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1. INTRODUCTION
Network (positive) externality describes the phenomenon that

when people align their behaviors with others, they can incur an
explicit benefit [2]. A good example of network externality is the
adoption of new technologies. For example, when companies in-
troduce smartphone to the market, the benefit of smartphone to
people is determined byhow manypeople are using it. Network
externality has been extensively studied. However, many previous
results, e.g., [2] only focus on the impact of population size on net-
work externality and only capture the influence of population size
on people’s willingness to adopt to a new technology. They did not
consider the effect of heterogeneity, for example, different people
can cast different influence on others and also different people can
be influenced differently. In [3], the authors consider the influence
of network externality on security measures deployment. Wefur-
ther enhance and generalize the work by considering the impact of
node heterogeneity and differentiation.

2. MODEL
In this work, we present the mathematical model on how security

protection can limit the spread of virus, in particular, we include
differential treatmentof different types of nodes and consider the
impact of network externality in our evaluation. Our model in-
cludes two parts: the epidemic model and the economic model.
The epidemic model is used to characterize the spread of virus or
malware in a network. The economic model is used to evaluate the
expected payoff of nodes. Based on the epidemic and economic
model, nodes can determine whether to invest in security protec-
tion or not by evaluating their expected payoff.
Epidemic Model: Let G = (V, E) be an undirected graph with
vertex setV and edge setE. For i, j ∈ V , if (i, j) ∈ E, then
nodesi andj are neighbors and we usei ∼ j to denote this rela-
tionship. LetX = {healthy, infected} represent the set of states
each node can be in. If nodei is infected (healthy), thenXi = 1
(Xi = 0). Each infected node can contaminate its neighbors in-
dependently with probabilityq. Once a node is infected, it cannot
recover to the healthy state. Note that this is similar to thebond
percolation process[4] in which every edge is occupied with prob-
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ability q. Each node has an initial state of being infected or not.
Let us denote it byxi wherexi = 1 if it is initially infected and
xi = 0 otherwise. Hence, at the steady state, a node is infected
either because it is initially infected, or it contracted virus from its
infected neighboring nodes. Hence, the final state of nodei can be
expressed in terms of the following recursive equation:

1 − Xi = (1 − xi)
Y

j∼i

(1 − θjiXj) ∀i ∈ V, (1)

whereθji is a random variable indicating whether the edge(i, j)
is occupied or not. According to previous discussion,θji is a
Bernoulli random variable with Pr(θji = 1) = q. With Equa-
tion 1, the final probability that a node is infected can be derived by
using the local mean field technique [3] given the initial probability
of infection. Note that the infection can incur certain lossto a node.
So a node needs to decide whether to invest in self-protection to de-
crease the infection probability or not by comparing the expected
payoffs using the economic model, which we state below.
Economic Model: Every nodei has an initial wealthwi ∈ R+. A
node’s utilityu(y) is a function of wealthy ∈ R. In our study, we
consider nodes arerisk averse, i.e., the utility function is strictly
increasing and concave iny. However, for simplicity of illustration
in this short paper, we assume that it is linear. If nodei is infected,
then it will incur a loss ofli ∈ R+. In order to reduce the proba-
bility of being infected, the node can consider some self-protection
measures, such as buying anti-virus software, installing firewall etc.
For simplicity of analysis, we assume that the choice of a node i re-
garding self-protection is a binary decision: either the node invests
with a cost ofci, or it does not invest at all. If it decides to invest,
it can still be infected with probabilityp−. Else, it will be infected
with p+. Obviously we havep− < p+. We useS andN to de-
note the economic state of a node that it invests or does not invest
in security protection respectively. A node makes the decision by
maximizing its expected utility. In stateN , the expected utility can
be expressed as:

pNu(w − l) + (1 − pN)u(w), (2)

wherepN is the final probability of a node being infected when it
initially did not consider security protection, andl is the loss due to
infection. The expected utility of a node which initially subscribed
to security protection is:

pSu(w − l − c) + pSu(w − c), (3)

wherepS is the final probability of a node being infected when it
initially subscribed some self-protection measures with cost of c.
Note thatpN andpS are functions ofp− andp+, as well as the
infection probabilityq. They can be determined by the epidemic
model and can be derived using Equation (1) with the local mean



field technique [1,3].
Each node needs to consider whether it should subscribe to some

self-protection measures. The decision is based on the costof in-
vesting in security measure, as well as the risk loss of beingin-
fected. The decision is non-trivial because one has to consider the
externality effect. In general, a node needs to compare the cost on
security investment and the risk. In particular, nodei will choose
to invest in security protection if and only if

ci < (pN − pS)li. (4)

In [3], the authors analyzed the case ofhomogeneousself-
protection cost and risk loss, i.e., nodes, independent of their con-
nectivity, will have the same investment cost and risk loss.How-
ever, this is not reasonable in practice, since many nodes have dif-
ferent risk loss. For example, nodes with low degree, representing
individual users, have low risk loss, while nodes with high degree,
representing large companies, have high cost and security risk if
they are crippled by virus. Nodes with high degree are those who
have high level of interaction with other nodes. Also, theirdeci-
sions can have higher influence on others than those nodes with
low degrees. Thus, nodes need to bedifferentiatedaccording to
their degree to represent different kinds of users in a network. It
is important to incorporate node heterogeneity in the modeland
analyze the effect. It can also help us to understand the low level
of self-protection measure adoption in real life and also different
levels of adoption extent in different social classes.

In the following, we consider a Erdös–Rènyi random graph
G(n, p) with n nodes, wherep = λ/n is the probability that every
possible node pair(i, j), 1 ≤ i < j ≤ n, is connected. In the limit
of largen, the degree of nodes in the random graph follows the
Poisson distribution, i.e.,pk = e−λλk/k!. All results below can
be extended to random graphs with general degree distribution [4].

3. DIFFERENTIAL TREATMENT: TWO
TYPES CASE

Let us classify nodes into two types according to their degree.
Let ki denote the degree of nodei. We define a degree threshold
K. If ki ≤ K, then the cost of self-protection isc1 and the loss due
to being infected isl1. On the other hand, ifki > K, the cost of
self-protection isc2 and the loss due to being infected isl2. It is
reasonable to assume thatc1 ≤ c2 andl1 ≤ l2. The initial proba-
bility of being infected is determined by economic state:p− for S
andp+ for N . All edges have the same contraction probabilityq.

Assume that initiallyγ1 (γ2) fraction of the nodes with degree
k ≤ K (k > K) will invest in self-protection. Using the local mean
field technique [1,3], we can calculate the average final probability
of nodes being infected , which we denote byh.

Proposition 1. If γ1 fraction of nodes with degreek ≤ K andγ2

fraction of the nodes with degreek > K invest in self-protection,
then h, the final average probability of nodes being infected, is
given by the unique solution in[0, 1] of:

h =1 − (1 − p+)e−λqh − (p+ − p−)[γ1

X

k≤K

p(k)(1 − hq)k

+ γ2

X

k>K

p(k)(1 − hq)k], (5)

wherep(k) = e−λλk/k! is the probability mass function of the
degree distribution of random graph.

LetpS
1 (pN

1 ) denote the final infection probability of a node which
has degreek ≤ K and has initialled subscribed (not subscribed) to

the self-protection mechanism. Similarly, letpS
2 (pN

2 ) denote the fi-
nal infection probability of a node which has degreek > K and has
initially subscribed (not subscribed) to the self-protection mecha-
nism. With Proposition 1, we can derive the following conditional
probabilities:

Corollary 1. For nodes with degreek ≤ K,

pS
1 = 1 − (1 − p+)

P

k≤K
p(k)(1− qh)k

P

k≤K
p(k)

, (6)

pN
1 = 1 − (1 − p−)

P

k≤K
p(k)(1 − qh)k

P

k≤K
p(k)

. (7)

For nodes with degreek > K, we have

pS
2 = 1 − (1 − p+)

P

k>K
p(k)(1− qh)k

P

k>K
p(k)

, (8)

pN
2 = 1 − (1 − p−)

P

k>K
p(k)(1 − qh)k

P

k>K
p(k)

. (9)

Each node needs to make a decision to perform self-protection
or not by maximizing the expected utility. Nodes will investin
self-protection if their utility with investment is greater than that
without investment, so

γ1 = Pr((pN
1 − pS

1 )l1 ≥ c1), (10)

γ2 = Pr((pN
2 − pS

2 )l2 ≥ c2). (11)

Note that the conditional probabilitiespS
1 , pN

1 andpS
2 , pN

2 are
functions ofγ1 and γ2. Equations (6) to (11) form fixed point
equations. By Proposition 1 and Corollary 1, we can compare the
utilities to determine the fraction of users that will invest in self-
protection. Fork ≤ K, we have

pN
1 l1−(pS

1 l1 + c1) = (pN
1 − pS

1 )l1 − c1

= (p+ − p−)

P

k≤K
p(k)(1 − qh)k

P

k≤K
p(k)

l1 − c1. (12)

Let f1(γ1, γ2) = (p+ − p−)
P

k≤K p(k)(1−qh)k

P

k≤K p(k)
(becauseh is a

function ofγ1 andγ2), then Equation (12) becomes:

pN
1 l1 − (pS

1 l1 + c1) = f1(γ1, γ2)l1 − c1. (13)

Here,f1(γ1, γ2) = (pN
1 −pS

1 ) is the probability reduction for nodes
being finally infected if they invest in self-protection. Similarly, for
k > K, we have

pN
2 l2 − (pS

2 l2 + c2) = (p+ − p−)f2(γ1, γ2)l2 − c2, (14)

wheref2(γ1, γ2) = (p+ − p−)
P

k>K p(k)(1−qh)k

P

k>K p(k)
. It is easy to

verify that bothf1(γ1, γ2) andf2(γ1, γ2) are increasing functions
in γ1 andγ2, which indicates thatγ1 andγ2 degenerate to indica-
tor functions. In other words, either no nodes will invest inself-
protection, or all of them will invest in self-protection. This also
shows the effect of network externality: the value of investing in
self-protectionincreaseswith the number of nodes doing the in-
vestment.

It can be shown that for any0 ≤ γ1 ≤ 1 and0 ≤ γ2 ≤ 1,

f2(γ1, γ2) < f1(γ1, γ2), (15)

which indicates that nodes with higher degree are less sensitive to
invest in self-protection. In other words, investing in self-protection
will lead to lower reduction in the final infection probability for
nodes with higher degree.



Nodes can determine whether to make investment or not by com-
paring the expected profit of investmentf1(γ1, γ2)l1 with the cost
c1 for nodes with lower degrees andf2(γ1, γ2)l2 with c2 for nodes
with higher degrees. We proceed to comparef1(γ1, γ2) with c1/l1
andf2(γ1, γ2) with c2/l2. We have four cases to consider:
Case 1: If f1(0, 0) > c1/l1, f2(0, 0) > c2/l2, then there is a
unique Nash equilibrium where all the nodes invest in self-protection.
Even if initially none of the nodes invest in self-protection, the
profit of investment exceeds the cost regardless of the degree of
nodes and eventually, all nodes will purchase self-protection tools.
Case 2: If f1(0, 0) > c1/l1, f2(0, 0) < c2/l2, then all nodes
with degreek ≤ K will invest in self-protection. This is because
the profit of investment for nodes with lower degree exceeds the
cost while the profit is smaller than the cost for nodes with higher
degree.

• If f2(1, 0) > c2/l2, then all nodes with degree higher thanK
will invest in self-protection. In this case, the profit of invest-
ment for nodes with higher degree increases since nodes with
lower degrees will do the investment. Hence, the investment
in security by nodes with with degreek ≤ K will incentivize
nodes with degreek > K to invest in self-protection.

• If f2(1, 0) < c2/l2 < f2(1, 1), there exists atipping point
γ∗
2 , such thatf2(1, γ∗

2 ) = c2
l2

. This implies that if we can of-
fer self-protection toγ∗

2 fraction of nodes with degree higher
thanK for free, then this will incentivize all nodes with higher
degrees to do the investment. The price of anarchy can be ex-

pressed as
P

k≤K pkpS
1
(1,0)l1+

P

k>K pkpN
2

(1,0)l2
P

k≤K pk(pS
1
(1,1)l1+c1)+

P

k>K pk(pS
2
(1,1)l2+c2)

.

• If c2/l2 > f2(1, 1), all nodes with degreek > K will not
perform self-protection.

Case 3: If f1(0, 0) < c1/l1, f2(0, 0) > c2/l2, then all nodes with
degreek > K will take self-protection.

• If f1(0, 1) > c1/l1, then all nodes with degree lower than
K will take self-protection. In this case, the investment in
security by nodes with degreek > K will incentivize nodes
with degreek ≤ K to invest in self-protection.

• If f1(0, 1) < c1/l1 < f1(1, 1), there exists atipping point
γ∗
1 , such thatf1(γ

∗
1 , 1) = c1

l1
. The price of anarchy can be

expressed as
P

k≤K pkpN
1

(0,1)l1+
P

k>K pkpS
2

(0,1)l2
P

k≤K pk(pS
1

(1,1)l1+c1)+
P

k>K pk(pS
2

(1,1)l2+c2)
.

• If c1/l1 > f1(1, 1), all nodes with degree lower thanK will
not take self-protection.

Case 4: If f1(0, 0) < c1/l1 < f1(1, 1), f2(0, 0) < c2/l2 <
f2(1, 1), then there exists atipping pointγ∗

1 andγ∗
2 . The price of

anarchy can be expressed as
P

k≤K pkpN
1

(0,0)l1+
P

k>K pkpN
2

(0,0)l2
P

k≤K pk(pS
1

(1,1)l1+c1)+
P

k>K pk(pS
2

(1,1)l2+c2)
.

4. NUMERICAL RESULTS & CONCLUSION
In this section, we present numerical results to show that how

various parameters may affect the adoption of security protection
measures. In our experiments, we set the average degree of nodes
λ = 5 and the degree thresholdK = 5.

First, we fix the initial probability of infectionp+ without secure
measure and study the effect ofp−, the validity of self-protection,
on the adoptability of self-protection measures. The result is shown
in Figure 1(a). We setp+ = 0.9, contagion probabilityq = 0.3 and
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Figure 1: Influence of parameters on thresholds

vary p− from 0.1 to 0.8. The figure shows how the reduced infec-
tion probability (thresholds)f1(γ1, γ2) andf2(γ1, γ2) change with
p−. From the figure, we can seef1(γ1, γ2) > f2(γ1, γ2), which
verifies previous claim.f1(γ1, γ2) andf2(γ1, γ2) decrease asp−

grows, which indicates that self-protection measures withhigher
quality imply more nodes to take the self-protection measures. This
is because the network externality effect plays a small roleif the
self-protection quality is high. Notice thatf1(0, 1) − f1(0, 0), i.e.,
the gap betweenf1(0, 1) andf1(0, 0), is greater thanf2(1, 0) −
f2(0, 0). It means that the adoption of self-protection for nodes
with lower degree can incentivize higher degree nodes to invest in
self-protection more than that higher degree nodes can influence
those lower degree nodes. It is somewhat counter intuitive since
we expect that nodes with higher degree can inflict more influence.
One possible explanation is that nodes with lower degree takes a
larger percentage of all the nodes, i.e., Pr(k ≤ K) > Pr(k > K).

In Figure 1(b), we investigate the effect of contagion probability
q on the the thresholds. We setp+ = 0.4, p− = 0.1 and varyq
from 0.15 to0.45. As the figure shows, the thresholds decrease asq
grows, i.e., a high contagion probability implies a greaternetwork
externality. When the contagion probability is high, taking self-
protection will not lead to significant reduction in the finalprob-
ability of being infected if no one decides to take self-protection.
When contagion probability is high, people will decide to invest
only if their cost and loss ratioc/l is low enough. Hence, high
contagion probability will inhibit nodes to take self-protection.
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