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1. INTRODUCTION

Network (positive) externality describes the phenomertaat t
when people align their behaviors with others, they canrirgu
explicit benefit [2]. A good example of network externalisythe either because it is initially infected, or it contractedus from its
adoption of new technologies. For example, when companies i infected neighboring nodes. Hence, the final state of ad® be
troduce smartphone to the market, the benefit of smartphmne t €xpressed in terms of the following recursive equation:

eople is determined blgow manypeople are using it. Network )
gxteenality has been eg'tyensively );Ft)udi%d. Howeve%, maayipus 1-Xi=(1-ai) H (1-0;:X;) VieV, @)
results, e.g., [2] only focus on the impact of populatioresin net- gt

ability . Each node has an initial state of being infected or not.
Let us denote it byr; wherez; = 1 if it is initially infected and
x; = 0 otherwise. Hence, at the steady state, a node is infected

work externality and only capture the influence of populatize
on people’s willingness to adopt to a new technology. Theyndit
consider the effect of heterogeneity, for example, difiergeople
can cast different influence on others and also differenpleecan
be influenced differently. In [3], the authors consider thifuience
of network externality on security measures deployment. fikie
ther enhance and generalize the work by considering thedngba

wheref;; is a random variable indicating whether the edge)

is occupied or not. According to previous discussiég; is a
Bernoulli random variable with P#;; = 1) = ¢. With Equa-
tion 1, the final probability that a node is infected can bevaerby
using the local mean field technique [3] given the initiallpability

of infection. Note that the infection can incur certain losa node.
So a node needs to decide whether to invest in self-protetdide-

node heterogeneity and differentiation. crease the infection probability or not by comparing theeeted

payoffs using the economic model, which we state below.
Economic Model: Every nodei has an initial wealthv; € Ry.. A
node’s utilityu(y) is a function of wealthy € R. In our study, we
consider nodes anesk averse i.e., the utility function is strictly

! ) ; : increasing and concave in However, for simplicity of illustration
differential treatmenbf different types of nodes and consider the i this short paper, we assume that it is linear. If nodginfected,
impact of network externality in our evaluation. Our mode! i~ then it will incur a loss of; € R+.. In order to reduce the proba-
cludes two parts: the epidemic model and the economic model. jjity of being infected, the node can consider some sedtaution

The epidemic model is used to characterize the spread & @Iru  measures, such as buying anti-virus software, installiew/ll etc.
malware in a network. The economic model is used to evalt@te t oy simplicity of analysis, we assume that the choice of @riad-

expected payoff of nodes. Based on the epidemic and economicyarding self-protection is a binary decision: either thdenmvests
model, nodes can determine whether to invest in securitiepro it a cost ofe;, or it does not invest at all. If it decides to invest,
tion or not by evaluating their expected payoff. _ it can still be infected with probability~. Else, it will be infected
Epidemic Model: Let G = (V, E) be an undlrected graph with  \ith pT. Obviously we haver~ < p*. We useS and N to de-
vertex setl” and edge sekl. Fori,j € V, if (i,j) € E, then note the economic state of a node that it invests or does nestin
nodesi and; are neighbors and we use~ j to denote this rela- i security protection respectively. A node makes the deciby

tionship. LetX = {healthyinfected represent the set of states  maximizing its expected utility. In stat¥, the expected utility can
each node can be in. If nodas infected (healthy), theX; = 1 be expressed as:

(X: = 0). Each infected node can contaminate its neighbors in- N N
pru(w—10)+1—-p" ))u(w), (2

dependently with probability. Once a node is infected, it cannot
wherep” is the final probability of a node being infected when it

recover to the healthy state. Note that this is similar toktbed
percolation procesg] in which every edge is occupied with prob- initially did not consider security protection, ahi the loss due to
infection. The expected utility of a node which initiallytscribed

to security protection is:

2. MODEL

In this work, we present the mathematical model on how sgcuri
protection can limit the spread of virus, in particular, welude
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wherep® is the final probability of a node being infected when it
initially subscribed some self-protection measures wiht ©f c.
Note thatp”¥ andp® are functions ofp~ andp™, as well as the
infection probabilityq. They can be determined by the epidemic
model and can be derived using Equation (1) with the localrmea



field technique [1, 3].

Each node needs to consider whether it should subscriberte so
self-protection measures. The decision is based on theotast
vesting in security measure, as well as the risk loss of biing
fected. The decision is non-trivial because one has to denghe
externality effectIn general, a node needs to compare the cost on
security investment and the risk. In particular, nedeill choose
to invest in security protection if and only if

4)

In [3], the authors analyzed the case bbmogeneouself-
protection cost and risk loss, i.e., nodes, independertieif ton-
nectivity, will have the same investment cost and risk Iddew-
ever, this is not reasonable in practice, since many nodes di&
ferent risk loss. For example, nodes with low degree, reptiasy
individual users, have low risk loss, while nodes with higlyee,
representing large companies, have high cost and secigityfr
they are crippled by virus. Nodes with high degree are thdse w
have high level of interaction with other nodes. Also, thasci-
sions can have higher influence on others than those nodks wit
low degrees. Thus, nodes need todifferentiatedaccording to
their degree to represent different kinds of users in a nétwti
is important to incorporate node heterogeneity in the maahel
analyze the effect. It can also help us to understand theduel |
of self-protection measure adoption in real life and aldtedint
levels of adoption extent in different social classes.

In the following, we consider a Erdés—Renyi random graph
G (n, p) with n nodes, wher@ = \/n is the probability that every
possible node paifi, ), 1 < i < j < n, is connected. In the limit
of largen, the degree of nodes in the random graph follows the
Poisson distribution, i.epr = e*X*/k!. All results below can
be extended to random graphs with general degree distiib[4].

¢ < (PN =)l

3. DIFFERENTIAL TREATMENT: TWO

TYPES CASE

Let us classify nodes into two types according to their degre
Let k; denote the degree of node We define a degree threshold
K. If k; < K, then the cost of self-protectionds and the loss due
to being infected ig,. On the other hand, i; > K, the cost of
self-protection isc; and the loss due to being infectediis It is
reasonable to assume that< c; andl; < l5. The initial proba-
bility of being infected is determined by economic state:for S
andp™ for N. All edges have the same contraction probabijity

Assume that initiallyy; (v2) fraction of the nodes with degree
k < K (k > K) will invest in self-protection. Using the local mean
field technique [1, 3], we can calculate the average final givoity
of nodes being infected , which we denotefhy

Proposition 1. If 4; fraction of nodes with degrele < K and~y»
fraction of the nodes with degrée > K invest in self-protection,
then h, the final average probability of nodes being infected, is
given by the unique solution {f, 1] of:

(" =p )l Y pk)(1 - hg)"*

k<K

h=1—(1—-phe " —

+72 > p(k)(1—hg)"],

kE>K

®)
wherep(k) = e~ *)\*/k! is the probability mass function of the
degree distribution of random graph.

Letp; (pl¥) denote the final infection probability of a node which
has degreé < KC and has initialled subscribed (not subscribed) to

the self-protection mechanism. Similarly, &t (p5') denote the fi-
nal infection probability of a node which has degkee K and has
initially subscribed (not subscribed) to the self-pro@ttmecha-
nism. With Proposition 1, we can derive the following coiatitl
probabilities:

Corollary 1. For nodes with degregé < IC,
st]c p(k)(1 - qh)k

pi=1-(1-p") Sor (6)

P =1-(1-p) Z’“S’CZ’; (jz(;(;)qh)k (7)
For nodes with degregé > K, we have

s eI

i =1- o Beg0d)

Each node needs to make a decision to perform self-protectio
or not by maximizing the expected utility. Nodes will invest
self-protection if their utility with investment is greatéhan that
without investment, so

= Pr((pY — p?)l1 > c1), (10)
= Pr((py’ — p3)l2 > c2). (11)

Note that the conditional probabilitigs’, pi¥ andps, py are
functions ofy; and .. Equations (6) to (11) form fixed point
equations. By Proposition 1 and Corollary 1, we can compage t
utilities to determine the fraction of users that will invés self-
protection. Fok < K, we have

Y1
Y2

Y-l + ) = (Y —pdh — e
S ere POR)(1 — gh)*

=@ -p) L—c. (12)
Zkg)cp(k)
_ k)(1—qh)* .
Let fi(vi,72) = (p" —p )% (becauseh is a

function ofy; and2), then Equation (12) becomes:
13)

Here, f1(y1,7v2) = (pY —p?) is the probability reduction for nodes
being finally infected if they invest in self-protection.niarly, for
k > IKC, we have

il — (pigll +c) = fil71,2)h —ca.

Pyl — (pSla+c2) = (p" —p ) fa(m1,72)l2 — c2,  (14)

k
where f2(y1,72) = (p™ — p’)%. It is easy to
verify that bothfi (v1, v2) and f2(y1,v2) are increasing functions
in 1 and~2, which indicates that; and~- degenerate to indica-
tor functions. In other words, either no nodes will invesisgif-
protection, or all of them will invest in self-protection.hik also
shows the effect of network externality: the value of iniregtin
self-protectionincreaseswith the number of nodes doing the in-
vestment.

It can be shown that forany < v, < 1and0 < 2 <1,

Fa(y1,72) < fr(yi, 72)s (15)

which indicates that nodes with higher degree are lesstsentd
invest in self-protection. In other words, investing infqalotection
will lead to lower reduction in the final infection probalbjifor
nodes with higher degree.



Nodes can determine whether to make investment or not by com-

paring the expected profit of investmefit(y1, v2)l1 with the cost
c1 for nodes with lower degrees arfd(y1, v2)l2 with c2 for nodes
with higher degrees. We proceed to compArey:, y2) with ¢1 /11
and f2 (1, v2) with ¢z /l2. We have four cases to consider:

Case L. If f1(0,0) > ci1/l1, f2(0,0) > c2/l2, then there is a
unique Nash equilibrium where all the nodes invest in sedtgrtion.
Even if initially none of the nodes invest in self-protectiche
profit of investment exceeds the cost regardless of the degfre
nodes and eventually, all nodes will purchase self-prtedbols.
Case 22 If f1(0,0) > ci/l1, f2(0,0) < c2/l2, then all nodes
with degreek < C will invest in self-protection. This is because
the profit of investment for nodes with lower degree excebds t
cost while the profit is smaller than the cost for nodes witfhbr
degree.

o If f2(1,0) > c2/l2, then all nodes with degree higher thidn
will invest in self-protection. In this case, the profit ofest-

ment for nodes with higher degree increases since nodes wit
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Figure 1: Influence of parameters on thresholds

vary p~ from 0.1 to 0.8. The figure shows how the reduced infec-

htion probability (thresholdsyi (y1,v2) and f2(v1,v2) change with

lower degrees will do the investment. Hence, the investment »_ - From the figure, we can sefe(v1,72) > fa(71,72), which

in security by nodes with with degrée< K will incentivize
nodes with degregé > K to invest in self-protection.

o If f2(1,0) < c2/l2 < f2(1,1), there exists &ipping point
~3, such thatfa (1,5 ) = 7=. This implies that if we can of-
fer self-protection tey; fraction of nodes with degree higher
thank for free, then this will incentivize all nodes with higher

verifies previous claim.fi(v1,y2) and f2(v1,y2) decrease ag~
grows, which indicates that self-protection measures Witer
quality imply more nodes to take the self-protection measut his

is because the network externality effect plays a small ifdlee
self-protection quality is high. Notice th#t (0,1) — f1(0,0), i.e.,

the gap betweerf;(0,1) and f1(0, 0), is greater tharf2(1,0) —
f2(0,0). It means that the adoption of self-protection for nodes

degrees to do the investment. The price of anarchy can be ex-With lower degree can incentivize higher degree nodes t@sinn

Sk<ic PePL (1,001 +Y s i Prpd (1,0)12
o <
pressed ag — = S L Ten T oo P PE (LD Ten)”

o If c3/lo > f2(1,1), all nodes with degreg¢ > /C will not
perform self-protection.

Case3: If f1(0,0) < c1/l1, f2(0,0) > c2/l2, then all nodes with
degreek > K will take self-protection.

o If f1(0,1) > c1/l1, then all nodes with degree lower than
K will take self-protection. In this case, the investment in
security by nodes with degrée> C will incentivize nodes
with degreek < K to invest in self-protection.

o If f1(0,1) < c1/li < f1(1,1), there exists &ipping point
~1, such thatf1 (77,1) = % The price of anarchy can be

Sr<ic PEPY (0,111 +3 hs i PRPS (0,1)12
ac =
expressed N Pe@F (LD +e)+E o Pr(PS (1L DIzFea)

e If ¢1/l1 > f1(1,1), all nodes with degree lower thag will
not take self-protection.

Case 4: If f1(0,0) < C1/l1 < f1(1,1),f2(0,0) < 62/12 <
f2(1,1), then there exists &pping point~y; and~;. The price of
anarchy can be expressed as

Sr<k PrPL (0,011 4545 k PP (0,0)l2
Ekg)c Pk(Pf(lﬁl)ll +c1 )+Ek>)c Pk(P§(111)12+C2) ’

4. NUMERICAL RESULTS& CONCLUSION

In this section, we present numerical results to show that ho
various parameters may affect the adoption of securityeptimn
measures. In our experiments, we set the average degreees no
A = 5 and the degree threshatd = 5.

First, we fix the initial probability of infectiop™ without secure
measure and study the effectof, the validity of self-protection,
on the adoptability of self-protection measures. The tésghown
in Figure 1(a). We sei™ = 0.9, contagion probability = 0.3 and

self-protection more than that higher degree nodes caneimfi
those lower degree nodes. It is somewhat counter intuitivees
we expect that nodes with higher degree can inflict more inflae
One possible explanation is that nodes with lower degreestak
larger percentage of all the nodes, i.e(APK K) > Pr(k > KC).

In Figure 1(b), we investigate the effect of contagion pioligy
q on the the thresholds. We set = 0.4, p~ = 0.1 and varygq
from0.15 t0 0.45. As the figure shows, the thresholds decrease as
grows, i.e., a high contagion probability implies a greatetwork
externality. When the contagion probability is high, takiself-
protection will not lead to significant reduction in the finabb-
ability of being infected if no one decides to take self-patton.
When contagion probability is high, people will decide togst
only if their cost and loss ratia/! is low enough. Hence, high
contagion probability will inhibit nodes to take self-pection.
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