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Abstract

With the increase of sophistication and severity of DDoS
attack, it is important for a victim site to quickly iden-
tify the potential attackers and eliminate their traffic. Our
work is based on the probabilistic marking algorithm by
Savage[12] in which an attack graph can be constructed
by a victim site. We extend the concept further such that we
can deduce the local traffic rate of each router in the attack
graph based on the received marked packets. Given the in-
tensities of these local traffic rates, we can eliminate these
attackers from sending high volume of traffic to a victim site.
More importantly, we propose a theoretical method to deter-
mine the minimum stable time

�������
, which is the minimum

time it takes to accurately determine the local traffic rate of
every participating router in the attack graph.

1. Introduction

Distributed denial-of service (DDoS) attack is a press-
ing problem on the Internet. Famous commercial sites such
as Yahoo, Amazon and eBay were being attacked and were
out of service for many hours due to the DDoS attack on
February 2000[1]. In recent few years, DDoS attacks have
increased in frequency, sophistication and severity. Recent
study by the Computer Emergency Response Team (CERT)
has indicated that the number of DDoS attacks have in-
creased by 50% per year[7]. More alarming is the fact that
many sophisticated DDoS attack tools, such as Tribal flood
network (TBN), TFN2K and Trino can be easily down-
loaded from the Internet so users of these attack tools can
simply launch a large scale attack with a few key strokes.
One major difficulty to defend against DDoS attack is that
attackers often use fake, or spoofed IP addresses as the IP
source address. Therefore, attackers can easily disguise

themselves as some other hosts on the Internet. Because
of the stateless nature of the Internet, it is a difficult task
to determine or trace the source of these attackers’ packets
and thereby locate the potential locations of these attackers.
This is known as the DDoS attacker traceback problem.

An intrinsic characteristic of a denial-of-service attack
is that source addresses of packets are usually spoofed. If
all ISP’s network administrators implement services such
as ingress filtering[6], for example, refuse packet forward-
ing service whenever the packet’s source IP address is not
within the ISP’s administrative domain, then these forged
IP packets will not be able to enter the Internet core and
thereby reducing the possibility of a DDoS attack. How-
ever, ingress filtering requires edge routers to have suffi-
cient processing power, not only to inspect the packet’s des-
tination IP address for normal packet forwarding service,
but also need to inspect the source address and determine
whether it is a legitimate or illegitimate address. Another
major problem about ingress filtering is that this technique
is only effective if there is a widespread deployment in the
networking community such that many ISPs are willing to
deploy this service. Moreover, even with the enabling of
ingress filtering service, attackers can still forge the source
IP addresses as other hosts within their network domain.
This makes eliminating attack traffic or even tracing back
the origin of the attackers difficult. Alternative approach
to DDoS traceback includes input debugging approach[16]
which requires cooperation between system administrators
of different ISPs. Therefore, it may not be able to trace the
attackers in realtime or in the midst of a DDoS attack. Other
approaches such as controlled flooding[3], which either
generates many additional packets to the network (which
can be viewed as another form of DDoS attack), or network
logging[13], which requires additional storage and compu-
tational overhead of the participating routers. All in all, the
above approaches have performance problems and signifi-



cant deployment difficulty.
Recently, Savage[12] proposed a probabilistic marking

method so that participating routers can mark packets tar-
geted to a victim site. Based on the received marked pack-
ets, the victim can construct an attack graph. However, one
major shortcoming of this approach is that it does not iden-
tify and locate the potential attackers. In this work, we com-
plement and enhance the probabilistic marking method by
identifying the locations of these attackers. The contribu-
tions of our work are:

� We propose an effective method so that the victim site
can estimate the local traffic rates of all participating
routers in the attack graph.

� We provide a theoretical approach to determine the
minimum stable time

� ��� �
, which is the minimum time

it takes to accurately determine the local traffic rates.
Note that the lower the value of

����� �
implies that we

can determine the locations of attackers earlier.

The outline of the paper is as follows. In Section 2,
we provide the necessary background of the probabilistic
marking algorithm. In Section 3, we present the traceback
method as well as how we can eliminate potential attackers
for a simple but illustrative linear network. Experiments are
presented in Section 4 to illustrate the effectiveness of our
algorithms. Related work is presented in Section 5. Lastly,
conclusion is given in Section 6.

2. Background

IP traceback is an approach to determine the source of
an attack when a DDoS attack occurs. To accomplish this,
whenever a packet traverses a router, the packet will be
marked (either deterministically or probabilistically). The
marked packets are filled with the partial or complete in-
formation of their respective traversed paths. Upon receiv-
ing these marked packets, a victim site can use the marking
information to trace the attackers back toward the sources
(e.g., the originated router of the attack traffic). In the fol-
lowing, we first present the necessary background of the
probabilistic edge marking algorithm[12], which is used by
a victim site to create an attack graph. Given the attack
graph, we then present the methodology to estimate the lo-
cal traffic rate of each router in the attack graph as well as
the minimum time it takes for us to locate the potential at-
tackers.

2.1. Probabilistic Edge Marking Algorithm

One way to implement an IP traceback service is to al-
locate enough space in an IP packet header so that one can
use this space to record the traversed path of a packet. For

example, each router, beside performing the normal packet
forwarding and routing functions, also records or appends
its own ID in the pre-allocated space at the packet’s header
so that when a victim receives a marked packet, victim can
examine the packet’s header and obtain the complete tra-
verse path information of the marked packet. However, one
major problem about this simple approach is that the length
of a traversed path (e.g., number of hops) of a packet is not
fixed. Therefore, it is impossible to pre-allocate sufficient
amount of space in the packet’s header in a prior fashion.
Another technical difficulty of recording a complete path
information of each packet to the victim is that an attacker
can potentially manipulate this path information and fill in
false router’s identification in the packet’s header so as to
mislead the victim site.

Recently, probabilistic edge marking algorithm was pro-
posed by Savage[12]. The idea is that instead of record-
ing the complete path information of a packet, the goal is
to record each traversed edge from the attacker to the vic-
tim site in a probabilistic fashion. Under the probabilistic
edge marking algorithm, three finite fields are pre-allocated
in the IP headers. These three fields are

�
start, end, dis-

tance � . The start and end fields store the IP addresses of
the two routers at the end points of the marked edge while
the distance field records the number of hops between the
marked edge and the victim site. When a victim site is under
a DDoS attack, the victim site will send a “marking request
signal” to a set of routers1 to participate in the probabilis-
tic edge marking process and the participating routers will
mark each packet targeted to the victim site with probability� . Whenever an packet which is targeted to the victim site
passes through a router in the enabling set, the router, upon
deciding the out-going edge of this packet through the stan-
dard routing table lookup, also marks the out-going edge to
this packet’s IP header with a probability � . In this case, the
router records its IP address into the start field and sets the
value of the distance field to zero. If the router decides not
to mark the packet, the router checks whether the distance
field is equal to zero. If it is equal to zero, the router records
its IP address in the end field and then increments the dis-
tance field by one. If the distance field is not equal to zero,
the router simply increments the distance field by one. Note
that the mandatory increment of the distance field is cru-
cial so as to minimize the probability of spoofing a marked
edge. Any packet generated by an attacker will have dis-
tance greater than or equal to the hop count between the
victim and the attacker. Therefore, a single attacker cannot
forge any edge between himself and the victim. Figure 1
illustrates the probabilistic edge marking algorithm by each
participating router.

Due to the property of the probabilistic marking algo-

1The set of routers can be all routers which are within ����� hops away
from the victim site.



Marking procedure at router R:

for (each packet � targeted to the victim
�

)
�

generate a random number � between [0..1);
if ( ��� � ) /* router � needs to mark the packet */

write � into � .start and 0 into � .distance;
else /* router � doesn’t need to mark the packet */

if ( � .distance == 0)
write � into � .end;

increment � .distance;

Figure 1. Probabilistic Edge Marking Algo-
rithm for each participating router.

rithm, each traversed edge of an attacking packet will have
a different probability of being marked or unmarked. Let� ���
	��

denote the probability that a victim site will find an
edge which is

	
hops away as a marked edge. In general,

we have 

��������� ����������� � �"!$#�% (1)

In other words, an edge which is
	

hops away from the
victim

�
will only be marked if a router which is connected

to that edge decides to mark the packet and the remaining
routers along the packet’s traversed path decide not to mark
(or reset the mark) this packet. Let

��& �'	(�
be the probability

that a victim
�

will not find an edge which is
	

hops away
as a marked edge. We have


) �����*� ��������� �,+�- �.!/#0% (2)

In other words, all routers along the path to the victim de-
cide not to mark the packet. Figure 2 illustrates the set
of marked and unmarked edges collected by the victim

�
under a simple linear network topology. In this example,
the victim

�
can collect 4 types of packets. Three of them

are marked packets with marked edges
� �"1�2,�43 � , � ��3�2,�65 �

and
� �"57298 �

. Also, the victim
�

can also receive unmarked
packets.

A victim
�

, upon receiving packets, needs to first fil-
ter out those unmarked packets (since they don’t carry any
information in the attack graph construction). For all the
collected marked packets, the victim needs to execute the
graph construction algorithm so as to re-construct the at-
tack graph. Figure 3 illustrates the attack graph construction
algorithm.

One major shortcoming of the probabilistic edge mark-
ing algorithm [12, 14] is that it does not provide an effective
mean to locate the positions of potential attackers. In gen-
eral, the attack graph only provides the topology of traffic
which was targeted to a victim site. In the following, we
present an effective methodology to locate the potential at-
tackers.
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Figure 2. Example of a Probabilistic Edge
Marking.

Attack Graph Construction Procedure at victim
�

let : be a tree with root being victim
�

;
let edges in : be tuples(start,end,distance);
for (each received marked packet � )

�
if ( � .distance==0) then

insert edge ( � .start,
�

,0) into : ;
else

insert edge ( � .start, � .end, � .distance) into : ;
�
remove any edge ( �;2=<�2 	 ) with

	?>@ distance
from � to

�
in : ;

extract path ( � �BACA �ED ) by enumerating acyclic paths
in : ;

Figure 3. Attack Graph Construction Algo-
rithm.

3. Attacker Traceback

The marked packets collected by a victim can serve two
purposes. First, they are used to create an attack graph : .
Secondly, one can also use these marked packets to gener-
ate statistical information so as to traceback the potential
attackers. We will show that based on the collected marked
packets, we can deduce the local traffic rate for every router
in the attack graph : wherein local traffic of router � �

is de-
fined as the traffic generated from the local network domain
of � �

to the victim site
�

. Based on the traffic intensity of
each of the local traffic rate at each router, we can deter-
mine the possible location of the attacker. It is important
to point out that one major technical difficulty in estimat-
ing the local traffic rates is to determine the minimum stable
time

� �����
, which is the minimum time we need to collect

the marked packets so that the calculated local traffic rates
are correct and stable. In the following two subsections, we
illustrate how we can determine the local traffic rates and
the minimum stable time.



3.1. Determination of Local Traffic Rates and Min-
imum Stable Time �������

To illustrate the methodology, let us consider the follow-
ing illustrative example. Figure 4 illustrates a linear topol-
ogy with

	
routers � �

, where ������� 	
. Router � �

receives
its local traffic (e.g, traffic which is generated from its local
network domain) to the victim

�
. Let � � denotes the av-

erage local traffic rate, in unit of packets per second, from
the router � �

to the victim
�

. Each router also performs
packet routing/forwarding for all upstream traffics which
are targeted to the victim

�
. For example, router � �

in
Figure 4 performs packet routing/forward for traffic � D for� @ � 2��
	�� 2 A A9A 2 	 . The main idea is that if one can estimate
the local traffic rates � � for all these routers from the re-
ceived marked packets, then based on the intensity of these
traffic rates, one can identify the location of the attacker.

Rd Rd-1 R3 R2 R1 V

λd λd-1 λ3 λ2 λ1

......

local network
domain of R1

local network
domain of R6

Figure 4. Linear Topology with local traffic
rates � � to the victim

�
.

Due to the nature of the probabilistic marking, each
router may mark any local or upstream transit packet to the
victim

�
. If the router � D decides to mark a transit packet,

then it resets the packet’s marking, if there is any, by any
upstream routers of � D . Let �
 D � �=� be the random variable
denoting the number of marked packets received by the vic-
tim

�
at time

�
such that the start field is equal to router � D ,

for ��� � � 	
.To compare these random variables �
 D � �=�

for ��� � � 	
, we need the following definition from[11].

Definition 1 Let � , � be two random variables. We say �
is stochastically larger than � , denote as ��������� , if

Prob[ ����� ] � Prob[ ����� ] ��� .

It is clear that if we collect marked packets for a sufficiently
long period, then we have the following relationship:� �! �#" � !�$&% � �! + - �#" � for ' � �)( % % %*( �E� � . (3)

The above relationship holds because

1. Each router carries its local traffic and upstream transit
traffic to the victim

�
. In a long run, the number of

marked packets by � D is greater than the number of
marked packets by � D�+;5 .

2. Each router � D will probabilistically mark a transit
packet to the victim

�
. Therefore, the router � D erases

any edge marking by a upstream router.

Let

 D � �=� be the number of marked packets received by the

victim
�

at time
�

such that the start field is equal to router� D . We have the following relationship: �! �#"B���
, �- .0/ !21 . "&3 ����������� !54 - for ' � �6( % % %7( � . (4)

The first term corresponds to the aggregated number of
packets targeted to victim

�
at time

�
, the remaining term is

the probability that these packets are marked by � D and that
these packets are not marked by any downstream routers of� D . Equation (4) is a system of triangular equations, we can
arrange the above equations and obtain the local traffic rates� � at each router � �

as:1 . � 8 9;:)< %>=%@? < - 4 ?A= :*BDC E � �9GF�< %>=%@? < - 4 ?A= F BDC � 9GF0H C < %>=%I? < - 4 ?5= F �KJ E J � � � % (5)

The remaining technical issue is, to have an accurate esti-
mation of these local traffic rates, we have to make sure that
the conditions in Equation (3) are satisfied. It is not difficult
to observe that these conditions are not satisfied, for exam-
ple, when the duration of collecting these marked packet is
very small (e.g

�MLON
). In the following, we provide an

analytical method to derive the minimum stable time
� �����

such that the conditions of Equation (3) are satisfied. Once
these conditions are satisfied, we can then use the estimate
of the local traffic rates based on Equation (5) to traceback
the potential attackers.

To simplify the notation, let us define:�1 ! �
, �- .0/ ! 1 . 3 ����������� !A4 - for ' � �)(�P
( % %,%5( � (6)

where
	

is the number of hops from the victim
�

to the
furthest routers in the attack graph. Assuming that the ran-
dom variable �
 D and �
 D�+;5 are Poisson random variables,
we can re-formulate the problem of finding the minimum
stable time

� ��� �
such that:

Prob[
� �! �#"�� .0Q � ! � �! + - �#"�� .0Q � ] ! � %#RASUT�$�R5VXW �ZY '�[]\ �6( % % �_^ (7)

where � �a`6b*cU�U`edXf0g is a large probability (e.g., � �a`6b7cU�X`6dXf0g @N A h_i
). In other words, we want to find the minimum time� �����
such that with a very high probability, the number of

collected marked packets for router �4DAj 5 is higher than the
number of collected marked packets for router �4D for �k�� � 	

. Since the random variables �
 D � �=� and �
 D�+;5 � �=� are
Poisson random variables, we have

Prob[
� �! �#"�� .IQ � ! � 2! + - �#"�� .IQ � ] �l- m*/on

Prob[
� �! �#"�� .IQ � !�p ]Prob[

� �! +�- �#" � .IQ � �qp ] �l- m*/onsr l-Qe/tm � �1 ! " � .IQ � Qu�v w < 4yxz5{ %#| F0} =#~ � �1 ! + - " � .IQ � mp v w < 4�xz5{ H C %�| FI} =Y '�[�\ �6( %,% %5( �_^ % (8)



Based on the above expression, we can easily determine the
minimum stable time

��� � �
using some standard numerical

methods[4]. Figure 5 illustrates the “local traffic estimation
procedure” to estimate the local traffic rate of each router in
an attack graph : .

Local traffic rates estimation procedure at victim
�

:

let � be a linear path to the victim
�

;
let ��� be the set of routers along the path � ;
/* Note that � and ��� are derived from */
/* the probabilistic edge marking algorithm. */
set stable = false;
while (stable == false)

�
/* has not reached

� ��� �
yet */

collect marked packets for some time;
for (each router � �

in � � )
�

calculate the local traffic � � of � �
based on

Equation (5);
�
determine whether we have reached the minimum

stable time
��� � �

or not for each router in ���
based on Equation (8);

if (
� �����

is reached)
stable = true;

�
output: local traffic rates � � for router � �

in ��� .

Figure 5. Algorithm to determine local traffic
rates for every router in the attack graph.

3.2. Elimination of Attackers

In the previous subsection, we have presented the
methodology on how one can estimate the local traffic rate
for each router in the attack graph. In this subsection, we
present the algorithm to find the potential attackers and
eliminate their attack traffics.

Given a linear path � in the attack graph, the victim
�

can choose to reduce its traffic by a pre-determined fraction��� & �ad
	�	 � � �
. To reduce the traffic, the victim

�
determines

the local traffic rates for all routers in the path � , then it
sorts these traffic rates in an non-increasing order. The vic-
tim

�
then sends signal to a subset of routers along the path

� and instructs these routers to stop forward their respective
local traffics to the victim

�
. Figure 6 illustrates the proce-

dure to eliminate the attacker’s traffic to victim
�

. We refer
readers to [8] for the illustration of algorithm for determin-
ing local traffic intensities so as to locate potential attackers.

Eliminate Potential Attackers along path �
Let � be a linear path to the victim

�
;

Let ��� be the set of routers along the path � ;
Derive the local traffic rates � � for router � �
� ��� based

on the “Local Traffic Estimation procedure”;
Sort

� � � � in non-increasing order and let the
sorted sequence be

���� � � ;
Find the “minimum” ��� such that

� F �{�� C �� {� :� � C � � � ��� & �ad�	�	 � � �
;

Send control signals to routers
� � D � 5���D�� � � so that routers

can stop their local traffic to victim
�

;

Figure 6. Algorithm to find the potential at-
tackers and eliminate their attack traffics.

4. Experiments

In this section, we perform experiments to illustrate the
effectiveness in locating the attackers. In particular, we
show the correctness of using Equation (8) to find the min-
imum stable time

����� �
such that we can compute the inten-

sities of the local traffic rates for all routers in : . Note that
a smaller value of

����� �
implies that we can find the location

of the attackers earlier. We also illustrate various factors
which can influence the values of the minimum stable time
� �����

. Unless we state otherwise, the experiments we carry
out are based on the linear topology depicted in Figure 7.
To derive the attach graph, the victim

�
informs the partic-

ipating routers to mark packets with probability � @ ����� i .
To estimate whether we have reached the stability condi-
tions specified by Equation (8), we set � �a`6b*cU�U`edUf�g @ N A h_i

.
Normal local traffic from each router is generated based on
a Poisson process with an average rate of 100 pkt/sec. We
define a variable, Attack Traffic Ratio (ATR), which is the
ratio of the attack average traffic rate to the normal average
local traffic. For example, if the normal average local traffic
is 100 pkts/sec and ATR is set to 20, then the attack average
traffic rate is equal to 2000 pkts/sec.

Rd Rd-1 Rd-2 R3 R2 R1 V

λd λ1λ2λ3λd-2λd-1

Figure 7. Network Topology for Exp. 1 and 2.

Experiment 1: (Correctness of Using Equation (8) to
estimate the minimum stable time

����� �
and the perfor-

mance tradeoff of � �a`6b*cU�U`edUf�g ). In Experiment 1.A, we use



a linear topology in Figure 7 with 25 routers (e.g.,
	 @ � i ).

There is one attacker and he is located at the furthest router�43�� and the ATR is 20. The normal traffic and the attacker
traffic is generated using three methods: (1) Poisson pro-
cess, (2) constant packet rate (e.g., a rate of 100 pkt/sec
implies that every 0.01 second, there is a new packet gener-
ated by a router), (3) burst rate (e.g., a rate of 100 pkt/sec
implies that we generate 100 pkts in one burst for every sec-
ond). To compute the minimum stable time

� � � �
, we use

the mathematical derivation in Equation (8). Table 4 illus-
trates that different values of

�������
, our theoretical computed� �a`6b7cX�U`edUf0g value is very close to the simulated � �a`6b*cU`edUf0g val-

ues for different traffic generation processes. This indicates
that we can accurately estimate the minimum stable time
� � � �

for different traffic arrival processes. This indicates
that our method is very robust and accurate in estimating
the local traffic rates.

Table 1. Minimum Stable Time: Theoretical
vs. Simulation Results for different packet
generation processes.

� �
.IQ

(sec) � %>R5SUT�$ R*VXW � (%)
Theoretical Simulation
Computed

Values Poisson Constant Burst

5.0 79.46 79.37 79.69 79.88
10.0 87.35 87.36 87.36 87.32
15.0 91.80 91.74 91.78 91.84
20.0 94.55 93.93 94.48 94.59
25.0 96.31 96.19 96.21 96.54

Equation (8) indicates that if the stochastic relation-
ship in Equation (3) are satisfied with a high probability� �a`6b7cX�U`edUf0g , the estimation of local traffic will become ac-
curate. The accuracy can be expressed by the variance of
the real traffic rates.

In Experiment 1.B, we illustrate how the parameter� �a`6b7cX�U`edUf0g affects the quality of the estimated minimum sta-
ble time

��� � �
. Figure 8 illustrates that for different values

of � �a`6b*cU�U`edXf0g , we have different values of
�������

and its as-
sociated variance. Figure 8 shows that the variance of the
minimum time estimation approaches to zero (e.g, which
represents a highly accurate estimation of

� ��� �
) when we

set � �a`6b7cX�U`edUf0g � N A �
. Of course, a higher value of � �a`6b7cX�U`edUf0g

also implies a larger value of
� �����

, which can affect how
quickly we can determine the location of the attackers. Nev-
ertheless, because

� ��� �
is less than 60 seconds, this implies

that we can quickly response to the DDoS attack and locate
the attackers.

Experiment 2: (Effect of the network’s diameter,
number of attackers and attack traffic intensity to the
minimum stable time

�������
). In this experiment, we illus-
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Figure 8. Relation between Variance of Attack
Traffic and Minimum Stable Time.

trate how the length of an attack path, the number of attack-
ers, and the attack traffic ratio ATR can affect the values of
the minimum stable time

��� � �
.

In Experiment 2.A, we study the relationship between
the length of an attack path and the minimum stable time.
We use a linear network topology with varying length of at-
tack path and compute the minimum stable time

� ��� �
. As-

sume an attacker locates at the furthest router (e.g., � g ) and
ATR is equal to 20. Figure 9 shows that as the length of
an attack path increases, the minimum stable time

� � � �
also

increases. The reason for this linear relationship is that the
victim

�
needs to take a longer time to collect sufficient

number of marked packets from the further router.
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Figure 9. Relationship between Length of At-
tack Path and Minimum Stable Time

� ��� �
.

In Experiment 2.B, we study how the number of attack-
ers and their relative positions can influence the value of the
minimum stable time

� � � �
. We consider three attackers in

a linear network topology and these three attackers are dis-
tributed by three different configurations. For configuration
I, these three attackers are located in routers � 5 2 � 3 and



� 1 (e.g., the 3 closest routers to the victim
�

). For con-
figuration II, these three attackers are located in the three
furthest routers from the victim

�
. In configuration III,

these three attackers are evenly distributed around the lin-
ear network, for example, they are located in routers ��� : � F���where

	
is the length of attack path and � =1,2,3. Figure

10 illustrates the minimum stable time when ATR @ � N and� �a`6b7cX�U`edUf0g @ N A h_i
. We observe that when the attackers are

closer to the victim (e.g, configuration I), the achieved min-
imum stable time is lower than other configurations. The
minimum stable time

�������
achieves highest value when at-

tackers are evenly distributed in the network (e.g, configura-
tion III). The reason for this ordering is because the estima-
tion of local traffic rates at the furthest router takes longer
time to become stable while the estimation of local traffic
rates at the nearest router takes less time. Regardless of the
distribution of the attackers’ locations, we can determine
their locations within 30 seconds, which shows the effec-
tiveness of the proposed methodology.
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Figure 10. Relationship between Length of At-
tack Path and Minimum Stable Time
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for

different relative positions.

5. Related Work

One weakness of the IP protocol is that the source ad-
dress can be filled by the hosts [2]. There is no provision to
discover the true origin of the packet. Various researchers
have proposed different approaches to solve the attack prob-
lem, including throttle technique[18].

While ingress filtering can minimize the number of at-
tack packets, the best way to address the denial-of-service
attack is to traceback the attackers and stop their attacks.
One of the traceback approaches is called the link testing.
Link testing is to interactively test its upstream link starting
from the closet routers. This process is repeated recursively
until the source of attack is found. There are many ways

to implement the link testing and we explain two of them:
input debugging and controlled flooding. For input debug-
ging, the victim develops attack signature based on the char-
acteristics of the attack packets. Then victim requests net-
work administrators to filter attack packets on some egress
port and identifies which ingress port they arrived from. The
procedure is repeated recursively and the origin of the attack
can be found. This approach is usually implemented man-
ually and Stone[16] proposed automatic way to trace the
attacker within their own networks. But the communication
overhead for exchanging message is very high and opera-
tions are constrained by different network administrations.
Burch and Cheswick[3] proposed another approach which
is called controlled flooding. Victim interactively floods its
upstream links starting from the closet routers. Then the
victim observes the changes in the rate of attack packets
and identifies which link the attack packets came from. Se-
lective flooding is repeated to further routers until the full
attack path is found. Controlled flooding consumes many
network resource such as network bandwidth and can be
considered as another form of attack.

Both link testing approaches require the attack remains
active during traceback process. Logging is another ap-
proach to traceback even after the attack has completed.
Partial packet information will be stored in routers for the
traversed packets and this information provides a trail of the
attack path. Full attack path can be reconstructed by apply-
ing some data extraction methods. The advantage of this
approach is that it does not increase traffic flow, but it in-
creases the storage requirement of the participating routers.
Snoeren et al.[13] proposed efficient hash-based technique
to store the packet digestion, and stated the storage require-
ment is approximately below one percentage of the link ca-
pacity per unit time. However, because tens of thousands
of packets can traverse a router each second, the logging
data can still grow quickly to an enormous size and this is
especially true for high speed link. Therefore, database in-
tegration management, processing and storage overhead of
routers would be a problem.

While logging requires huge amount of space in each
router, Bellovin[15] proposed ICMP traceback (and later
extensions by Wu et al.[17, 9]) which can traceback the
attackers without incurring much overhead on the routers.
The routers probabilistically generates an authenticated
copy of a packet, including information about the adjacent
routers along the path to the destination. These information
can be used to reconstruct the path to the attackers. How-
ever, ICMP traffic is different from the normal traffic and
may be blocked or rate limited. It also needs key distri-
bution management to deal with the faking ICMP packet
problem.

Savage et al.[12] proposed probabilistic marking for
traceback without generating separate ICMP packets to the



victim. Routers mark packets probabilistically and store
the partial path information in the IP header. Each piece
of information represents a sample edge of the attack path.
Victim collects the attack packets and can reconstruct the
attack path based on the partial path information. This ap-
proach does not need the coordination among the network
administrators and it does not increase the traffic flow or
the storage requirement of a router. Lee and Park[10] ana-
lyzed this marking approach and pointed out that spoofing
of the marking field may impede traceback by the victim.
Attackers may choose the spoofed marking value, source
address to hide themselves. Dean et al.[5] formulated the
traceback problem as a polynomial reconstruction problem,
They used algebraic coding theory to encode traceback in-
formation in the packet, similar to Savage approach. It also
suffers the same spoofing problem and may be more vul-
nerable without the distance field in the marking. Song
and Perrig[14] reported that if the victim knows the map
of its upstream routers, it does not need the full IP address
in the packet marking. They improved Savage’s marking
approach by hashing so as to achieve a lower false posi-
tive rate and a lower computation overhead. They proposed
efficient authentication of packet markings to filter packets
with spoofed markings from the attackers. Note that ap-
proaches by Savage and Song[12, 14] provide the topology
of the attack graph. Our approach can be view as a comple-
mentary approach to their so as to locate potential attackers
in the attack graph.

6. Conclusion

In this paper, we consider the traceback problem during a
DDoS attack. Instead of dealing with the issue of detecting
a DDoS attack, we address how we can locate and elimi-
nate potential attackers. Our approach uses the probabilistic
marking algorithm: a victim site

�
, upon discovering that

it is being attacked, will request a set of routers to mark all
packets target to

�
. Based on the collected marked packets,�

can then construct an attack graph. We enhance the prob-
abilistic marking algorithm by determining the local traffic
rate of each router in the attack graph. Based on the traffic
intensities, we can send signal to the corresponding routers
to eliminate the attack traffic. One important technical con-
tribution we made is that we provide a theoretical approach
to determine the minimum stable time

����� �
, which is the

minimum time it takes to accurately determine the local
traffic rate of every participating router in the attack graph
so that we can locate the potential attackers. We carried out
experiments to illustrate the effectiveness and robustness of
our algorithms. We showed that we can locate attackers
within a short duration. We believe this is a valuable first
step towards an automated network-wide traceback facility.
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