the vertices
in its diagonal elements: Dij = kiδij .

This similarity measure takes exactly the form we postulated
in Eq. (6) with φ = α/λ1, except for an overall multiplier, which
is trivial, and the leading factor of 1/kikj , which is not. This
factor compensates for the fact that we expect there to be more
paths between pairs of vertices with high degree simply because
there are more ways of entering and leaving such vertices. Its
presence is crucial if we wish to compare the similarities of vertex
pairs having very different degrees.

In practical terms, the calculation of the similarity matrix is
most simply achieved by direct multiplication. Dropping the
constant factor 2mλ1 for convenience, we can rewrite Eq. (14)
in the form of Eq. (3) thus:

DSD =
α

λ1
A(DSD) + I. (15)

Making any guess we like for an initial value of DSD, such as
DSD = 0, we iterate this equation repeatedly until it converges.
In practice, for the networks studied here, we have found good
convergence after 100 iterations or less.

C. Comparison with previous similarity measures

Several other authors have proposed vertex similarity measures
based on matrix methods similar to ours (Jeh and Widom, 2002;
Blondel et al., 2004).

Jeh and Widom (Jeh and Widom, 2002) have proposed a
method that they call “SimRank,” predicated, as ours is, on the
idea that vertices are similar if their neighbors are similar. In our
notation, their measure is

Sij =
C

kikj

∑

u,v

AiuAvjSuv, (16)

where C is a constant. While this expression bears some similar-
ity to ours, Eq. (3), it has an important difference also. Starting
from an initial guess for Sij , one can iterate to converge on a
complete expression for the similarity, and this final expression
contains terms representing path counts between vertex pairs, as
in our case. However, since the adjacency matrix appears twice
on the right-hand side of Eq. (16), the expression includes only
paths of even length. This can make a substantial difference to
the resulting figures for similarity. An extreme example would
be a bipartite network, such as a tree or a square lattice, in which
vertices are separated either only by paths of even length or only
by paths of odd length. In such cases, those vertices that are
separated only by paths of odd length will have similarity zero.
Even vertices that are directly connected to one another by an
edge will have similarity zero. Most people would consider this
result counterintuitive, and our measure, which counts paths of
all lengths, seems clearly preferable.

Blondel et al. (Blondel et al., 2004) considered similarity mea-
sures for directed networks, i.e., based on asymmetric adjacency
matrices, which is a more complex situation than the one we
consider. However, for the special case of a symmetric matrix,
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the measure of Blondel et al. can be written as

Sij = C
∑

u,v

AiuAvjSuv, (17)

where C is again a constant. This is very similar to the measure
of Jeh and Widom, differing only in the omission of the factor
1/kikj . Like the measure of Jeh and Widom, it can be written in
terms of paths between vertices, but counts only paths of even
lengths, so that again vertices separated only by odd paths (such
as adjacent vertices on bipartite graphs) have similarity zero.

D. A measure of structural equivalence

An interesting corollary of the theory developed in the previ-
ous sections is an alternative measure of structural equivalence.
The structural equivalence measures of Eq. (2) can be viewed as
similarity measures that count only the paths of length two be-
tween vertex pairs; the number of common neighbors of two ver-
tices is exactly equal to the number of paths of length two. Thus
structural equivalence can be thought of as just one term—the
second-order term—in the infinite series that defines our mea-
sure of regular equivalence.

The measures of Eq. (2) differ from one another in their nor-
malization. The developments outlined in this paper suggest an-
other possible normalization, one in which we divide the num-
ber of paths of length two by its expected value in the config-
uration model. An exact expression for this expected value is
derived in the appendix, Eq. (A2), and the resulting normalized
equivalence measure is then

σ =
2m

kikj

(
〈k〉

〈k2〉 − 〈k〉

)
|Γi ∩ Γj |. (18)

If we are concerned only with the comparative similarities of dif-
ferent pairs of vertices within a given graph, then we can neglect
multiplicative constants and write

σ =
|Γi ∩ Γj |

kikj
=
|Γi ∩ Γj |
|Γi | |Γj |

. (19)

This is, we feel, in many ways a more sensible measure of struc-
tural equivalence than those of Eq. (2). It gives high similarity
to vertex pairs that have many common neighbors compared not
to the maximum number possible but to the expected number of
such neighbors, and therefore highlights vertices that have a sta-
tistically improbable coincidence of neighborhoods. Of course,
one could define similar measures for paths of length 1 or 3 or
any other length. Or one could combine all such lengths, which
is precisely what our overall similarity measure does.

III. TESTS OF THE METHOD

In this section we test our method on a number of differ-
ent networks. Our first example is a set of computer-generated
networks designed to have known similarities between vertices.
In following sections we also test the method against some real-
world examples.
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FIG. 2 (a) A density plot of the similarities of all vertex pairs not di-
rectly connected by an edge in our stratified network model. The points
give the average similarity as a function of age difference and the line
is a least-squares fit to a straight line. (b) A density plot of the cosine
similarity values for the same network.

A. Stratified model network

In many social networks, individuals make connections with
others preferentially according to some perceived similarity, such
as age or income. Such networks are said to be stratified, and
stratified networks present a perfect opportunity to test our sim-
ilarity measure: ideally we would like to see that given only
the network structure our measure can correctly identify vertices
that are similar in age (or whatever the corresponding variable is)
even when the vertices are not directly connected to one another.

As a first test of our measure, we have created artificial strati-
fied networks on a computer. Such networks offer a controlled
structure for which we believe we know the “correct” answers for
vertex similarity.

In our model networks, each of n = 1000 vertices was given
one of ten integer “ages.” Then edges were created between ver-
tices with probability

P(∆t) = p0e−a∆t , (20)

where ∆t is the difference in ages of the vertices and p0 and a
are constants, whose values in our calculations were chosen to
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be p0 = 0.12 and a = 2.0. Thus the probability of “acquain-
tance” between two individuals drops by a factor of e2 for every
additional year separating their ages.

In order to calculate our similarity measure for this or any
network we need first to choose a value for the single parameter
α appearing in Eq. (13). In the present calculations we used a
value of α = 0.97, which, as we will see, is fairly typical. Since α
must be strictly less than one if Eq. (13) is to converge, α = 0.97
is quite close to the maximum possible value. We discuss in the
following section why values close to the maximum are usually
desirable.

Figure 2a shows a density plot of the similarity values for all
vertex pairs in the model network not directly connected by an
edge, on semi-log scales as a function of the age difference be-
tween the vertices. The average similarity as a function of age
difference is also plotted, along with a fit to the data. We ex-
clude directly connected pairs in the figure because it is trivial
that such pairs will have high similarity and most of the interest
in our method is in its ability to detect similarity in nontrivial
cases.

For comparison, we also show in Fig. 2b a density plot of the
cosine similarity, Eq. (2b), for the same network. As the plots
show, cosine similarity is in this case a much less revealing mea-
sure of similarity. It is only possible for cosine similarity to be
nonzero for a pair of vertices if there exists a path of length two
between them. Vertices with an age difference of three or more
rarely have such a path in this network and, as Fig. 2b shows,
such vertices therefore nearly all have a cosine similarity of zero.
Thus cosine similarity finds only highly similar vertices in this
case and entirely fails to distinguish between vertices with age
differences between 3 and 9. Our similarity measure by contrast
distinguishes these cases comfortably.

B. Choice of α

Our similarity measure, Eq. (13), contains one free parameter
α, which controls the relative weight placed on short and long
paths. This parameter lies strictly in the range 0 < α < 1, with
low values placing most weight on short paths between vertices
and high values placing weight more equally both on short and
long paths. (Values α > 1 would place more weight on long
paths than on short, but for such values the series defining our
similarity does not converge.)

There is in general no single value of α that works perfectly
for every network, but experience suggests some reliable rules of
thumb. Our stratified network model, for instance, provides a
good guide. Consider Fig. 3. In this figure we have calculated
the correlation coefficient of the similarity values for vertex pairs
determined using our method against the probabilities, Eq. (20),
of connections between the vertices, which, following the ideas
outlined at the beginning of Section II, we consider to be a fun-
damental measure of vertices’ a priori similarity. As the figure
shows, the correlation is quite low for low values of α, but be-
comes strong as α approaches one. Only as α gets very close to
one does the correlation fall off again. This appears to imply that
a value of α = 0.9 or greater should give the best results in this
case. Furthermore, it appears that, for values of α in this range,
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FIG. 3 The correlation coefficient r(σ,σage) for correlation between
our similarity measure and the probability of connection, Eq. (20), in
our stratified model, for a range of values of α. The values given are
averaged over an ensemble of graphs generated from the model. The
maximum value is found to occur for α ' 0.97.

the precise value does not matter greatly, all values around the
maximum in the correlation coefficient giving roughly compa-
rable performance.

This we have found to be a good general rule: values of α close
to the maximum value of 1 perform the best, with values in the
range 0.90 to 0.99 being typical. Within this range the results
are not highly sensitive to the exact value. We give another ex-
ample to reinforce this conclusion below. (We also note that the
measures of Jeh and Widom (Jeh and Widom, 2002) and Blon-
del et al. (Blondel et al., 2004), Section II.C, give poorer correla-
tions than our measure—0.4890(4) and 0.0069(1) respectively.)

The large typical values of α mean that paths of different
lengths are weighted almost equally in our similarity measure.
In other words, it appears that our measure works best when
long paths are accorded almost as much consideration as short
ones. This contrasts strongly with structural equivalence mea-
sures like the Jaccard index and the cosine similarity, which are
based exclusively on short paths—those of length two. Indeed,
these measures can be considered analogous to measures such as
ours in the limit of small α, where all the weight is placed on
the shortest paths, which effectively means paths of length two
when we are considering vertex pairs that are not directly con-
nected. Thus, in a sense, our measure, with its near-maximal
value of α, can be considered at the farthest possible extreme
from the traditional structural equivalence measures.

C. Thesaurus network

We now consider two applications of our method to real-
world networks. The first is to a network of words extracted
from a supplemented version of the 1911 US edition of Roget’s
Thesaurus (Mawson, 1911). The thesaurus consists of a five-
level hierarchical categorization of English words. For example,
the word “paradise” (level five) is cataloged under “heaven” (level
four), “superhuman beings and regions” (level three), “religious
affections” (level two), and “words relating to the sentient and
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word our measure cosine similarity

warning 32.014 omen 0.51640

alarm danger 25.769 threat 0.47141

omen 18.806 prediction 0.34816

heaven 63.382 pleasure 0.40825

hell pain 28.927 discontent 0.28868

discontent 7.034 weariness 0.26726

compromise 20.027 gravity 0.23570

mean generality 19.811 inferiority 0.22222

middle 17.084 littleness 0.20101

plunge 33.593 dryness 0.44721

water air 25.267 wind 0.31623

moisture 25.267 ocean 0.31623

TABLE I The words most similar to “alarm,” “heaven,” “mean,” and
“water,” in the word network of the 1911 edition of Roget’s Thesaurus,
as quantified by our similarity measure and by the more rudimentary
cosine similarity of Eq. (2b). We used a value of 0.98 for the parame-
ter α.

moral powers” (level one). Here we study the network composed
of the 1000 level-four words, in which two such words are linked
if one or more of the level-five words cataloged below them are
common to both. For instance, the level-four words “book” and
“knowledge” are connected because the entries for both in the
thesaurus contain the level-five terms “book learning” and “en-
cyclopedia.”

In Table I we show the words most similar to the words
“alarm,” “hell,” “mean,” and “water,” as ranked first by our sim-
ilarity measure and second by cosine similarity. We used a value
of α = 0.98 in this case, on the grounds that this value gave the
best performance in other test cases (see below).

Since cosine similarity can be regarded as a measure of the
number of paths of length two between vertices, it tends in
this example to give high similarity scores for words at distance
two in the thesaurus—synonyms of synonyms, antonyms of
synonyms, and so forth. For example, cosine similarity ranks
“pleasure” as the word most similar to “hell,” probably because
it is closely associated with hell’s antonym “heaven.” By con-
trast, our measure ranks “heaven” itself first, which appears to
be a more sensible association. Similarly, cosine similarity links
“water” with “dryness”, whereas our measure links “water” with
“plunge.”

D. Friendship network of high school students

As a second real-world test of our similarity measure, we ap-
ply it to a set of networks of friendships between school children.
The network data were collected as part of the National Longitu-
dinal Study of Adolescent Health (AddHealth) (Bearman et al.,
2004), and describe 90 118 students at 168 schools, including
their school grade (i.e., year), race, and gender, as well as their
recent patterns of friendship. It is well known that people with
similar social traits tend to associate with one another (McPher-
son et al., 2001), so we expect there to be a correlation between
similarity in terms of personal traits and similarity based on net-
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FIG. 4 The correlation coefficient for correlation between our similar-
ity measure and the age difference of all vertex pairs in a single network,
as a function of α. This plot is typical for the school networks studied.

work position. This gives us another method for checking the
efficacy of our similarity measure.

The AddHealth data were gathered through questionnaires
handed out to students at 84 pairs of American schools, a school
pair typically consisting of one junior high school (grades 7 and
8, ages 12–14) and one high school (grades 9–12, ages 14–18).
Here we consider the data as a set of networks in which each net-
work contains students from one pair of schools, with students
in all six grades.

The questionnaires asked respondents, among other things,
to “List your closest (male/female) friends. List your best
(male/female) friend first, then your next best friend, and so
on. (Girls/Boys) may include (boys/girls) who are friends and
(boy/girl) friends.” For each of the friends listed, the student was
asked to state in which of five particular activities they had par-
ticipated recently with that friend, such as “you spent time with
(him/her) last weekend.” From these answers a weight w(i, j)
was assigned to every ordered pair of students (i, j) such that
w(i, j) is 0 if i has not listed j as a friend, or 1 plus the number
of activities conducted otherwise. (The additional 1 is necessary
because some students list another as a friend but have not par-
ticipated in any of the listed activities with them recently.) From
these weights we construct an unweighted, undirected friend-
ship network by adding a link between vertices i and j if w(i, j)
and w(j, i) are both greater than or equal to a specified threshold
value W . As it turns out, our conclusions are not very sensitive
to the choice of W ; the results described here use W = 2.

The networks derived in this way are not necessarily con-
nected; they may, and often do, consist of more than one com-
ponent for each school studied. To simplify matters we here
consider only on the largest component of each network. The
largest component in some of the networks is quite small, how-
ever, so to avoid finite size effects we have focused on networks
whose largest component contains more than 1000 students.

We first test our similarity measure using the method we used
for the stratified network of Section III.A: we determine the lin-
ear correlation coefficient between age difference (measured as
difference in grade) and our network similarity measure, for all
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vertex pairs in a network. We have calculated this correlation
coefficient for a range of values of α, the free parameter in our
measure, and for a selection of different networks. The results
for one particular network are shown in Fig. 4. In this case the
correlation coefficient is maximized for α ' 0.99, which is again
close to the maximum possible value of 1. For other networks we
find maxima in the range from 0.96 to 0.99, which is in accord
with the results of Section III.B. (We also calculated correlation
coefficients for the similarity measures of Jeh and Widom (Jeh
and Widom, 2002) and Blondel et al. (Blondel et al., 2004) dis-
cussed in Section II.C. These values were routinely lower than
ones found with our measure.)

These correlations between age difference and network sim-
ilarity appear to indicate that our similarity measure is able to
detect some aspects of the social structure of these networks. To
investigate this further, we have also calculated the average sim-
ilarity of vertex pairs that have a known common characteristic,
either grade or race, comparing that average with the average
similarity for vertex pairs that differ with respect to the same
characteristic. The values of α used were those corresponding to
the peak in the correlation, as above. The results are given in
Table II.

For school A, for example, the average similarity for pairs of
students in the same grade is a factor of eight greater than that
for pairs in different grades. It is possible, however, that this
impressive difference could result purely from the contribution
to the similarity from vertex pairs that are directly connected
by an edge. It would come as no surprise that such pairs tend
to be in the same grade. To guard against this, we give in the
fourth column of Table II results for calculations in which all
directly connected vertex pairs were removed. Even with these
pairs removed we see that same-grade vertex pairs are on average
significantly more similar than pairs from different grades.

We have also made similar calculations with respect to the
race of students. Students in school A did not appear to have
any significant division along racial lines (columns five and six
of Table II), but this school was almost entirely composed of
students of a single race anyway, so this result is not very surpris-
ing; it seems likely that the numbers were just too small to show
a significant effect. School B was similar. Schools C and D,
however, show a marked contrast. In school C, the average simi-
larity for students of the same race is a factor of five greater than
the average similarity for students of different races. School C
had a population split 2:1 between two racial groups, in marked
contrast with schools A and B. School D similarly appears to be
divided by race, although a little less strongly. In this case there is
a three-way split within the population between different racial
groups. Possibly this more even split with no majority group was
a factor in the formation of friendships between students from
different groups.

These results indicate that our measure of similarity is able to
identify real social similarity between vertices in these networks.
That is, using only the structure of the network, our similar-
ity measure identifies students of the same race and in the same
grade to be more similar to each other than students of different
grades or different races. For comparison, we performed sim-
ilar calculations using the similarity measures proposed by Jeh
and Widom (Jeh and Widom, 2002) and Blondel et al. (Blondel

similarity ratios

school n SG:DG SG:DG* SR:DR SR:DR*

A 1090 8.0 6.1 1.1 1.1

B 1302 6.2 4.4 2.6 2.6

C 1996 2.2 1.9 5.0 5.0

D 1530 3.3 2.6 4.0 3.6

TABLE II Network size n and ratios of average similarity values for
school networks in the AddHealth data set. The column labeled
SG:DG gives the ratio of average similarity for students in the same
grade (SG) to average similarity for students in different grades (DG).
The column labeled SR:DR gives the ratio of average similarity for stu-
dents of the same race (SR) to average similarity for students of different
races (DR). Columns marked with asterisks (*) give values of the same
ratios but omitting vertex pairs connected directly by an edge.

et al., 2004), finding again that the average similarity of pairs
of vertices sharing characteristics was higher than for pairs of
vertices that differed by the same characteristic. However, the
factors by which these methods differentiated between vertices
with similar characteristics and vertices with different character-
istics was consistently less than with our measure.

IV. CONCLUSIONS

In this paper we have proposed a measure of structural simi-
larity for pairs of vertices in networks. The method is fundamen-
tally iterative, with the similarity of a vertex pair being given in
terms of the similarity of the vertices’ neighbors. Alternatively,
our measure can be viewed as a weighted count of the number
of paths of all lengths between the vertices in question. We ex-
pect the measure to be applicable to any network where the ver-
tices do not have a tendency to attach to dissimilar vertices. The
weights appearing in this count are asymptotically equal to the
expected numbers of network paths between the vertices, which
we express in terms of the leading eigenvalue of the adjacency
matrix of the network and the degrees of the vertices of interest.
The resulting expression for our similarity measure is given in
Eq. (14).

We have tested our measure against computer-generated
and real-world networks, with promising results. In tests on
computer-generated networks the measure is particularly good
at discerning similarity between vertices connected by relatively
long paths, an area in which more traditional similarity measures
such as cosine similarity perform poorly. In tests on real-world
networks the method was able to extract sensible synonyms to
words from a network representing the structure of Roget’s The-
saurus, and showed strong correlations with similarity of age
and race in a number of networks of friendship among school
children. Taken together, these results seem to indicate that the
measure is capable of extracting useful information about vertex
similarity based on network topology.

The strength of similarity measures such as ours is their
generality—in any network where the function or role of a ver-
tex is related in some way to its structural surroundings, struc-
tural similarity measures can be used to find vertices with sim-
ilar functions. For instance, similarity measures can be used to
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i j i jji

i i ij j j

FIG. 5 There is only one possible topology for paths of length one
between distinct vertices, and only one for paths of length two, but
there are four possible topologies for paths of length three.

divide vertices into functional categories (Ravasz et al., 2002;
Luczkovich et al., 2003; Wolfe, 2005) or for functional predic-
tion in cases where the functionality of vertices is partly known
ahead of time (Holme and Huss, 2005). We believe that the
application of similarity measures to problems such as these will
prove a fruitful topic for future work.
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APPENDIX A: Expected number of short paths

In this appendix we derive exact values for the first few coef-

ficients C
ij

l
in Eq. (9). These coefficients are equal to the inverse

of the expected number of paths between vertices of given degree
in a configuration model having a specified degree sequence.

To begin with, consider the first-order coefficient C
ij
1 . If ver-

tices i and j have degrees ki and kj respectively, then we can
calculate the expected number of paths of length one between
them as follows. For any of the ki edges emerging from vertex i,
there are 2m places where it could terminate, where m is the to-
tal number of edges in the network. Of these, kj end at vertex j
and hence result in a direct path of length one from i to j. Thus
for each edge emerging from i there is a probability kj /2m of a
length-one path to j, and overall the expected number of such
paths is kikj /2m. Thus

C
ij
1 =

2m

kikj
. (A1)
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FIG. 6 (a) The actual number of paths of length two between vertex
pairs in a configuration model versus the expected number of paths, as
determined from Eq. (A2). (b) Same as in plot (a), but for paths of
length three.

Now consider the second-order term in the series. A path of
length two between i and j must go through a single interme-
diate vertex v, whose degree we denote kv. Using the argument
of the preceding paragraph, the expected number of paths of
length one from i to v is kikv/2m. This uses up one of the edges
emerging from v, leaving kv − 1 remaining edges and thus the
expected number of paths of length one from v to j, given that
there is already a path from i to v, is (kv−1)kj /2m. The expected
number of paths of length two from i to j via v is then the prod-
uct kikv(kv − 1)kj / (2m)2. Summing over all v, the total expected
number of paths of length two is

kikj

(2m)2

∑

v

kv(kv − 1) =
kikj

2m

(
〈k2〉 − 〈k〉
〈k〉

)
, (A2)

where 〈k〉 and 〈k2〉 are the mean degree and mean-square de-
gree of the network respectively, and we have made use of the
result 2m = n〈k〉, where n is the total number of vertices in the

network. C
ij
2 is then the reciprocal of this quantity.

For paths of length three and greater, the calculations become
more complicated. Since paths can be self-intersecting, we have
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to consider topologies for those paths that include loops or that
traverse the same edge more than once. While there is only one
topology for paths of length one or two between a specified pair
of vertices, there are four distinct topologies for paths of length
three (Fig. 5), and we must calculate and sum the expected num-
bers of each of them to get the total expected number of paths.
The end result for paths of length three is

kikj

2m


(
〈k2〉 − 〈k〉
〈k〉

)2

+ ki + kj − 1

 . (A3)

As a check on our calculations, we compare our analytic ex-
pressions for the numbers of paths of length 2 and 3 to actual
path counts for randomly generated networks in Fig. 6. There
is increased scatter in the numerical data at longer path lengths
because the graphs studied are finite in size, but overall the agree-
ment between analytic and numerical calculations is good.
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