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Abstract—P2P streaming tries to achieve scalability (like P2P paths (i.e. multiple spanning trees) for distributing content
file distribution) and at the same time meet real-time playback re-  from a source to each receiver, which is the key for achieving
quirements. It is a challenging problem still not well understood. scalability. The data-driven approach [5], [12], [15], [16], by
In this paper, we describe a simple stochastic model that can . . ' T ’
be used to compare different data-driven downloading strategies not focusing pn trees explicitly, aIIOW_S th(? d'S”'PU“O” paths
based on two performance metrics: continuity (probability of t0 be determined based on data availability, which can adapt

continuous playback), and startup latency (expected time to start to the dynamics of a P2P network.

playback). We first study two simple strategies: Rarest First and . . _
Greedy. The former is a well-known strategy for P2P file sharing ~ Another important contributor to P2P streaming is the body

that gives good scalability, whereas the latter an intuitively Of work on P2P file sharing protocols. The most representative
reasonable strategy to optimize continuity and startup latency and most influential work (in academic circles) is BitTorrent
from a single peer's viewpoint. Greedy, while achieving low (BT) [2], [3]. P2P file sharing is subtly different from P2P

startup latency, fares poorly in continuity by failing to maximize : - . . .
P2P sharing; whereas Rarest First is the opposite. This highlights streaming. On the one hand, it is less demanding since it does

the trade-off between startup latency and continuity, and how Not have real-time requirements; but on the other hand, it is
system scalability improves continuity. Based on this insight, we also more demanding because it requires the entire file (in
propose a mixed strategy that can be used to achieve the bestP2P streaming, peers join the video session from the points
SL g&g&oggz tgl;rn ;'lggfgcfg?ag&l'l?ya“;LCti'LygjﬁeF)ttfr;g tlt“fegeeﬁés determined by their arrival times). Nevertheless, both P2P file
part of a peer’s effort to the immediate playback req’uirements sharing _and P2P streaming need to deal with scalability by
to ensure low startup latency. connecting the peers together to serve each other, and the

works on BT provided the necessary insight in this area.

I Introduction The contribution of the paper is as follows. None of the

) ) studies on P2P streaming so far, to the best of our knowledge,
_ Video streaming over the Internet is already part of our daily, formulated a tractable analytical model to help understand
Infe. Thel engineering of. video streaming from a server to e important system level design issues in P2P streaming -
single client is well studied and understood. This, however, iis is the contribution of this paper. By assuming independent
not scala_ble tp serve a Iarg_e num_ber of chent_s simultaneouslyq homogeneous peers (using the same size playback buffer
The earlier vision for solving this problem is based on 1B,y oy nk selection strategy) in a symmetric network setting,
multicast, which relies on the routers in the network to manage, .onstruct a simple analytical model that allows us to
the distribution and duplication of content from one SOUrG& mpute the distribution of what each peer has in its buffer.
to multiple receivers. Due to technical complexity and oth§{s can use this model to evaluate and compare a variety
deployment issues, IP multicast has not been widely deploygdl.chynk selection strategiesvhich is thecore of the data-
Instead, what emerged is a form of multicast implementeghey approach. Based on a simple model, one can understand
by an overlay network. There are different types of overlaye re|ationships of important system parameters and metrics.
networks, but a peer-to-peer (P2P) overlay network provgs naricular, we first study two strategies: Rarest First and
to be especially scalable. In a P2P ”,etWOfkaeaCh CIIent(';"Sreedy. We show that Rarest First is much better in dealing
also a server (when the P2P network is working well), thySi scale, whereas Greedy is able to produce better playback
when more clients join a multicast session more servers (PegLstormance (continuity) in small scale networks. Also, if all
themselves) are automatically added to share the add't'oﬁébrs use Greedy, the playback delay can be smaller. We

load. also prove an important property of our model, that is a
The earlier work on P2P content distribution was know@ertain number of buffer spaces used together with the Rarest
as application layer multicas{4] or end-host multicasf6]. First strategy can convert a large peer population problem
Since then, there has been a significant body of work on PiZ#o a much smaller peer population problem with equivalent
streaming. In an invited paper [7], the existing approachetayback performance. This insight allows us to propose a
are classified into two categories: onetrise-basedthe other mixed strategy where a part of the buffer space is used to deal
is data-driven Both tree-based and data-driven use multipiith the need for scalability, and the other part of the buffer
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space is used to achieve the best playback performance anc
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data driven approach of P2P streaming, e.g. [1], [5], [9]-[16].

The two most closely related to our work are CoolStreaming One time slot later

[16] and BiTos [12]. Playbac]? Sliding Window |
CoolStreaming [16] is a very important prior study on AN '

data-driven P2P streaming protocols because it is based on | n | """"""""""" kil k | """"" | 2 | ! |

a real prototype implementation and a relatively large scale

experiment (involving thousands of simultaneous peers) in Fig. 1. Sliding Window Mechanism of the buffes

the real Internet. It serves as a proof of concept, and a

benchmark for a real working system. Our model captures

the main ingredients of the CoolStreaming system while sta§@rver which streams chunks of (video) content, in playback
simple enough for analysis. The chunk selection strategyfder. to theM peers. Each chunk has a sequence number,
Rarest First (originally from BitTorrent), is one of the basistarting from1. Time is slotted and the server selects a peer
algorithms we model. The playback performance derived frofg@ndomly in time slot and sends chunkto that peer.

our model matches closely to that observed in CoolStreaming’seach peer maintains a bufféd that can cache up ta

experimental results. Our abstract model allows us to consi@efunks received from the network. We reference the buffer
different chunk selection strategies and gain insight into th@ysitions according to thage of the chunks storedB(n) is
trade-off of different metrics. In the end, we propose a bettgsserved for the chunk to be played back immediatBigt) is
chunk selection strategy and explain why it is better. used to store the newest chunk that the server is distributing

Another interesting data-driven P2P streaming study i3 the current time slot. In other words, when the server is
BiTos [12]. BiTos is also based on BitTorrent. In BiTos, thélistributing chunk? (at time ¢), if ¢ > n — 1 then chunk
chunk buffer is divided into two parts, one part for higf —n + 1 is the chunk being played back by that peer. After
priority chunks and the other for lower priority chunks. Ag€ach time slot, the chunk played back in the previous time
playback deadline nears, a low priority chunk (still missingjlot is removed from3 and all other chunks are shifted up
becomes high priority. A peer downloads high priority chunkgy 1. In other words, the buffer acts as a sliding window into
with probability p, and downloads lower priority chunks withthe stream of chunks distributed by the server, as shown in
probability 1 — p. For each part of the buffer, BiTos still adoptd=igure 1. Each buffer space is initially empty, and gets filled
the Rarest First Strategy. This is somewhat similar to the mix8Y the P2P streaming protocol, either from the server or from
strategy we study, although there are important differenc&$her peers. The goal is to ensuBn) is filled in as many
[12] provides no modeling and analysis of the chunk selectiéine slot as possible, so as to support the continuous video
strategy, and little experimentation to show the advantages dtf@yback and reduce the frame loss probability.

disadvantages. All these issues are dealt with in this paper. In et , (i)[t] denote the probability that thi" buffer space,
fact, BiTos can also be analyzed by our model; but based gf1;), of peerk is filled with the correct chunk at time We
our theory, our mixed strategy should be superior to BiTos.assume this probability reaches a steady state for sufficiently

The organization of the paper is as follows. Section Il is J&'9€ ¢, namely px(i)[t] = pktgi)- We call py,(i) the buffer
the basic probabilistic model; Section Il goes into the detaifecupancy probability of thé"" peef.
of how to model different chunk selection strategies; Section| et ys first consider a simple case that the server is the

IV provides various numerical examples, solved by both thshy means for distributing chunks to peers, then the buffer

discrete and the continuous version of our model, as well gscupancy distribution can be expressed as follows:
validated by simulation. Section V describes application of our )

protocol to real protocol design, and the conclusion is given pe(l) = p(1) = — vk, 1)

in Section VI. M
pe(i+1) = pli+1) =p(i) i=1,2,...,n—1 Vk. (2)

Il. Basic Model Eq. (1) reflects the odds for the local peer to be picked

. ) , by the server, while Eq. (2) reflects the fact that successful

In this section, we present the mathematical model for P2@,n10ading only occurs at the first location of the buffer
streammg applications. Let us first define the notations aﬂ%m the server). The playback performance, giverpby),
assumptions. is equal to, would obviously be very poor for any/ >

Let there be)M peers in the networtk There is a single 1. This simple mathematical argument shows the scalability

1As we will see later, if M is reasonably large then our results are 2Note, the buffer occupancy probability is not a probability distribution of
essentially independent dff, nor do they requiré\/ to be a constant. i since it is not necessarily true that px (¢) = 1.



problem when the server is the only means of distributing the Consider a particular pedr, and assume it selected péer
media. to download a chunk. The selection of a particular chunk to

To improve playback performance, peers help each othdecFWnload is the base on the following events:
when asked. We model the P2P mechanism pslleprocess: . WANT(k,i): B(i) of peerk is unfilled; we abbreviate this
each peer selects another peer in each time slot to try to eyent asiv (k, ).
download a chunk not already in its local buffer. This P2P , HAVE(h,i): B(i) of peerh is filled; we abbreviate this
downloading model has the following implications: event asH (h, 7).
SELECT(h,k,i): Using the chunk selection strategy, peer

. A b tacted b ltiple oth in*
peer may be contacied by muliple other peers In k cannot find a more preferred chunk than that of

a single time slot. In this case, it is assumed that the ; i "
selected peer's uploading capacity is large enough to B(i) th_at sat|sf|es the WANT a'nd HAVE conditions; we
satisfy all the requests in the same time slot. If peers are abbreviated this event &(h, k, ).

selected randomly, the probability that it will be selectegtherefore, we can expregsi) as:

by & > 0 peers isg(k), where

. e qi) = Pr[W(k,i)n H(h,i) N S(h, ki)
s = (M) =) Gres) = PalI (k] Pr{H ()W (R, )]
Pr[S(h, k,0)|W (k,i) N H(h,i)]. 4)

for k& > 0. The likelihood of being selected by many

other peers is low, i.e., when there at€ = 100 peers,  The following assumptions help us to simplify Eq. (4):

the probability that it is selected by more than three peers

is only around 1.8%. « All peers are independent: the probability of the buffer
« If the selected peer has no useful chunk, the selecting state at the same position for different pee(s), are the

peer loses the chance to download anything in a time same. Therefore, B[ (k,i)]= 1 — p(i).

slot. This simplifying assumption can help us to derive « There are a large enough number of peers so that knowing

closed-form expression, and this type of assumption is the state of one peer does not significantly affect the

also made in other P2P file sharing models, i.e., [8]. probability of the state at another peer. This implies that:

Furthermore, we assume homogeneous peers, namely, all Pr[H (h,)|W (k,4)] = PrlH (h,4)] = p(i).
peers use the same strategy to select other peers and chunkSype o nks are independently distributed in the network.
to download. The |mpI.|ca_t|on_ is that in the steady state, all The probability distribution for position is not strongly
peers have the same distributipft) for the buffer occupancy, affected by the knowledge of the state at other positions.

as in the server-only downloading case above. In this paper, This allows us to write the selection function as
we do not consider peer selection strategies. Intuitively and

from previous results in the literature, we know peer selection  s(i) =Pr[S(h, k,7)|W (k,i)NH (h, )] ~Pr[S(h, k,i)],
strategy is an important factor when peers have different
uplink bandwidth, or when the paths to different peers have
different bottleneck capacity. In these scenarios, peers are non-
homogeneous and asymmetric. Peer selection has implications
on system performance and peers’ incentive to contribuBased on the above assumptions, Eq. (4) is:

[3]. Since the focus of this paper is on the performance of ) o ) o

P2P streaming systems, we focus on the case that peers ard(®) ~ [1=pr(@)]pa(i)s(i) = [1 —p(D)]p(1)s(i). ()

homogeneous and adopt the same (random) peer selection
strategy. P ( )P Since each of the terms in Eq. (5) is a probability (in

particularp(i) < 1 andp(i)s(i) < 1), Eq. (3) becomes:
Once a peer is selected, a chunk for downloading must also

be specified. The chunk selection policy can be represented pi+1) = p(i)+[1—p@)p(i)s(i) < 1. (6)

by a probability distributiong, where ¢(i) > 0, gives the The chunk selection strategy(i), the focus of this study, is

probability that the chunk needed to filB(i) is selected. yiscussed in the next section.

Hence, Eq. (2) becomes:

p(i+1)=p@)+q() i=1,...,n—1, (3) I1l. Chunk Selection Strategies

which is independent of the actual state at positioAs
we will show, this assumption is more accurate for some
chunk selection strategies than others.

with the boundary condition op(1) = 1/M. Fori > 0, The simple stochastic model in the previous section set the
q(i) is expected to be greater th@nsince there is a non- stage for us to model and analyze different chunk selection
zero probability that a peer may be found to #l) if it is  strategies. We begin by considering some familiar strategies.
not already filled. This implies(:) is anincreasingfunction The first one is the Rarest First Stratedy which is widely

of 4, hence collaboration by peers improve the playbaadopted in P2P file distribution protocol BitTorrent [2], [3],
performance as expected. and P2P streaming protocol CoolStreaming [16]. The second



one is the Greedy Stratedy(or the nearest deadline firstEq. (7) models the event that the server selects other peers to
strategy), and lastly thmixed strategywhich is a combination upload, and the chunk selection does not occur for all those
of the above two algorithms. positions closer to the deadline thd®(i), with the buffer

By intention, a peer using the Rarest First Strategy wiosition independence assumption stated earlier. Note, the first

select a chunk which has thiewest number of copiem term of Eqg. (8) is the probability the local peer already has

the system. To describe the Rarest First Strategy from tWee chunk forB(j). The second term is the probability that

: the local peer does not have the chunk 8(;) and the
perspective of the buffeB = {B(n),B(n — 1),...,B(1)}, X
let us consider a particular peer, say pkeFrom Eq. (3), we selectlgd tp((ajefrho dc;es% no; haéve t7har: chunk elthgr. 'Il'hg ratlher
know thatp(i) is an increasing function of, thereforep(i+ ol Picated formuia ok(i) (Eq. 7) has a surprisingly simple

1) > p(i) fori=1,...,n—1. Since peers are homogeneous, th%lternatlve form:

inequality implies that the expected number of copies of chunkProposition 1: The selection functior(i) for the Greedy

in B(i 4+ 1) is greater than or equal to the expected numb8&trategy can be expressed as

of copies of chunk inB(7). Therefore, under the Rarest First ) )

Strategy, peek will first( s)electB(l) to download ifB(1) is s(i) =1—(p(n) —p(i+1)) —p(1) fori=1,...n—1

not available inB, else peelk will select B(2) to download The proof is presented in the Appendix. Intuitively, it can
if B(2) is not in the system and so on. be understood as follows. The terfp(n) — p(i + 1)) is the
probability that any particular chunk is downloaded into buffer
positions betweeB(n) to B(i + 1); and the ternp(1) is the
probability that any particular chunk is downloaded directly
from the server. The above expression fgi) is thus the
probability that neither of these two scenarios are true.

For the Greedy Strategy, pekrwill select a chunk which
is closest to its playback deadlinerom buffer B's point of
view, B(n) is the closest to playback time, théh(n — 1) is
the next, and so on. Therefore, péewill first select B(n)
to download if it is not available iB, else peek will select
B(n—1) to download ifB(n—1) is not in B and so on. Note  Substituting the above formula fefi) into Eq. (6), we get
that the Greedy Strategy seems intuitively the best stratetpe following “difference equatichfor p(i):
for streaming at the first sight. Through our analysis, we will
show that while from a single peer's point of view Greedy P(i+1) = P(i)ﬂ?(i)(l—p(i)) (1—P(1)—P(n)+17(i+1)>
may be the best for playback, it is often too short-sighted fori=1,...,n—1. 9)
from a system’s point of view, when the peer population is
large. Instead, Rarest First is very effective in maximizing. Rarest First Strategy
peer contribution as the population grows, hence produces
good system-wide playback performance. On the other handThe Rarest First Strategy is the opposite of the Greedy

Greedy is good in minimizing the start-up latency. Strategy. Based on Eq. (3), we knawi) is an increasing
function in i.3 This means the expected rarest chunk is the

In trying to achieve the best of both worlds, we propose st chunk distributed by the server that is missing from the
new strategy, called thmixed strategywhich is a combination 4 joca| peers' buffer. So the chunk selection functidi) for

of Rarest First and Greedy. In the following subsections, WRa rarest First Strategy can be expressed as:
derive analytical results to analyze and compare the perfor-

mance of these strategies. The key is to model the selection \’3= , ,
function s(i) for each case, substitute it into the probabilistic '*/ = {*~ H (p(J)Jr(l_p(J))) (1_37(3))' (10)
model, and derive the buffer state probability distribution. 7=1

M

The meaning of each term is similar as before. The main point
A. Greedy Strategy is that the search for missing chunks starts from Iitest

. . chunk B(1), then toB(2) and so on. Again, Eqg. (10) has a
We first present the analysis of the Greedy Strategy. Trgﬁnme form:

strategy aims to fill the empty buffer location closest to the - ) o
is the probability of selectingB(i), can be expressed asfirst Strategy can be expressed as

follows: ‘ s@) = 1-p(i).
1 j=n-1 . . . . .
s(iV=(1- = N4 (1 —p()2). 7y The proof is presented in the Appendix. The rationale for this
) ( M) H <p(]) (1 =p) ) @) result is the same as that for the Greedy Strategy. The term

j=i+1
. . i) represents the probability that any particular chunk is
Since the event that downloading does not occur for a bur%&wnloaded into buffer positionB(1) to B(i — 1). Therefore

at posﬂ_pnB(j) _(for J> i.) _'S ~(W (k. j)H (h, 7)), hence, the s(4) as shown above represents the probability that this event
probability of this event is: does not oceur

P (W (k. ) H (R, 5)] - = 3In general,p(i) is a non-decreasing function. But for both Greedy and
pr(J) + (1 —pr(5))(1 = pr(4)). (8) RarestFirstg(i) > 0 for all buffer positions, s@(7) is an increasing function.



Again, substitutings(z) into Eq. (6), we have the following sufficiently smallAf), the Greedy Strategy can achieve better
difference equation: continuity than Rarest First. This will be illustrated in Section

2 V.
pli+1) = p(i)+p(i)(1—p(i)> fori=1,..,n—1. (11)
D. Mixed Strategy
C. Buffer Size, Peer Population and Continuity
The intuition about the different strengths of the Greedy

The difference equations fa¥(i) in Eq. (9) and Eq. (11) and Rarest First strategies derived from our model lead us to
help us to derive closed-form solutions of the distributidf). propose a mixed strategy that can take advantage of both of
Also, the model allows us to derive some relationships betwegfese chunk selection algorithms.

the key performance metrics and design parameters of theL he bufferB b itioned b int of d .
streaming system, these parameters are: etthe buifer’s be partitioned by a point of demarcation

1 < m < n. The Rarest First Strategy is used first with buffer

» n, the buffer size; spacesB(1), ..., B(m). If no chunk can be downloaded using
« M, the population size (or equivalently(1), which is the Rarest Strategy, then the Greedy Strategy is used using the
equal tol/M); other partition of the bufferB(m + 1), B(m + 2), ..., B(n).

« p(n), probability thatB(n) is available, which reflects Whenm = n—1, the Mixed Strategy is the same as the Rarest
the continuity and playback performance ¢e£1—p(n) First Strategy; whemn = 1, the Mixed becomes the same as
is the probability of discontinuity). the Greedy Strategy. Through variationrof a peer can adjust

. I . . the download probability assigned for each partition.
To facilitate the derivation of these relationships, we convert P y g P

the difference equations of Eq. (9) and (11) into continuous The buffer state probability foB(1) to B(m) satisfies the

differential equations. They become: following equations:
dy _y(A-y)ly—pd)+e)  dy _ (1—4)% p(l) = 1/M,
dx L+y?—y " odx p(i+1) = p(i) + p(i)(1 — p(i))®> fori=1,...,m—1.

respectively. The symboy stands forp(i) and the symbol
x corresponds ta in the discrete case. These continuo
differential equations can be derived by substitutipgdz for
G+ D=r(@ andy for p(i). Based on these equations, we obtain pi+1) = p(i)+p)(1—p(i))

the following sensitivityrelationships among these parameters: x(1 = p(m) — p(n) +p(i +1)). (14)

uThe probability forB(m + 1) to B(n) can be derived from
Eq. (9) by substituting(1) with p(m):

Proposition 3: For the Greedy Strategy, the sensitivity of
buffer sizen to peer populationd (or p(1) = 1/M) and Another perspective that helps us to understand the advan-

discontinuitye can be expressed as tage of the mixed strategy is the following observation about
on 1 on 1 the equivalence between peer population sizeand buffer
R——— | 5 R —— (12) sizen. Consider two P2P networks. The first isreference

__ap(l) (1) 8_6 (1) .. networkwith population, buffer sizen and some chunk
Proposition 4: For the Rarest First Strategy, the sensitivitg|ection strategy that yields buffer state distributig). The
of buffer sizen to peer populatioml/ and discontinuitye can  second is ababy networkwith a fraction of the population

be expressed as size equal tol/p(m) and buffer sizen — m, that uses the
on 1 oon 11 13 same chunk selection strategy as that used for buffer positions
ap(1) ~ p(l) 7 de & € (13) B(m + 1) to B(n) in the reference network. Let the buffer

state distribution of the baby network be denotg¢:) for

i=m+1,...,n. We have the following result.
Eq. (12) to (13) characterize the key difference between

the Greedy and Rarest First Strategy. These results indica
that more buffer space is needed for larger peer populatil
size M (or smallerp(1)), and higher continuity (or smaller Proof: Due the same chunk selection strategy usgd) in
€). This is due to the negative gradient ofrelative top(1) the reference network is the same @& — m) of the baby
ande respectively. But as peer population grows, the need foetwork'. This meang (i) = p’(i —m), fori = m+1,...,n,
additional buffer space when using the Rarest First Strategyhisncep(n) = p'(n — m). i
1/e times less than that for the Greedy Strategy, which means

that the Rarest First is moszalablethan the Greedy strategy S . e
L . The implication of this proposition is that we should use a
as the peer population increases. On the other hand, in order

to increase continuity, the need for additional buffer space g}lxed strategy, whenever the peer population sizaelative

the Greedy S_trategy_ is abopl) /e time_s_ less than that for the  4as with the rest of the results in our model, this relies on the independence
the Rarest First. This means for sufficiently laggé) (hence assumption to be true.

The proofs are included in the appendix.

groposition 5: The continuity for the reference network,
), is equal to the continuity for the baby netwopk{n—m).



to the desired playback performance (continuity) is larger than IV. Numerical Examples and Analysis

a threshold (given by(1)/e > 1). For the baby network

part of the buffer positions, we used the Greedy Strategy toln this section, we consider a number of numerical examples
maximize continuity. For the rest of the buffer positions, Raretf illustrate our results and their application to protocol design.

First is used as it is the more economical strategy (in terrfri@ each numerical example, the results can be computed in
of buffer space needed) to support a large peer populationthe following ways:

Discrete model The discrete model is given by the differ-
E. Start-up Latency ence equations corresponding to the various chunk selection
strategies (Eq. 1,3,5,7,10,14). The solution for the buffer state
So far we have focused on continuityn) as the perfor- distribution p(i) can be derived numerically. For the Greedy
mance metric for evaluating various chunk selection strategiggsrategy, we first giver(n) a fixed value, substitute steps

From Eq. (3) and by defining(0) =p(1),> we have: inversely fromp(n) to p(1) and then compare(1) with
S 1/M. If p(1) is approximately equal td/M then we get
p(n) = Z qd). the solution; elsey(n) is adjusted accordingly and the inverse

substitution process is repeated. For the Rarest First Strategy,
substitutep(¢) from p(1) until p(n). For the Mixed Strategy,

Another metric worth paying attention to is trtart-up Wwe compute the first part, from to m, using the same
latency which is the time a peer should wait before startingubstitution process as that for Rarest First and then compute
playback. As long as all peers cooperate by following thehat is left using the same trick as that for Greedy.

same chunk selection strategy and offering downloading whencgntinuous model The continuous model is given by the

requested, a peer may choose to start its own playbagkerential equations in Eq. (9) and (11). In general, they can

independently without affecting other peers except itself. BYL solved numerically using MatLab. For some relationships,
what is thebest start-up latency for a newly arriving peerye a1so derived closed-form solutions.

(with empty buffer) to choose, assuming all the other peers . ) ) .
have already reached steady state? We argue each peer shouskimulation modek We built a simulation program based on

wait until its buffer has reached steady state, which means®ur discrete model. There is one server drdpeers. In each
time slot, the server distributes one chunk to a random peer;

each peer randomly selects only one other peer to contact and

no download one chunk, but may upload at most two chunks to
startup latency= > _p(i)/R. (15) its neighbors. The peers form an overlay network where each
i=1 peer is neighbor with a subset of the peers, randomly selected

, simulation can produce a lot more

interested in, the effective dovynloading rate must be close dBtails about specific peer behavior and the dynamics of the
1 (chunk per time slot), the video’s playback rate. Therefogeg,stem including transient behavior.

we have
Exp. A: Comparing Discrete and Continuous Results with

startup latencys > p(i) Simulation

Why is the quantity in the above equation a good represen-OUr first task is to compare our discrete model, the contin-
tation for startup latency? When a peer starts with an emp{@us model based on the differential equation approximation,

buffer, every peer it contacts is likely to result in a successfiMith simulation.

download. Aftery_;" , p(i) time slots, the newly arriving peer  |n this experiment, M = 1000 andn = 40. In the simula-
is expected to have ac_quwed the same nu_mber of chunkstigh, the number of neighbors for each peetZis< 60. The
thF;‘L rest of the peers in steady state, which also equals#uits are shown in Figure 2. There are two groups of curves,
>_i—1 p(i). If the newly arriving peer starts with earlier, itone for Greedy and one for Rarest First. In each group, there
is likely to suffer from below steady state playback qualitgre three curves: one calculated using the discrete iterative
initially. If the newly arriving peer waits longer (than that inequations, one calculated using the approximate continuous
Eq. (15), it will notimprove its long-term steady state playbacifferential equations, and one from simulation.
uality.
g Y We will compare Greedy and Rarest First later on. At this
5By defining q(0) — p(1), we are treating the buffer update from servelPQINt, let us focus on the accuracy of the different methods.

the same as updates from peers. This is just for convenience. First, we note that the analytical results are reasonably close



Fig. 2. Buffer occupancy distribution for Rarest First and Greedy policies
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Fig. 4. Performance Results for Exp. B.

m > 10. By devoting a fraction of the buffer positions to
Rarest First and the rest to Greedy, the Mixed Strategy can
achieve higher continuity (than both Greedy and Rarest First)
and lower startup latency (than Rarest First).

To further compare the different strategies for different
buffer sizes, we plot the continuity and startup latency for
buffer sizes betwee0 and50 in Figure 4(a) and Figure 4(b)
respectively. It is observed that Rarest First consistently beats
Greedy in continuity. The reason is evident from our analysis
and Figure 2. Rarest First works hard at distributing new
chunks from the server, achieving a performance not far
from the theoretical limit oflog,(i). The Greedy, however,
is somewhat like a procrastinator, making a great effort to
fill the buffers only near the playback time for each chunk.

It is interesting to note that the Mixed Strategy usually out-

Fig. 3. Comparison of Rarest First, Greedy and Mixed . . L
9 pans SIS y > performs Rarest First igontinuity.

In terms of startup latency, Greedy and Rarest First take

to the simulation results. Secondly, we expect the discreparRPOSite Ppositions. To guarantee good playback continuity,
between the discrete model and simulation is mainly due RRrest First occupies a significant amount of buffer space.
the independence assumption. For Greedy, there are fe{& the other hand, Greedy uses relatively less buffer space,
chunks in the buffers, hence the independence assumptitiiice it takes a newly arriving peer much less time to reach
is less accurate. Thirdly, we expect the discrepancy betwddff Steady state buffer occupancy. It is important to note that,
the discrete and the continuous models is mainly due to tNiX€d is able to keep startup latency lower than Rarest First.

approximation ofp(i + 1) — p(i) by a continuous gradient, Exp. C: Optimizing the Mixed Strategy
which happens to have a bigger effect on the equation for

Rarest Eirst this time. We now take a closer look at the Mixed Strategy. In the last

experiment, the parameter used to partition the buffer,s
a constant. Here, we fix the buffer size to #eand varym.

To compare the three chunk selection strategies, we ke—gﬁf performance of continuity and startup latency are plotted
the buffer size at. — 40; and setm — 10 for Mixed (this 2d@instm in Figure 5(a) and 5(b).
means the number of buffer positions running Rarest Firstif m is large, the strategy is essentially Rarest First, hence
is 10). The results (from the discrete model) are shown ithere is a significant startup latency. Whendecreases, the
Figure 3. The Rarest First Strategy is able to maximize tReartup latency decreases monotonically, and eventually the
contribution of peers, hence its buffer occupancy probabiligtheme becomes sufficiently like the Greedy Strategy with low
is higher than other strategies in most buffer positions. Whegartup latency. For continuity, it is quite interesting. There is
using the Greedy Strategy, all peers are focusing on the shaiit- optimalm when continuity is maximized. These two plots
term playback needs; hence the buffer occupancy probabildiyow that there is Bnee occurring atn ~ 10 when a balance
stays low except for those positions close to the playbagk high continuity and low startup latency is achieved.
position {(n)). This has the advantage of minimizing th
startup latency as we defined in Eqg. (15). For Mixed, th
buffer probability distribution is the same as Rarest First for In here, we consider the sensitivity of buffer size to
positionsm < 10, and follows the same shape as Greedy fa@ontinuity requirements and buffer size. We focus on some

Exp. B: Comparing Rarest First, Greedy and Mixed

xp. D: Performance for Small Scale Networks
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Fig. 8. Continuity of the Network Simulation
examples for small population size to illustrate when Greedy
can perform better than Rarest First in terms of continuity.

There are three examples in this experiment and the redtiip. E: Study of Dynamics
in each case is derived from simulation (the analytical models
are less accurate for small networks). Each result is calculagq
based on the average values30f)0 time slots.

hile the analytical model is able to give us average
ady state system behavior, simulation has the advantage of
giving us the dynamic behavior of specific settings. In this
In the first experiment, the number of peers in the netwodkperiment, we simulate the case laf = 1000 andn = 40,
varies from5 to 15 and each peer sets= 15. We compare and look at how continuity and startup latency evolve over
the continuity achieved by Greedy and Rarest First. Figuretifne.
shows that Greedy achieves better continuity when the numbehrst, we compare the continuity achieved by different

(()i]; aﬁ;asrifs;;ﬁ[:;e\?vtéyefz\;;?latlve to the value of Commu'%trategie_s. _\Ne_ simulat2000 time s_lot;. In each time slot,_
' ' the continuity is the average continuity of all peers, that is
In the second experiment, we let the number of peers tiee number of peers being played chunks divided by total
fixed, M = 40. However, the peers have different qualitypeers. As shown in Figure 8, Mixed not only achieves the
requirements (denotetl— €), and have to change their bufferbest continuity, but its continuity is also much more steady
length to meet the requirements. The result is shown in Figuten that of other two strategies.

(@), Secondly, consider the case that a new peer with empty
In the third experiment, we let the peers’ continuity requirdsuffer joins the network. Before the new peer arrives, we give

ment be fixed a0.93, but the number of peers{) vary from 1000 time slots to let the existingl(00) peers reach steady

5 to 40. In order to make sure the continuity is larger thastate first. The newly arriving peer waits fd@ = 16 time

0.93, each peer has to enlarge its buffer if the number of peesipts before it starts playback. The arrival timel®0 — D

increases. The result is shown in Figure 7(b). so that playback starts at tH€00th time slot. In Figure 9(a),

The results from the above two experiments are consistéh compare the playback performance of the newly arriving

with Proposition 3 and 4, namely Greedy is able to providepaeer. us_ing each_ of the three _chunk selection strategies. The
high quality requirement with less buffer length while Rare&o?;'nu'ty \E)aluefu:. eachl ctast_athls Compu;e?t—il%og W|£1eres

First can provide good playback performance for a Iard% € number of ime siot with successiul playback.

number of peers. Figure 9(b) shows the number of chunks stored in the
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Fig. 9. Second Experiment in Exp. E. Fig. 10. Performance Results from Exp. F.

buffer of the newly arriving peer as a function of time. First, the Mixed Strategy can be viewed as an optimization
From our model, we know the average number of chunk¥ the CoolStreaming protocol. Although our analytical model

of a peer is simply>"_, p(i). This computation yields the does not try to capture all aspects of the implementation of
expected number of chunks for each of the three strategfe@olStreaming, our chunk selection strategy can be easily
to be27.4, 3.5, 15.5 respectively, which is consistent with theincorporated into that protocol as an improvement of the
steady state number achieved in the Figure. These numbR¥isting algorithm. This makes us quite confident about the

correspond to the appropriate startup latency suitable for ed¥Rctical utility of our results, in addition to the insights we
strategy. get from the model.

Exp. F: Adapting the Mixed Strategy to Peer Population Second, the Mixed Strategy is also compatible with BiTos,
, , and can be viewed as an alternative (very likely enhancement)
Based on our analysis and the numerical examples, we shgwpgitos. Sincep(m) = 3.7 q(i), we can make our

that the Mixed Strategy can achieve the best continuity aﬁ?borithm quite similar to BiTos which uses a probability

low startup latency given a fixed peer population size in tr}sr high priority buffer positions and1 — p) for the rest. In

network. In reality, the peer population size is unknown and a5 \ve explained in the last section, we can implement

is likely to change over time. Here we describe an algorithfe \ixed Strategy by using a fixed probability for the Rarest

to adaptlvely adjust the Mixed Strategys t0 the nework g part of the buffer, allowingn to adapt to a suitable value

dynamics. for the prevailing peer population. There is a subtle difference
In the previous experimentsy is fixed (at10). One way between the Mixed Strategy and BiTos: the latter uses Rarest

to adaptm is by observing of the value qgf(m). We can set First for both high priority and low priority chunks whereas

a target value fop(m), sayp,, = 0.3. When a peer finds we use Greedy for our high priority chunks.

the average value gf(m) is less thamp,,, the peer increases

m, else the peer decreases In our simulation, every peer V1. Conclusion
calculates the average valuepgin) for 20 time slots and then
decides the value afi based the average value. The art of modeling is on the one hand to capture the

essential aspects of the original system, and on the other
hand to be simple enough to yield some insights about the
riginal system. We feel that is what our model accomplished
network, which means there aie< 100 peers in the network or the P2P streaming problem. In a.ldd'tlon’ the insights from
our model also lead to some practical algorithm that can be

afterix 100 time slots. For all the peers, the initial valuerof incorporated into well established systems as improvements
is 10. We calculate the average continuity and average value P Y P '

of m for the initial 100 peers in the network as a function There are a number of interesting directions for further
of time. From Figure 10(a) and 10(b), we observe that tstudies. We believe the simple probability model can be
average value ofn (of the 100 tagged peers) adapts to theextended to analyze other chunk selection and peer selection
increasing peer population. Furthermore, the continuity of tleégorithms. Additional experimentation and prototyping would
Mixed Strategy is quite steady (except a glitch between tinadso help further validate our ideas.

slot 700-800) compared to that of Rarest First.

We conduct the following experiment. Let there beo
peers in the network initially. After every00 time slots,
another100 new peers with empty buffer are added to th
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Appendix
In ((1—p(1))p(1)) 21n (1—13(1))
Proof of Proposition 1: From Eq. (6), we have n= (U= ], VA <;)
p(l) —€ 1+e—p(1) 1—p(1))
p(i+1) =p(i) = S(Z)p(l)(l _p(z))' Although n is an integer, we can still study its sensitivity
From Eg. (7), we have with respect top(1) ande by differentiation, which yields the
' results in the Proposition. |
si+1)—s() = s(i+1p(i+1) (1 —p(i+ 1)).
Note the right-hand-side of the above two equations are tREPOf of Proposition 4: With a similar method as in the proof
same, except the indexversus: +1. This means for PI’OpOSItIOI’l 3, we derive the solution for the differential
equation for the Rarest First algorithm:
s(i+1)—s(i) = p(i+2)—pl+1), 1
DG+ —=s() = D G+2) —p(i+1)) —Y —Y
= = ¢ = (2O, 0
s(i) = s(n—1)—p(n)+p(i+1). 1-p(1)/  1-p(1)
From the equation of(i) (Eq. 7), we gets(n—1) = 1—1/M. Again, p(1) and ¢ represent the number of peers and the

g streaming quality respectively, anfln) = 1 — e. Similarly,

0}
Therefore, we have(i) =1 — p(1) — +p(i+1). X
(@) p(1) = p(n) +p(i+1) we express: as a function ofp(1) ande:

Proof for Proposition 2: Again, from Eq. (6), we have I +1n (1 - 6) _ ln( p(1) ) _ (1) .
_ . o . € 1=p(1)/  1-=p(1)
pli+1) =p(i) = S(l)p(z)(l - p(l))' Differentiating, we get the results in the Proposition. R

From Eq. (10), we have

si+1)—s() = s()p(i+1) (p(i +1) - 1).



