
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Elastic Deep Learning in Multi-Tenant GPU
Clusters

Yidi Wu∗, Kaihao Ma∗, Xiao Yan∗, Zhi Liu∗, Zhenkun Cai∗, Yuzhen Huang∗, James Cheng∗, Han Yuan†,
Fan Yu†

∗ Department of Computer Science and Engineering, The Chinese University of Hong Kong
† Huawei Technologies Co. Ltd

{ydwu, khma, xyan, zliu, zkcai, yzhuang, jcheng}@cse.cuhk.edu.hk, {yuanhan3, fan.yu}@huawei.com

Abstract—We study how to support elasticity, that is, the ability to dynamically adjust the parallelism (i.e., the number of GPUs), for
deep neural network (DNN) training in a GPU cluster. Elasticity can benefit multi-tenant GPU cluster management in many ways, for
example, achieving various scheduling objectives (e.g., job throughput, job completion time, GPU efficiency) according to cluster load
variations, utilizing transient idle resources, and supporting performance profiling, job migration, and straggler mitigation. We propose
EDL, which enables elastic deep learning with a simple API and can be easily integrated with existing deep learning frameworks such
as TensorFlow and PyTorch. EDL also incorporates techniques that are necessary to reduce the overhead of parallelism adjustments,
such as stop-free scaling and dynamic data pipeline. We demonstrate with experiments that EDL can indeed bring significant benefits
to the above-listed applications in GPU cluster management.

Index Terms—Deep learning system, elastic deep learning, GPU cluster management

F

1 INTRODUCTION

Due to the huge success of deep learning (DL), many or-
ganizations have built large GPU clusters for deep neural
network (DNN) training. A GPU cluster typically serves
many concurrent users. Users submit deep neural network
(DNN) training jobs and the respective resource require-
ments (e.g., the number of GPUs) to the cluster. A multi-
tenant GPU cluster is usually managed by a traditional
cluster manager (e.g., YARN [1], Mesos [2]) or a scheduler
tailored for GPU clusters (e.g., Optimus [3], Gandiva [4],
Tiresias [5], Themis [6], SLAQ [7]), with objectives such as
high throughput, high GPU efficiency 1, short job completion time
(JCT), and good responsiveness for small jobs 2.

Through an analysis of the trace data from Microsoft’s
production GPU cluster [8], we found that elasticity, the
ability to adjust the parallelism (i.e., the number of GPUs) of a
DNN training job, is beneficial to multi-tenant GPU cluster
management in many aspects.

• Adapting to cluster load variations. GPU clusters
can be heavily loaded in long periods of time while
under-utilized on other periods as shown in Figure
3a. With elasticity, DNN training jobs can be scaled

• Xiao Yan is the corresponding author.

1. Here, throughput is the average number of training samples pro-
cessed per second. Let t(p) be the average per-GPU throughput of a
job using p GPUs, and p∗ = argmaxpt(p). GPU efficiency is defined
as t(p)/t(p∗), which is an indicator of how close the current average
per-GPU throughput (using p GPUs) is to the optimal one (using p∗

GPUs). Both throughput and GPU efficiency are job-level performance
metrics.

2. Following Tiresias [5], we define job size as (parallelism×running
time), where the unit of job size is (GPU * seconds) in this paper.

out (i.e., increase the parallelism) to achieve high
throughput when the cluster is not busy or has
transient idle resource, and scaled in (i.e., reduce
the parallelism) to improve GPU efficiency when the
cluster is heavily loaded.

• Enforcing priority-based scheduling. Elasticity can
be used to gracefully enforce priority. Instead of
preempting low-priority jobs, we may scale in low-
priority jobs to obtain sufficient resources for high-
priority ones. One application scenario is prioritiz-
ing small jobs to mitigate head-of-line blocking and
improve job responsiveness and average JCT.

• Supporting flexible job management. Elasticity
is useful for cluster management functionalities
such as straggler mitigation, performance profiling, and
worker migration: 1) stragglers are detrimental to the
throughput of synchronous training and can be re-
moved from a job by scaling in; 2) the performance
of a job under different parallelism can be easily
profiled using a series of scale-in operations; and
3) using scale-in and scale-out, we can migrate work-
ers for a job from one machine to another machine to
reduce resource fragmentation.

Elasticity has been explored for other types of work-
loads such as graph processing [9], batch processing [10]
and parameter-server based machine learning [11], [12].
However, the unique characteristics of DL training jobs
and multi-tenant GPU clusters pose challenges to attain
the aforementioned benefits of elasticity. Specifically, the
overhead of elasticity needs to be low to support frequent paral-
lelism adjustment (e.g., in scheduling) and effectively utilize
transient idle resources. Parallelism can be trivially adjusted

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

by Stop-Resume [3], which checkpoints a job and restarts
it with the desired parallelism. Stop-Resume is supported
by most DL systems but the running job typically needs
to be stopped for more than 30 seconds. To amortize the
large overhead, Optimus [3] uses Stop-Resume only every 10
minutes. As we will show in §2.3, the overhead of Stop-
Resume is too high to gain a performance improvement
from transient idle GPUs. Moreover, elasticity should be com-
patible with existing DL systems and require minimum user
efforts to enable its adoption in real applications. Finally, a
balance between consistency and efficiency needs to be maintained.
For example, to make elasticity transparent to users (e.g.,
algorithm designers), critical hyper-parameters such as the
aggregated batch size of a job should be fixed under scaling
but GPU efficiency can severely degrade in this case as we
will show in §2.

We propose EDL to support elastic deep learning in multi-
tenant GPU clusters. EDL is a light-weight coordination
layer between a cluster scheduler and a DL system. EDL del-
egates single-machine execution to the underlying DL sys-
tems (e.g., TensorFlow [13], PyTorch [14], MindSpore [15],
MXNet [16]). The DL system only needs to retrieve the
meta data of a block of training data from EDL and notifies
EDL after finishing a mini-batch. EDL can be used as a
simple plug-in to different DL systems and maintains good
usability, i.e., users only need to add a few lines to their
original script (e.g., TensorFlow script) to enjoy elasticity
and EDL hides all the details (e.g., dynamic parallelism
adjustments) from users. The scheduler can instruct EDL
to remove/add any worker for a training job using a simple
API, e.g., scale in() and scale out(). Most critically, EDL sig-
nificantly reduces the overhead of elasticity compared with
Stop-Resume.

EDL is designed to ensure both the correctness and effi-
ciency when any worker may join/leave a job at any time. In
EDL, each job is managed by a leader process and EDL uses
a distributed transaction-based mechanism for fast leader
election. To scale out, EDL proposes stop-free scaling, which
allows existing workers to continue training while newly
added workers are being prepared for execution. This hides
most of the scaling overhead. To scale in, EDL uses graceful
exit to remove workers at the end of a mini-batch training
with a negligible overhead. For data preparation, EDL uses
a dynamic data pipeline to assign blocks of data to workers
in an on-demand fashion and leverages data pre-fetching
to avoid starvation of GPUs. The data pipeline also ensures
that the training goes over a dataset once without repetition
and omission in each epoch.

We conducted extensive experiments to validate the
performance of EDL. We first show that EDL has low over-
head for normal training (without elastic scaling) compared
with Horovod — a state-of-the-art distributed DL training
framework. For elastic scaling, we show that EDL reduces
the overhead of scaling out by an order of magnitude and
has a negligible overhead for scaling in compared with
Stop-Resume. In addition, we show that using EDL brings
significant benefits to applications such as straggler mitiga-
tion, performance profiling, and job migration. With some
simple modifications, we enable Tiresias [5], a state-of-the-
art DL scheduler, to efficiently apply elasticity in DNN job
scheduling, which achieves a reduction in the average JCT

A1

A2

A3

C1

C2

C3

B1

B2

B3

Step1 Step2

2*

1*

3*

Step3 Step4

Worker A Worker B Worker C Worker A Worker B Worker C

Worker A Worker B

Worker C

Fig. 1: An illustration of ring all-reduce

by 89.5%.
The rest of the paper is organized as follows. In §2, we

give the motivation of the work. In §3 and 4, we present the
API and the system design. In §5, we discuss the use cases of
EDL. In §6, we report the experimental results. In §7 and §8,
we give the related work and conclusions.

2 MOTIVATION

2.1 Background

A DNN model is trained by going over a dataset many times
(called epochs), and in each epoch the dataset is randomly
shuffled and partitioned into a number of mini-batches.
For each mini-batch, the model is updated using stochastic
gradient descent (SGD), or its variants such as Adam and
AdaGrad, with w(t+1) = w(t) − ηt

|Bt|
∑
i∈Bt
∇f(xi, w(t)),

where w(t) is the current model and Bt contains the train-
ing samples of the mini-batch. As calculating the gradient
∇f(xi, w(t)) involves computation-intensive kernels such as
matrix multiplication, DNN training is usually conducted
on GPUs.

Due to the growing volume of data and the high com-
plexity of DNN models (e.g., ResNet [17], VGG [18], Incep-
tion [19]), DNN training usually cannot be finished within
a reasonable time on a single GPU and thus distributed
training on multiple GPUs offers a good alternative. Among
the various distributed training schemes, synchronous data-
parallel is the most popular one [20], which partitions a
dataset among GPUs and each GPU (i.e., a worker) cal-
culates the gradient for some training samples in parallel.
When all workers finish the gradient computation in a mini-
batch, the local gradient from the workers are aggregated
and then added to the model before the next mini-batch
starts. As a synchronization barrier is enforced at the end
of every min-batch, stragglers are detrimental to the perfor-
mance of synchronous training.

Allreduce [21], [22] is a popular protocol for coordi-
nating model updates from distributed workers and has
been widely adopted in TensorFlow, PyTorch, MXNet and
Horovod thanks to its simplicity and its efficiency in net-
work communication. We present the implementation of
Ring-Allreduce as follows. Workers form a ring communica-
tion topology and each worker communicates only with its
two neighbors on the ring as illustrated in Figure 1. When
one gradient tensor is ready, each worker sends, receives
and aggregates 1/N (where N is the number of workers) of
the tensor to the adjacent worker in a round-robin fashion
in each step. After N − 1 steps, each worker has 1/N of the
tensor that aggregates the updates from all workers. In the
next N − 1 step, each worker passes its aggregated part of
the parameters along the ring such that the gradient on all
workers will be updated. Parameter server [23], [24], [25], [26]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

0

3

6

9

1 2 4 8 16

Th
ro

u
gh

p
u

t
(1

0
^3

 im
g

/s
e

c)

Parallelism

Weak Scaling
Strong Scaling
Linear Scaling

(a) Throughput

0

0.5

1

1.5

1 2 4 8 16

G
P

U
 E

ff
ic

ie
n

cy

Parallelism

Weak Scaling
Strong Scaling
Linear Scaling

(b) GPU Efficency

Fig. 2: The influence of parallelism on ResNet50, linear
scaling is an ideal case which assumes that throughput scales
linearly with parallelism and we included it for reference

is also widely used in distributed machine learning, which
provides a key-value interface for model update/lookup.
However, configuration is more complicated for parameter
server as performance strongly depends on the number and
location of the servers as well as the skewness of tensor sizes
in the models [3], [5], [27], [28].

Horovod [29] is the state-of-the-art framework for dis-
tributed DNN training based on Allreduce. Horovod does
not have native support for elastic training. To adjust
the parallelism dynamically, Horovod may use the Stop-
Resume mechanism provided by the underlying DL system.
It delegates single machine execution to existing DL sys-
tems and adopts the synchronous data-parallel computation
model. In a Horovod job, a leader process coordinates the
order and granularity of gradient synchronization among
workers.

2.2 The Benefits of Elasticity

We show the benefits of elasticity for multi-tenant GPU
cluster management from observations in our experiments
and the trace data from Microsoft [30]. The trace data con-
tains scheduling events (e.g., job submission/finish time)
and brief descriptions of jobs (e.g., user id, number and
location of allocated GPUs) collected over two months from
Microsoft’s production GPU cluster (with approximately
2,300 GPUs). Note that all jobs use a static parallelism in
the trace data.

Adjusting throughput and GPU efficiency. We show the
influence of parallelism on training throughput and GPU
efficiency in Figure 2. Two scaling schemes are considered,
i.e., weak scaling and strong scaling. Weak scaling keeps the
per-GPU batch size fixed, which means that the aggregated
batch size increases with parallelism. Figure 2 shows that for
weak scaling, training throughput increases almost linearly
with parallelism and GPU efficiency stays almost constant,
which is in line with previous findings [31], [32]. However,
there are studies [31], [32], [33] observed that the conver-
gence quality degrades when the batch size becomes too
large and some theoretical results [34], [35] also support
this observation. Strong scaling keeps the aggregated batch
size fixed and adjusts the per-GPU batch size according to
parallelism. Strong scaling helps make elasticity transparent
to algorithm design but Figure 2 shows that GPU efficiency
drops linearly as parallelism increases. This is because the
communication cost increases with parallelism and it is

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

G
P

U
 U

ti
liz

at
io

n

Time (Day)

(a) Cluster load over time

0

20

40

60

80

100

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03

C
D

F

WaitingTime / RunningTime

Small

Medium

Large

Very Large

(b) Ratio distribution

Fig. 3: Cluster load variation and job responsiveness

0

0.2

0.4

0.6

0.8

1

0 5 10152025303540455055

Fr
e

q
u

n
cy

 (
1

0
^4

)

Idle Duration (min)

(a) Idle interval distribtuion

55

0

10

20

30

40

50

60

70

1 2 3 4

Ti
m

e
 (

se
cs

)

Parallelism

(b) Stop-Resume overhead

Fig. 4: Idle interval and scaling overhead of Stop-Resume

difficult to overlap computation with communication when
the per-GPU batch size is small.

The results in Figure 2 show that DNN training jobs can
usually be processed with different parallelism, and both
throughput and GPU efficiency change with parallelism.
Thus, elasticity can be used to dynamically adjust the paral-
lelism of DNN training jobs according to different objectives
of cluster scheduling (e.g., shorter JCT, higher throughput or
GPU efficiency).

Improve cluster utilization and JCT. We plot the changes
in the load of the Microsoft cluster in a period of 2 weeks
in Figure 3a. The cluster is almost fully loaded in some
periods and many jobs are queuing to be processed, while
in other periods the cluster load is relatively low. To further
investigate in the idle resources, we define the idle interval
of a GPU as the time elapsed between the completion of the
previous job and the beginning of the next job on the GPU.
We plot the frequency distribution of the idle intervals in
Figure 4a, which shows that idle intervals follow a power-
law distribution and the majority are short intervals. Specif-
ically, 39.62% of the idle intervals are less than 4 minutes,
which takes up 41.5% of the idle resources during peak
hours (when >90% of the GPUs are occupied). As discussed
in Section 1, elasticity can be used to scale in/out jobs to
adapt to cluster load variations and utilize the transient idle
resources. By improving cluster utilization, the JCT of the
jobs can also be reduced.

Improve responsiveness. There exists a large variation in
job sizes in the trace data, where job size is defined by
(parallelism×running time) [5], expressed as (GPU*sec). We
sort jobs according to their sizes and partition them into
four categories: small (≤ 20%), medium (20%-50%), large
(50%-90%) and very large (> 90%) according to the size
distribution. We found that the largest of small jobs takes 85
GPU*sec, while the smallest of very large jobs takes 58,330
GPU*sec. As the small jobs are usually used for correctness

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

checking or parameter tuning, quick response is important.
However, head-of-line blocking caused by long-running
jobs can severely degrade the responsiveness for small jobs.
We show this phenomenon in Figure 3b, which plots the
cumulative distribution function (CDF) of the (waiting-time /
running-time) ratio of each category of jobs. From Figure 3b,
the curve “small” shows that for small jobs, nearly 50% of
them have a (waiting-time / running-time) ratio greater than
1, which indicates that the waiting time of these small jobs is
longer than their running time. Thus, we consider that small
jobs have poor responsiveness because half of them require
us to wait longer than to actually run them. In fact, nearly
20% of small jobs have a waiting time 10 times longer than
their running time. To address this problem, we can scale
in some long running jobs to make room for the small jobs
when the cluster is overloaded.

2.3 Design Principles
Based on our observations in §2.2, we come up with the
following system design principles in order to enjoy the
benefits of elasticity. First, elasticity should come with
low overheads. Elasticity can be trivially achieved via Stop-
Resume, which checkpoints a job and restarts it with the
desired parallelism. We report the cost of adjusting a 1-GPU
job to different parallelism for TensorFlow in Figure 4b. The
result shows that the overhead of Stop-Resume ranges from
40 to over 60 sec 3. This high overhead limits the ability to
adapt to dynamic resource availability and job requirements
as scaling can only be conducted infrequently, e.g., Optimus
only uses Stop-Resume every 10 min [3]. The overhead also
hinders the effective utilization of transient idle resources.
Consider a job running with 4 GPUs and we have a transient
GPU that will be idle for 4 min. Stop-Resume needs to
first adjust the parallelism from 4 to 5 and then back to
4. Assume that each parallelism adjustment takes 30 sec,
training is conducted with 5 GPUs for at most 3 min. Thus,
the effective training time is at most (5 GPUs * 180 sec) = 900
GPU*sec. In contrast, the effective training time is (4 GPUs *
240 sec) = 960 GPU*sec if we do not use the idle GPU at all.
Therefore, we need to design a set of parallelism adjustment
procedures that carefully hide the overheads of parallelism
adjustment.

Second, compatibility and usability are critical. DL
systems such as TensorFlow and PyTorch are widely used
and hence elasticity provision should be built on these
efforts, rather than developing a new system from scratch.
From users’ perspective, it must incur little to no effort to
run their scripts written in existing DL systems as elastic
training jobs. It should also be simple for a scheduler to
adjust the parallelism of jobs in a cluster. This requires a
good positioning of our system in the software stack and a
careful design of the API.

Third, transparency and consistency should be consid-
ered. We should ensure that the execution of a job apply-
ing elasticity is equivalent to its execution under a fixed
parallelism regardless of the specifics of the parallelism
adjustments, such that elasticity can be made transparent
to algorithm design. For this purpose, we need to provide

3. The scaling overhead increases with parallelism as TensorFlow
initializes the GPU devices in one machine sequentially.

TensorFlow Worker

Cluster Scheduler

Daemon Daemon

API for DL Framework

API for Scheduler

EDL Job 1

Daemon … Daemon

EDL Job 2

Daemon …

PyTorch Worker

Fig. 5: The positioning of EDL

proper consistency semantics for DNN training jobs without
incurring much overhead.

3 SYSTEM ARCHITECTURE AND APIS
We focus on data-parallel, synchronous training as it is the
dominant paradigm of distributed DL [13], [14], [16], [20],
[29]. As users of DL are mostly familiar with popular sys-
tems such as TensorFlow, PyTorch and MXNet, it would be
desirable if the core logic of elasticity can be shared among
different DL systems. The shared component could be a
new elastic communication library like Nvidia NCCL [22] or
parameter server [23], [24], [25], [26]. However, supporting
elasticity not only requires synchronizing the model among
an elastic set of processes but also involves dynamically
partitioning the training data and modifying parameters
such as per-GPU batch size. Thus, we design EDL as a
coordination layer sitting between DL systems and the GPU
cluster manager as shown in Figure 5. The key APIs of
EDL are summarized in Table 1. The cluster manager can
use EDL’s scheduler API to adjust the parallelism of jobs
without knowing the details of the parallelism adjustment
procedures. Users write training scripts using existing DL
systems and only need to add a few lines to use EDL. This
design incurs minimal change to existing infrastructures
and results in good usability. We have integrated EDL with
Huawei’s DL system MindSpore [15]. MindSpore supports
efficient single-device and distributed training through a
tensor compilation module and automatic model partition-
ing. Some state-of-the-art training frameworks for emerging
workloads, e.g., Seastar [36] and DGCL [37] for training
graph neural network, have used MindSpore as the primary
DL backend. In the following, we explain the integration
with TensorFlow’s API as concrete example.

In EDL, each job is executed by a group of worker
processes and each process is associated with an EDL dae-
mon. A leader is elected among the workers to schedule
the order and granularity of gradient synchronization (the
synchronization process is similar to Horovod [29]) and
coordinate the parallelism adjustment (§4.1). Each worker
process is attached with one GPU and runs in the single-
machine mode using a DL system to compute gradient on
some training samples for a mini-batch. We ingest com-
munication operators (e.g., using the Grapler graph edit
APIs in TensorFlow or hooks in PyTorch) in-between the
computation and accumulation of gradients. Within the
communication operator, an EDL daemon sends tensor syn-
chronization requests asynchronously to the leader. After

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

TABLE 1: Key APIs of EDL

API for cluster scheduler Description
scale in(job handle, rmv GPU info) remove GPUs from a job
scale out(job handle, add GPU info) add GPUs to a job

profile(job handle, min p, max p) profile a job
API for DL systems Description

elastic shard generator() generate the next shard’s info
notify batch end() check the need of scaling

receiving ready-to-reduce message from the leader, the EDL
daemon delegates the synchronization task to a dedicated
thread to avoid blocking message handling and the thread
conducts gradient synchronization using communication
libraries such as NCCL.

3.1 API for Cluster Scheduler
We assume that there is a centralized cluster scheduler (e.g.,
YARN), which has knowledge of resource availability and
job status to make scheduling decisions. The scheduler may
instruct EDL to adjust the parallelism of a job, identified
by a unique job handle, using the scale in() and scale out()
operators. When a scaling operator is called, a message
is sent to the leader of the workers that execute the job.
The leader then coordinates the removal/addition of the
specified GPU(s) and replies an acknowledgment message
to the scheduler after the adjustment completes. Scaling
operations are committed sequentially in EDL and if a
scaling request is received in the middle of a parallelism
adjustment, the leader sends a retry message to the sched-
uler. The leader may fail to reply in case of failure (either
the leader itself or a worker). In either case, the scheduler
may retry the scaling operation after a specified time (e.g.,
60 seconds). The profile() operator measures the throughput
and GPU efficiency of a job under a range of parallelism
specified by [min p, max p]. It can be used to find the opti-
mal parallelism of a job or collect information for scheduling
by running profiling tasks on a dedicated small cluster [3],
[5]. For a job that is already running, profile() can be called to
report its throughput and GPU efficiency under the current
parallelism without specifying the range.

EDL automatically recovers a job from failure using the
remaining resources without intervention from the sched-
uler (§4.2), which eliminates delays due to re-scheduling
and re-launching. EDL supports both weak scaling and
strong scaling but uses strong scaling by default, which
keeps the aggregate batch size of all the workers constant
and decides the per-worker batch size according to the
parallelism. Weak scaling is also supported and users may
specify an optional parallelism range for weak scaling to be
applied. Moreover, EDL ensures that training goes over the
dataset once in each epoch without repetition and omission.
The above consistency semantics is sufficient for most DNN
training jobs [31], [38], [39].

3.2 API for DL systems
EDL provides a simple API for users of popular DL systems
to run their scripts as elastic jobs. Some of them are stan-
dard and similar to the ones in Horovod, e.g., init(), shut-
down() and all reduce(), while elastic shard generator() and

1 import tensorflow as tf
2 import edl.tensorflow as edl
3 edl.init() # initialize EDL daemon
4 # create a generator object
5 ds = tf.data.Dataset.from_generator(
6 edl.elastic_shard_generator())
7 loss = Resnet50(ds) # construct a Resnet50

model
8 # ingest Allreduce into graph within

Optimizer
9 opt =

edl.Optimizer(tf.train.AdamOptimizer(...))
10 # create optmization objective
11 obj = opt.minimize(loss)
12

13 with tf.train.Session() as s:
14 while not s.Done():
15 s.run(obj, feed_dict={...})
16 edl.notify_batch_end()

Listing 1: An example code of EDL with TensorFlow

notify batch end() are specifically introduced for elasticity.
elastic shard generator() returns a generator object, which
gives the meta-data of a chunk of training samples to a
worker when its next() method is called, and a DL system
can use it to load training samples dynamically from a list
of partitions. This operator ensures the efficient distribution
of the training samples to a dynamic set of workers under
scaling (§4.3). EDL adds/removes workers for a job at the
end of a mini-batch so that no training progress is lost and
users can call notify batch end() to notify EDL of the mini-
batch boundary. The end of a mini-batch can be identified
trivially in users’ training script in existing DL systems, for
example, after session.run() in TensorFlow and the end of
the for-loop for each mini-batch in PyTorch. Since each mini-
batch typically takes hundreds of milliseconds, the delay of
waiting for the end of a mini-batch is usually short.

Putting things together, we illustrate with an example
that uses EDL with TensorFlow in Listing 1. Line 3 initializes
the EDL daemon and Lines 5-6 construct a TensorFlow
dataset object from the elastic shard generator() method of
EDL. The edl.Optimizer in Line 9 is a helper class that inherits
TensorFlow’s optimizer class and we ingest the Allreduce
operation into the computation graph in edl.Optimizer. In
Line 16, users indicate the end of one mini-batch with
notify batch end(). It can be seen that using EDL is easy and
it only requires adding a few lines (i.e., the lines containing
“edl”) to a user’s script.

4 SYSTEM DESIGN AND IMPLEMENTATION

The design of the EDL system has three goals: flexibility,
efficiency, and consistency. Flexibility means that EDL should
allow any process, either a worker or the leader, to leave
or join a job at any time, which enables the scheduler
to flexibly adjust parallelism. Efficiency means that EDL
should significantly reduce the parallelism adjustment over-
heads compared with stop-resume, and should introduce
negligible overheads to training under static parallelism
without scaling. Consistency means that the execution of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

a job under scaling should be equivalent to its execution
without scaling [31], [38], [39].

To achieve these goals, EDL adopts three key designs:
automatic job management (§4.1), efficient parallelism adjust-
ment (§4.2), and dynamic data pipeline (§4.3).

4.1 Automatic Job Management

Each job has a leader to manage its workers. However, the
leader may leave the job due to scaling or failure. Each
worker runs a leader election/discovery procedure when-
ever the leader is not known to the worker, which ensures
that there is always a leader to manage the job. Specifi-
cally, when a job is launched, each worker first performs
the leader election procedure, which is implemented as a
distributed compare and swap transaction using an external
coordination system such as ZooKeeper [40] or etcd [41].
The workers query the leader’s connection information (e.g.,
hostname and port number) in the external coordination
service using the job handle as key. If the connection infor-
mation is void or expired, a worker writes its own address
into the information and becomes the leader. The leader
needs to periodically refresh its address information, which
is configured to expire automatically if the leader fails to do
so. Upon expiration, workers will be notified so that they
will perform leader election again.

After a leader is elected, it establishes an RPC server
accepting connections, while other workers connect to the
leader and send a registration message to join the job.
According to our measurement, leader election took 7ms
on average and 33ms at maximum when 256 workers used
etcd for distributed coordination. During job execution, the
leader infers the liveness of the workers from the gradient
synchronization requests in every mini-batch and thus ex-
plicit heartbeat message is not needed. When scale out() or
scale in() is called, the leader communicates with the new or
exiting workers to prepare them for joining or leaving the
job. The leader also constructs a new communication topol-
ogy for distributed training with/without the new/exiting
workers. More details will be presented when we discuss
scale out() and scale in() in §4.2.

An alternative to the leader discovery mechanism is to
launch a dedicated process (not attached with GPU) as the
leader (similar to an application master [1]). Such a design
has the advantage that scale in() operations will not affect
the leader. However, using multiple types of processes com-
plicates the current single-program-multiple-data (SPMD)
execution pattern. Deployment is more complicated as the
leader requires different resource configurations.

4.2 Efficient Parallelism Adjustment

To reduce the overheads of parallelism adjustments, EDL
uses stop-free scaling to hide the high cost of execution context
preparation during scale out() and applies graceful exit to
make the overhead of scale in() negligible.

Scale out. Adding new workers to a running job takes three
steps: execution context preparation, communication topology
construction, and model preparation. Execution context prepa-
ration involves loading dynamic libraries (e.g., cuDNN,
cuBLAS), preparing training data, allocating space on both

0

20

40

60

80

100

2 4 6 8 2 4 6 8

Resnet101 VGG16

Ti
m

e
 (

se
cs

)

Parallelism

LoadCkp

WriteCkp

TFLazyInit

BuildGraph

ExecContext

Fig. 6: Scaling overhead decomposition for TensorFlow

Ckp

Begin Re-start Finish

Preparation
GPU1

GPU2

GPU3

GPU4

TrainingTraining

stop-resume

Begin Finish

GPU1

GPU2

GPU3

GPU4

TrainingTraining

stop-free scaling

Preparation

Training

Broadcast

Idle Idle TimeTime

Fig. 7: An illustration of stop-free scaling

GPU memory and main memory, and so on. Declarative
DL systems such as TensorFlow also need to build and
optimize the computation graph. For communication, new
workers need to connect to the leader for coordination and
all the workers need to form a new ring topology for model
synchronization. New workers also need to acquire the up-
to-date model before joining the training. We provide a
breakdown of the time for scaling out a 1-GPU job on Ten-
sorFlow in Figure 6 with the execution context preparation
overhead marked in dark colors. The result shows that the
cost of execution context preparation dominates the scaling
overhead. This observation is consistent for all the models
we experimented.

Motivated by this observation, we propose stop-free scal-
ing. The key insight is that the training on the existing
workers does not need to be stopped when the new workers
conduct execution context preparation. Each new worker
launches two separate threads, a main thread and a back-
ground thread. The main thread conducts execution context
preparation while at the same time the background thread
performs leader discovery and sends a registration request
to the leader. The leader constructs a new communication
topology involving the new workers after receiving their
registration requests and broadcasts it to all the workers.
Note that the original communication topology is not de-
structed yet, and thus the existing workers can continue
the training without being affected. A new worker sends
a ready message to the leader when it finishes execution
context preparation and receives the new communication
topology, but is blocked until it receives an OK message
from the leader.

Once the ready messages from all the new workers have
been received, the leader broadcasts an OK message and a
future timestamp to all the workers. The existing workers
check at the end of each mini-batch indicated by notify-
BatchEnd() and switch to the new communication topol-
ogy when its next local timestamp reaches the timestamp
specified by the leader. The timestamp is implemented as
the mini-batch count and we set the future timestamp as

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

t cur+k, where t cur is the current mini-batch count of the
leader. k is determined as Ta/Tb, in which Tb is the current
per-mini-batch time for the job and Ta is a predefined
time allowance (500ms by default) to tolerate fluctuations in
network latency. One existing worker is chosen to broadcast
its model to the new workers as using only one worker for
broadcasting reduces the time for model synchronization.
After the new workers obtain the latest model, scale out()
completes and the training continues with the new paral-
lelism.

An illustration of stop-free scaling, contrasting with
stop-resume, is given in Figure 7, where we add two more
GPUs to a job. With stop-free scaling, existing workers only
need to stop and wait until the model is broadcast to the
new workers, which can complete within 1 second for most
models according to our experiments. Compared with stop-
resume, the long execution context preparation time for new
workers is now hidden behind the normal execution of the
existing workers.

Scale in. For scale in(), we apply graceful exit, in which the
scheduler gives the exiting workers a short time allowance
(e.g., 30 seconds, but usually a few seconds is enough) to
leave. On receiving the scale in() request, the leader con-
structs a new communication topology and broadcasts it to
the remaining workers. Similar to the case of scale out(), the
leader also sends a future timestamp to all the workers, at
which the exiting workers should leave and the remaining
workers should switch to the new communication topology.
Before reaching this timestamp, training continues with all
the workers. If the leader is instructed to leave, it will erase
its address in the external coordination system such that a
new leader can be elected using the leader election protocol.
The old leader will send the job meta-data (e.g., batch size,
data loading progress, etc.) to the new leader before exiting
and all the remaining workers will connect to the new leader
at the scheduled timestamp. With graceful exit, the overhead
of scale in() is negligible as the exiting workers just need to
leave and the remaining workers do not need to stop and
wait.

Failure recovery. We consider forced exit, including process
failure, as a special case of scaling in. Worker failure can
be detected if a worker fails to send the gradient syn-
chronization request for a mini-batch and leader failure
can be detected by the leader election/discovery protocol.
When failure happens, the model may be inconsistent. For
example, if a worker fails before finishing synchronizing
all gradients, the model on the other workers would be
partially updated. EDL provides two protocols to recover
from failure, i.e., consistent recovery and approximate recovery.
Consistent recovery requires the leader to write a check-
point to persistent storage such as HDFS [42] periodically
(e.g., every 1000 mini-batch or every 10 minutes). Upon
failure, the job is resumed by loading and restarting from
the latest checkpoint, which ensures model consistency. As
DNN training is known to be robust to bounded errors,
approximate recovery can also be used to simply construct
a new communication topology for the surviving workers
and redo the current mini-batch. Users can choose one of
the two protocols. By default, EDL uses consistent recovery.

Worker 1 Worker 2

Leader 3 6 1 2 5 4

HDFS 1 2 3 4 5 6

1. Meta data request 2. Partition meta-data 3. Read data

2 Unprocessed Partition3 Processed Partition

Fig. 8: An illustration of dynamic data pipeline

4.3 Dynamic Data Pipeline

Existing DL systems partition a dataset among workers
before training starts, and each worker goes over its as-
signed partitions in each epoch [13], [14], [16]. This static
data allocation method works well in practice, but we show
that static data allocation lacks flexibility and results in
complicated data management for elastic DL.

Consider a dataset with 1M samples, which is parti-
tioned into 1K partitions each with 1K samples, and there
are 10 workers each getting 100 partitions. If we want to
add 5 GPUs to this job, two options are possible under
static data allocation. First, we can wait until the end of
the current epoch and re-assign the partitions among the
15 workers, which is inflexible as parallelism adjustment is
only possible at the end of the current epoch (instead of the
current mini-batch as in EDL). Second, we can re-assign only
those unprocessed partitions in the current epoch among
the 15 workers and conduct a global re-allocation when the
current epoch ends. However, if another scaling instruction
(e.g., removing 3 out of the 5 added GPUs because they are
transient resources) comes before the re-assignment finishes,
a new data allocation plan needs to be constructed on the
partially re-assigned data within the current epoch. Some
other issues, such as hiding the delay of data re-assignment
and handling partition fragmentation or imbalance, also
need to be considered, which make the design and imple-
mentation complicated.

To support elasticity, EDL assigns data partitions to
workers dynamically in an on-demand fashion as shown in
Figure 8. The dataset is logically divided into d partitions,
where d is sufficiently larger than the number of workers
while the size of a partition is still large enough to allow
high-bandwidth data reading in batches. The partitioning
is only conducted at the meta-data level, e.g., recording
file names and offsets, and the dataset is not physically
partitioned. The leader generates a random permutation of
the indexes of the partitions and uses it for dynamic data
assignment. When a worker needs a new partition, it sends
a data-read request to the leader by calling the next() method
of the generator object returned by elastic shard generator().
The leader replies the request with the meta-data (e.g., file
path, offset and length) of the next unassigned partition.
The worker then issues asynchronous I/O request to the
distributed file system (e.g., HDFS [42]) for reading this
partition.

For the purpose of progress tracking, each worker
records an offset in its current partition, which indicates
where the next mini-batch should start. The workers report

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

their offsets to the leader at the end of each mini-batch and
this information is attached to the gradient synchronization
request with negligible overhead. When new workers join
a job, the leader simply assigns some unprocessed (or par-
tially processed) partitions to them. When a worker leaves
under graceful exit, it reports to the leader the meta-data of
the current partition and its offset in the partition such that
the leader can assign the remaining unprocessed data in this
partition to another worker. If the leader needs to leave, it
sends the partition permutation list and the progress of all
the workers to the new leader before it exits. EDL also writes
the partition permutation list and the worker progresses to
checkpoint such that a job can be restored properly.

The above procedure of dynamic data pipeline in
EDL ensures that training goes over the dataset once in
each epoch without repetition and omission regardless of
whether scaling out and in are performed. However, differ-
ent runs of an algorithm may not produce the same result as
scaling may affect the order in which the samples are used in
the training. In essence, the change in the processing order
of the samples caused by scaling can be viewed as an addi-
tional source of randomness in the sample permutation and
thus the consistency guarantee by dynamic data pipeline is
sufficient for most deep learning tasks [31], [38], [39].

4.4 Implementation Details

We modified Horovod v0.16.1 and implemented the EDL
daemon and plugins using Boost.asio with around 4K lines
of code. We use NCCL v2.4.8 and TensorFlow v1.14.1. TCP is
used to connect the leader with the workers and the cluster
manager. We observed that usually tens of coordination
messages are exchanged between the leader and the work-
ers in each mini-batch training and the size of each message
is within a few hundred bytes. As each mini-batch training
usually takes only a few hundred of milliseconds, reducing
the messaging latency is critical to avoid wasting GPU
cycles. Therefore, we disabled the Nagle’s algorithm [43],
[44] in the TCP socket and the average latency of sending
one message is 56 µs according to our measurement. We
are also investigating to use RDMA to further reduce the
latency.

To hide the latency of reading training data from the
file system, each worker runs a producer-consumer data
pipeline. A ping-pong buffer (or double buffer) is main-
tained between CPU and GPUs. The buffers are blocks of
pinned memory to avoid disk swapping and enable fast
data transfer to GPUs. A background thread serves as the
producer and asks the leader for the meta-data of a new
partition once a partition is dequeued from one of the
buffers by the consumer. We overlapped host-to-device data
movement with GPU computation by pre-fetching multiple
mini-batches of training samples from main memory to
GPU.

5 ELASTICITY IN USE

In this section, we discuss how EDL can benefit DL cluster
scheduling and be used to implement a number of im-
portant system functionalities such as straggler handling,
performance profiling, and worker migration.

Algorithm 1: Compaction and Expansion
Input: Job pending queue groups: G, compaction

threshold: N, parallelism for job j: pj ,
minimum number of GPUs for job j: minj ,
resource manager that manages the free
GPUs in cluster: R. ∅: empty set.

1 if G.num pending job() > N then
2 for J̃ in G.pending jobs() do
3 r = Argmax(Gain(J̃ , rj , Gi)), where

pj − rj >= minj , rj is non-negative integer
and i 6= 0.

4 schedule job(r, J̃)
5 end
6 end
7 else if G.pending job num() == 0 then
8 while R.num free gpus() > 0 do
9 Gfree = R.free gpu().pop()

10 J̃ = Argmax(
S(Gfree, pj+1)−S(∅, pj)

S(∅, pj))

11 schedule job(Gfree, J̃)
12 end
13 end

5.1 Elasticity-Aware DL Scheduling

According to §2, EDL can be used to (1) adjust the trade-off
between throughput and GPU efficiency, (2) improve cluster
utilization and JCT by adapting to the variations in cluster
load, and (3) make good use of transient idle resources. One
way to enjoy all of these three benefits is an elasticity-aware
DL scheduler based on EDL.

As developing a new scheduler is out of the scope of this
paper, we extend Tiresias [5], a state-of-the-art GPU cluster
scheduler based on the shortest-job-first principle. Tiresias
manages jobs in multiple groups, G0, G1, . . ., and the group
with a smaller index has higher priority. Scheduling is
conducted by allocating resources to jobs in the higher-
priority groups first. Each group Gi has a service quantum
ti for its jobs, meaning that a job can only consume up to
ti GPU*sec and after that it will be moved to Gi+1. When
a job is submitted to the cluster, it is first placed into G0

and gradually moved to a lower-priority group as it keeps
running. If a job is not scheduled for a long time, it will be
moved to G0 to prevent starvation. Tiresias computes a new
scheduling plan for all jobs whenever there is a new event
(e.g., a new job is received or some job changes its priority).
A running job will be preempted if it cannot be scheduled
(i.e., its required resources cannot be allocated) in the new
plan. Tiresias achieves good responsiveness for small jobs
because they can be completed in the first few groups, i.e.,
groups with higher priority (e.g., jobs that take less than
t0 GPU*sec are always scheduled first). Readers may refer
to [5] for details.

To enable elasticity-aware scheduling for Tiresias, we ex-
tend its scheduling protocol with algorithm 1. Compaction
is triggered (Lines 1-6) if the number of waiting jobs exceeds
a thresholdN . We defineGain(J̃ , rj , Gi) as the gain in GPU
efficiency by removing rj GPUs from running job j in group

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

Gi (i 6= 0) using scale-in and allocating these GPUs to J̃ 4.
Expansion is triggered (Lines 7-13) if there is no pending
jobs but some GPUs are idle. For each GPU, we select from
the running job that has the largest gain when allocated
the GPU in consideration, where the gain is defined as
S(Gfree, pj+1)−S(∅, pj)

S(∅, pj) , in which S(Gfree, pj) is the training
throughput with the current parallelism pj by adding a GPU
from Gfree to job j and ∅ means no GPU is added.

We call the new scheduling algorithm Elastic-Tiresias.
Intuitively, the two rules of Elastic-Tiresias aim to improve
GPU efficiency when the cluster load is high and try to
fully utilize the idle resources when the load is low. With
these two simple modifications, Elastic-Tiresias achieves
significantly better performance compared with the original
Tiresias (§6.3). If users do not want the scheduler to change
the parallelism of a job, they can mark the job as inelastic
and Elastic-Tiresias simply skips it when conducting paral-
lelism adjustment.

5.2 Additional Use Cases of EDL

EDL can also be easily used to provide important system
functionalities such as follows.

Straggler mitigation. Some workers may become stragglers
due to reasons such as high GPU temperature (which leads
to clock frequency drop) and strong interference from co-
located jobs. Stragglers are a major cause of performance
degradation in synchronous training as a synchronization
barrier is enforced at the end of each mini-batch. EDL de-
tects stragglers by monitoring the time that workers spend
on a mini-batch via the gradient synchronization requests.
If a worker is consistently slower than other workers in a
few consecutive mini-batches (e.g., its per-mini-batch time
is longer than 1.2 times of the median for 10 mini-batches),
the leader may trigger a scale in() operation to remove this
worker from training with negligible overhead. Note that a
smaller parallelism without straggler can lead to better per-
formance as we will report in §6.2. A replacement worker, or
the straggler machine itself (e.g., after cooling down or the
completion of co-located jobs), can easily join the job using
scale out() to restore to the original parallelism.

Performance profiling. Building an analytical model for the
performance of DNN training jobs under different paral-
lelism and placement plans is important but generally chal-
lenging [3], [4], [5]. There are many factors such as model
architecture, global batch size and network bandwidth, that
may affect performance in different ways. Therefore, it is
common and also often necessary to run profiling jobs
to measure the performance under different configurations
to collect information for performance tuning and/or job
scheduling. The profile() method in EDL can be easily used
to measure the runtime performance under a range of
parallelism, defined by (min, max). As scale in() has much
lower overhead than scale out(), EDL starts a profiling job
with the maximum parallelism and gradually scales in to
the minimum parallelism. At each parallelism, the job is

4. We enforce a locality constraint that the p GPUs to be allocated to
J̃ must come from no more than dPJ̃/me machines, where PJ̃ is the
user-specified parallelism for J̃ and m is the number of GPUs on each
machine.

TABLE 2: Model statistics

Inception3 ResNet50 VGG16 Transformer

Model Size(MBs) 92 98 528 24
Batch Size(per GPU) 64 64 32 2,048

run for a few mini-batch iterations (e.g., 20) to measure the
performance.
Worker migration. Sometimes the scheduler needs to move
one worker of a job from one machine to another machine,
e.g., to co-locate the workers of this job to reduce com-
munication cost or to make room in a machine so that it
can be dedicated to some other purposes. Worker migration
can be easily operated in EDL by first scaling in to remove
the workers on the destination machine and then scaling
out to add new workers from the target machine, without
stopping the job. We further optimize this procedure by
merging the scale-in and scale-out operations into one single
migration operation, in which the communication topology
is switched only once.

6 EXPERIMENTAL RESULTS

We evaluated EDL on a cluster with 8 machines, each
equipped with a 96-core Intel CPU, 8 NVIDIA Tesla V100
SMX2 GPUs and 256 GB RAM. The machines are connected
with 100 Gbps infiniband. We used 4 popular DNN mod-
els in the experiments, and their model sizes and batch
sizes are reported in Table 2. Among them, ResNet50 [17],
VGG16 [18] and Inception3 [19] are designed for computer
vision tasks while Transformer [45] is widely used for NLP
tasks. We used strong scaling by default. The aggregated
batch size was fixed to per-GPU batch size times the initial
number of GPUs and remained unchanged regardless of
scaling. We did not test convergence time and model quality
(e.g., classification accuracy). This is because under strong
scaling and synchronous training, parallelism adjustments
do not affect the quality of the models. Convergence time
is determined by both the number of epochs (which in turn
depends on the algorithm and task) and training through-
put. As a system paper, we focus on training throughput
as it directly translates into convergence time with a given
number of epochs. We summarize the key results of the
experiments as follows.

• EDL is efficient as it introduces negligible overheads
to normal training when there is no scaling and
significantly reduces the overheads of parallelism
adjustment compared with Stop-Resume.

• The efficient elasticity enabled by EDL provides
efficient support for scheduling primitives such as
profiling, straggler mitigation and job migration.

• By utilizing elasticity, the Elastic-Tiresias algorithm
introduced in §5.1 achieves higher GPU utilization
and significantly shortens JCT compared with the
original Tiresias.

6.1 The Overheads of Elasticity
Performance under static parallelism. As DNN training
jobs run with a static parallelism (i.e., fixing the number of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

0

2

4

6

8

10

12

14

1 2 4 8 16 32Th
ro

u
gh

p
u

t
(1

K
 im

ag
es

/s
ec

)

Parallelism

EDL

Horovod

Linear Scaling

(a) ResNet50

0

1

2

3

4

5

1 2 4 8 16 32Th
ro

u
gh

p
u

t
(1

K
 im

ag
es

/s
ec

)

Parallelism

EDL

Horovod

Linear Scaling

(b) VGG16

0

2

4

6

8

10

1 2 4 8 16 32Th
ro

u
gh

p
u

t
(1

K
 im

ag
es

/s
ec

)

Parallelism

EDL

Horovod

Linear Scaling

(c) Inception3

0

5

10

15

20

1 2 4 8 16 32

Th
ro

u
gh

p
u

t
(1

0
 K

se

n
te

n
ce

/s
)

Parallelism

EDL

Horovod

Linear Scaling

(d) Transformer

Fig. 9: Performance under static parallelism

GPUs for running a job during its entire execution) most
of the time, it is crucial that the designs for elasticity in
EDL (e.g., RPC-based coordination, dynamic data pipeline)
incur little overhead on normal training. We validate this
by comparing EDL with the state-of-the-art distributed DL
framework, Horovod. We measured the throughput (av-
eraged over 500 mini-batches) of EDL and Horovod for
training different DNN models using up to 32 GPUs. As
a common practice of testing the scalability of distributed
DNN training systems [31], [46], we increased the total batch
size linearly with the number of GPUs (i.e., weak scaling).
We report the results for four popular models in Figure 9,
which shows that EDL achieves comparable throughput
with Horovod for normal training (without elastic scaling),
where the throughput of EDL and that of Horovod dif-
fer by at most 3%. The slight difference in throughput is
mainly caused by the difference in the communication layer:
Horovod leverages MPI with RDMA support while EDL
uses TCP, which has a relatively larger message latency.

Scaling overheads. To scale in, EDL does not stop training
and uses graceful exit to remove the exiting worker(s).
To scale out, EDL needs to stop training for a short pe-
riod of time to broadcast the latest model to the new
worker(s) (§4.2). In comparison, Stop-Resume needs to stop
all workers for the entire parallelism adjustment period for
both scaling in and out.

We report the stopping time of scaling out for EDL and
Stop-Resume in Figure 10 and Figure 11 (averaged over 20
trials), respectively. Stopping time is how long all workers
for a job are stopped from training during scaling. In both
figures, x → y means scaling a job from x GPUs to y
GPUs, and local means the added GPUs are on the same
machine as the original GPUs, while remote means the added
GPUs are on another machine. The results show that in all
cases (i.e., the number and location of the added GPUs),
the stopping time of EDL is orders of magnitude shorter
than that Stop-Resume thanks to EDL’s efficient parallelism
adjustment procedure (§4.2). For EDL, the stopping time
of ResNet50 is long because it has a complicated model
architecture and contains many small tensors, and it is

0

0.2

0.4

0.6

0.8

4->6 local 4->6 remote 4->8 local 4->8 remote

Ti
m

e
(s

ec
o

n
d

) Resnet50 VGG16 Inception Transformer

Fig. 10: The stopping time of EDL

0

50

100

150

200

250

4->6 local 4->6 remote 4->8 local 4->8 remote

Ti
m

e
(s

ec
o

n
d

) Resnet50 VGG16 Inception Transformer

Fig. 11: The stopping time of Stop-Resume

0

500

1000

1500

2000

ED
L

S-R

ED
L

S-R

ED
L

S-R

ED
L

S-R

4->6 local 4->6 remote 4->8 local 4->8 remote

R
es

o
u

rc
e

(G
P

U
 *

 s
ec

o
n

d
) Resnet50 VGG16 Inception Transformer

Fig. 12: Resource loss comparison

difficult to utilize the communication bandwidth efficiently
when transmitting small tensors. The stopping time of EDL
increases slightly when adding more GPUs (e.g., 4→6 local
vs. 4→8 local) or the added GPUs are on a remote machine
(e.g., 4→6 local vs. 4→6 remote). This is because adding
more GPUs increases the number of workers used for model
broadcast and inter-machine communication is slower than
intra-machine communication. As the size of the models is
small w.r.t. our network bandwidth, the stopping time of
EDL is less than 1 second in all cases.

The stopping time of Stop-Resume is significantly longer
than EDL because it re-launches a job for scaling and needs
to pay expensive initialization cost. For Stop-Resume, scal-
ing to a remote machine is faster than the same machine
(e.g., 4→6 local vs. 4→6 remote) because TensorFlow initial-
izes the GPUs on the same machine sequentially and GPUs
on different machines in parallel. Thus, scaling to a remote
machine overlaps part of the initialization overhead.

We report the resource loss (in GPU * time) during scaling
out for Stop-Resume and EDL in Figure 12. Resource loss
is calculated by multiplying the number of GPUs allocated
for a job with the time period in which these GPUs are not
used for training during scaling. The results show that the
resource loss of EDL is significantly smaller than that of
Stop-Resume. This is because Stop-Resume stops all GPUs

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

0

200

400

600

800

1000

Ti
m

e
(s

ec
o

n
d

)
EDL Stop-Resume

1.2 (a) Profiling

0

0.2

0.4

0.6

0.8

1

1.2

N
o

m
al

iz
ed

 T
h

ro
u

gh
p

u
t

Normal BeforeRmv AfterRmv

(b) Straggler mitigation

Fig. 13: Performance for profiling and straggler migration

during the entire scaling operation. In contrast, for EDL,
only the newly added GPUs are not used during scaling
while the existing GPUs only need to stop for a short period
for model broadcast. We will show in the next subsection,
the small resource loss of EDL translates into efficient uti-
lization of transient idle resources. We omit the overhead
analysis for scaling in as Stop-Resume has similar overhead
for both scaling in and scaling out, while scaling in incurs
almost no overhead in EDL thanks to graceful exit.

6.2 The Benefits of Using EDL

In this set of experiments, we demonstrate the benefits
brought by EDL in various applications.
Performance profiling. We report the time taken by EDL
and Stop-Resume for a profiling job (testing the training
performance with 2 to 8 GPUs and running for 10 mini-
batches under each parallelism) in Figure 13a. EDL first
started the job with 8 GPUs and then gradually scaled in to
2 GPUs. In contrast, Stop-Resume started a new job under
each parallelism to measure the performance. The results
show that EDL used approximately 10% of the time taken by
Stop-Resume to do the same profiling jobs. This is because
Stop-Resume needs to pay the expensive context initializa-
tion cost repeatedly for each parallelism, while EDL pays
the context initialization cost only once at the beginning
and then uses low-overhead scale-in operations to adjust
the parallelism.
Straggler mitigation. We manually created a straggler for a
job running with 16 GPUs, by delaying its gradient synchro-
nization requests by 1/3 of the per-mini-batch time, which
is equivalent to limiting its computation capability to 75% of
the maximum. Figure 13b shows that the overall throughput
also degrades to approximately 75% of the normal case, as
all workers need to wait for the straggler in synchronous
training. We configured EDL to detect stragglers based on
the statistics of the past 10 mini-batches. For all the jobs
we tested, EDL took less than 10 seconds to detect the
straggler and removed it within 5 seconds using scale-in.
After the straggler was removed, the training throughout
returned to about 94% of the normal case (with 1 less
GPU, i.e., the removed straggler). Note that when there are
more stragglers, the detection time and removal time do
not increase since they can be removed using one scaling
operation.
Worker migration. Co-locating GPUs for a job is important
for training large models due to costly inter-machine com-
munication. We considered a job running on 2 machines,

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
al

iz
ed

 T
h

ro
u

gh
p

u
t

4*2 8

1.2

N
o

m
al

iz
ed

 T
h

ro
u

gh
p

u
t (a) Worker migration

0

0.2

0.4

0.6

0.8

1

1.2

N
o

m
al

iz
ed

 T
h

ro
u

gh
p

u
t

Normal BeforeRmv AfterRmv

0

0.4

0.8

1.2

1.6

Add 1 Add 2 Add 4

N
o

rm
al

iz
ed

 T
h

ro
u

gh
p

u
t Base SR Ela Ideal

(b) Transient GPU usage

Fig. 14: Worker migration and transient GPU usage

each using 4 GPUs. We used EDL to migrate the job to one
of the machines and run on the 8 GPUs on that machine.
We report the training throughput before and after the
migration in Figure 14a. For large models, e.g., VGG16, there
was an significant increase in throughput (nearly 50%) after
migration, though the increase was not obvious for small
models (e.g., 5% for Inception). We found that the cost of
worker migration was similar to scaling out and training on
the target machine was only stopped for less than a second.

Use of transient resources. To validate the benefit EDL
can bring out of the transient idle resources, we conducted
an experiment using a job that trained ResNet50 with 4
persistent GPUs and considered the cases that add 1, 2
and 4 idle GPUs on the same machine. The idle GPUs
were revoked every 4 minutes to simulate the transient
idle resources reported in §2.2. Four schemes were used:
(1) Baseline, which did not use the idle GPUs and used the
4 persistent GPUs for training at all time; 2) Stop-Resume
(SR), which used Stop-Resume for scaling out and scaling
in when using the transient idle GPUs; 3) EDL, which used
EDL for scaling; 4) Ideal, which assumed that the scaling
completed instantly without any overhead. Note that scal-
ing needed to be conducted twice for each idle interval, i.e.,
scaling out to add the idle GPUs to training and scaling in
to remove these GPUs after the transient period.

Figure 14b shows that EDL achieved at least 97% of the
throughput of Ideal. In contrast, Stop-Resume performed
even worse than Baseline due to its high scaling overheads,
which is in line with our analysis in §2.2. We found that 11.7
minutes is the shortest transient interval needed for Stop-
Resume to outperform Baseline with 1 idle GPUs, while
EDL only requires the idle interval to be longer than the
launch-up time of a worker to outperform Baseline. This
result shows that the low scaling overhead enables EDL to
utilize idle resources more effectively.

6.3 Performance on Cluster Scheduling

Synthetic workload. To demonstrate the benefits of using
EDL in scheduling, we created a synthetic workload to eval-
uate the performance with/without elasticity. We submitted
a job to our cluster using 4 machines, each with 8 GPUs, at
every 30 seconds, until 16 jobs were submitted (no job left
in the middle). Each job trained a model randomly chosen
from the 9 popular DNNs in TensorFlow’s official bench-
marks [47] (e.g., ResNet, VGG variants) and all jobs ran
using 4 GPUs by default. This synthetic workload models
different loading conditions that can appear in a production

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

0
4
8

12
16
20
24
28
32
36

0 100 200 300 400 500 600

C
lu

st
er

Th
ro

u
gh

p
u

t

Time (sec)

Static

Elastic

(a) GPU througput

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600

G
P

U
 T

h
ro

u
gh

p
u

t

Time (sec)

Static

Elastic

(b) Cluster througput

Fig. 15: Performance on synthetic workload

cluster, i.e., the load was low at the beginning when only
a few jobs were running, and gradually the cluster was
overloaded.

We compared two scheduling strategies: Static and Elas-
tic (i.e., using EDL). Static ran each job with a static paral-
lelism of 4 and occupied all the GPUs for the first 8 jobs.
After that, new jobs were put in a pending queue. Elastic
allocated a new job to the least loaded machine (measured
by the number of running jobs) and assigned the GPUs on
a machine to its jobs uniformly. Elastic also scaled out a job
to use any idle GPUs on the machine the job was running,
as long as the scale-out does not decrease its throughput 5.
When all GPUs were occupied and a new job was submitted,
Elastic scaled in the running job(s) to release GPUs for the
new job following the algorithm introduced in §5.1.

We report the normalized cluster throughput (cluster
throughput for short) and the average normalized GPU
throughput (GPU throughput for short) of Static and Elastic
in Figure 15. For a job running with p GPUs, its normalized
throughput is defined as S(p)/S(1), in which S(q) is its
training throughput with q GPUs. The cluster throughput is
the sum of the normalized throughputs of all running jobs in
the cluster, while the GPU throughput is the ratio between
the cluster throughput and the number of utilized GPUs.
Intuitively, the cluster throughput measures the efficiency of
the entire cluster while the GPU throughput measures the
efficiency of the utilized GPUs. Figure 15a shows that Elastic
achieved higher cluster throughput than Static almost all
the time, while Figure 15b shows that the GPU throughput
of Elastic was lower than Static at the beginning. This
is because Elastic scaled out the jobs to use idle GPUs
when the cluster load was light and strong scaling was
employed 6, which resulted in lower per-GPU efficiency but
higher cluster efficiency. The small spikes on the curves of
Elastic were caused by the scaling operations. Both GPU and
cluster throughput of Elastic approached their maximum
when 16 jobs were running, while those of Static reached
their maximum when approximately 8 jobs were running.
The results thus verify that using EDL improves the cluster
efficiency under different loading conditions.

Production cluster simulation. To show the benefits of
using EDL in scheduling a large GPU cluster, we compared
Elastic-Tiresias (presented in §5.1) with Tiresias [5]. We used

5. We assume profiling was conducted beforehand such that the
scheduler knew the performance of the jobs under different parallelism.

6. As illustrated in Figure 2, when increasing parallelism under
strong scaling, throughput usually increases but GPU efficiency de-
creases.

TABLE 3: Statistics of job completion time (sec)

Tiresias Elastic-Tiresias Reduction (%)

Mean 235,068 24,658 89.5%
Median 1,080 561 48.1%

95th 1,914,470 88,886 95.4%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5

G
P

U
 U

ti
liz

at
io

n

Time (million sec)

Elastic-Tiresias

Tiresias

(a) GPU ultilization

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

N
o

rm
 C

lu
st

e
r

Ef
fi

ci
e

n
cy

Time (million sec)

Elastic-Tiresias

Tiresias

(b) Cluster efficency

Fig. 16: Performance on cluster scheduling

the simulator provided in [5], which has been shown to
produce results close to actual execution. The simulation
was based on the trace data collected from Microsoft’s
production cluster [8], [30]. The trace data contains more
than 100,000 training jobs, but the model architectures of
the jobs are not disclosed. Thus, we followed the same
approach in [5] and generated models chosen uniformly at
random from TensorFlow’s official benchmarks. Both Tire-
sias and Elastic-Tiresia were configured with three queues
(also called groups in §5.1) and the service quantum for G0

and G1 are 500 GPU*sec and 10,000 GPU*sec, respectively.
Elastic-Tiresia uses N =10 for the threshold of waiting jobs
and r=0.5 for the quality of service guarantee.

We report some statistics of the JCTs of Tiresias and
Elastic-Tiresias in Table 3. With elasticity enabled, the JCTs
of Tiresias are significantly reduced. To further examine
the scheduling performance of Tiresias and Elastic-Tiresias,
we plot the GPU utilization rate (i.e., the fraction of GPUs
in use) and the cluster efficiency (normalized by the total
number of GPUs) in Figure 16. The results show that Elastic-
Tiresias achieves higher GPU utilization rate and cluster
efficiency than Tiresias. The GPU utilization rate of Elastic-
Tiresias is higher because it scales out the jobs to utilize the
idle GPUs. The cluster efficiency curve is highly correlated
with the curve of the GPU utilization rate, which shows that
utilizing the idle GPUs also leads to higher cluster efficiency,
which in turn leads to improved JCTs.

7 RELATED WORK

Deep learning schedulers. Instead of using traditional
cluster manager such as Yarn [1], Mesos [2], Omega [48]
and Borg [49], a number of DL-specialized schedulers are
proposed for multi-tenant GPU clusters recently, e.g., Opti-
mus [3], Gandiva [4] and Tiresias [5]. Optimus adjusts the
number of parameter servers/workers of MXNet period-
ically using the Stop-Resume approach to minimize JCT.
Gandiva [4] introduces various mechanisms such as mi-
gration, grow-shrink, profiling and suspend-resume to adjust
resource allocation according to runtime measurements.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

As grow-shrink adjusts the batch size of a job along with
the parallelism, Gandiva only uses it when a job is declared
to be parallelism insensitive. As introduced in §5.1, Tiresias
approximates the shortest-job-first strategy with a priority
discretization framework to alleviate head-of-line blocking.
EDL positions itself as a system that provides low-overhead
elasticity, and can cooperate with existing GPU schedulers
by enabling more frequent parallelism adjustments and
supporting scheduling mechanisms such as migration and
profiling efficiently. EDL also provides consistency semantics
under elasticity which helps generalize grow-shrink to all
jobs.

Elastic ML/DL systems. Machine learning (ML) systems are
usually based on the parameter-server architecture [23], [24],
[25], [26], [26] and process distributed ML workloads such
as Logistic Regression (LR) and Latent Dirichlet Allocation
(LDA) [50] in CPU clusters. Elasticity has also been found
useful in adapting to resource availability for such work-
loads. Litz [11] adopts designs such as update forwarding
and executor migration to support the dynamic addition/re-
moval of servers and workers. Based on a performance
model, Cruise [12] dynamically adjusts the configurations of
the parameter servers and workers for optimal performance.
EDL focuses on DL workloads that require specialized ac-
celerators such as GPUs. However, its designs for elasticity
can also be applied to training ML models such as LR and
LDA based on the AllReduce architecture.

Baidu’s Paddle EDL [51] is a DL system based on the
parameter-server architecture and integrated with Kuber-
netes. Very recently, Ant Financial also introduced an early-
stage ElasticDL project [52], which is based on TensorFlow
2.0. Both systems are designed for asynchronous training
and fall back to Stop-Resume if parallelism is adjusted
during synchronous training. DL2 [53] supports elasticity
on (parameter-server-based) MXNet but it is not clear how
DL2 hides the overheads of adding new workers and how
the training data is partitioned among a dynamic set of
workers. A concurrent work, AutoScaling [54], also supports
elasticity on the Allreduce architecture and tries to reduce
the overheads of scaling. However, AutoScaling focuses on
using elasticity to trade-off between cost (i.e., the number
of GPUs) and efficiency (i.e., JCT) for a single job instead
of improving multi-tenant cluster management. Some im-
portant system issues, such as the interaction with the DL
systems and the cluster scheduler and failure recovery are
also not considered in AutoScaling. Compared with these
existing works, EDL conducted a comprehensive analysis
of the potential benefits of elasticity for multi-tenant cluster
management and demonstrated with extensive experiments
that these benefits can be achieved with EDL. EDL also
introduced comprehensive system designs such as user-
friendly APIs, dynamic data partitioning and failure recov-
ery to enable elasticity in a real production environment.

After the submission of our work, Horovod released
Elastic Horovod, which supports elastic training. EDL dif-
fers from Elastic Horovod as follows. Elastic Horovod re-
quires users to specify the details for scaling (e.g., the
GPUs to add/remove), while EDL provides a simple API
to allow the cluster scheduler to easily add/remove GPUs
for a running job, which is more suitable for a multi-tenant

cluster. Elastic Horovod assigns training data to workers in
a coarse-grained manner and cannot ensure that all data
samples are used for training in one epoch in the face of
failure. In contrast, EDL’s dynamic data pipeline provides
such guarantee by carefully recording the worker progresses
in the data partitions. More critically, Elastic Horovod does
not hide the cost of warming up new workers, which is the
main overhead for scaling out, while EDL uses wait-free
scaling to eliminate the overhead.

Systems for transient resources. Due to the significantly
lower price of preemptible instances on cloud than on-
demand ones, many systems have been designed to utilize
transient resources [55], [56]. Proteus [57] is a parameter
server based ML system that manages models on reliable
server nodes and allows workers to be dynamically added
or removed to utilize the revocable resources. Hourglass [9]
is a graph processing system that partitions a graph into
micro partitions and reassigns these micro partitions among
the machines when resource changes. Tributary [58] runs
web servers using transient resources across different cloud
markets to avoid correlated preemptions within one spot
market and satisfy quality of service guarantees (e.g., low
latency). Flint [59], Pado [60] and TR-Spark [61] focus on
batch-processing jobs and use smart checkpointing and task
scheduling strategies to minimize the impact of resource
revocation. While transient workers usually last for hours
in cloud spot markets, EDL considers a more stringent
situation where it is common that transient GPU resources
are only available for minutes, which necessitates elasticity
with low overheads.

8 CONCLUSIONS

We presented EDL, which supports elastic GPU utilization
with low overheads. EDL can benefit multi-tenant GPU
cluster management in many ways, including improving
resource utilization by adapting to load variations, maximiz-
ing the use of transient idle GPUs, performance profiling,
straggler mitigation, and job migration. We showed in our
experiments that significant performance benefits can be
obtained using EDL in these applications.

Acknowledgments. We thank the reviewers for their con-
structive comments that help significantly improve the qual-
ity of the paper. This work was supported by GRF 14208318
from the RGC of HKSAR.

REFERENCES

[1] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha,
C. Curino, O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler,
“Apache hadoop YARN: yet another resource negotiator,” in
ACM Symposium on Cloud Computing, SOCC ’13, Santa Clara, CA,
USA, October 1-3, 2013, 2013, pp. 5:1–5:16. [Online]. Available:
https://doi.org/10.1145/2523616.2523633

[2] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. H. Katz, S. Shenker, and I. Stoica, “Mesos:
A platform for fine-grained resource sharing in the data
center,” in Proceedings of the 8th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2011,
Boston, MA, USA, March 30 - April 1, 2011, 2011. [Online].
Available: https://www.usenix.org/conference/nsdi11/mesos-
platform-fine-grained-resource-sharing-data-center

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

[3] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an
efficient dynamic resource scheduler for deep learning clusters,”
in Proceedings of the Thirteenth EuroSys Conference, EuroSys 2018,
Porto, Portugal, April 23-26, 2018, 2018, pp. 3:1–3:14. [Online].
Available: https://doi.org/10.1145/3190508.3190517

[4] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra,
Z. Han, P. Patel, X. Peng, H. Zhao, Q. Zhang, F. Yang, and
L. Zhou, “Gandiva: Introspective cluster scheduling for deep
learning,” in 13th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2018, Carlsbad, CA, USA,
October 8-10, 2018., 2018, pp. 595–610. [Online]. Available:
https://www.usenix.org/conference/osdi18/presentation/xiao

[5] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian,
H. H. Liu, and C. Guo, “Tiresias: A GPU cluster manager
for distributed deep learning,” in 16th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2019, Boston,
MA, February 26-28, 2019., 2019, pp. 485–500. [Online]. Available:
https://www.usenix.org/conference/nsdi19/presentation/gu

[6] K. Mahajan, A. Singhvi, A. Balasubramanian, V. Batra, S. T.
Chavali, S. Venkataraman, A. Akella, A. Phanishayee, and
S. Chawla, “Themis: Fair and efficient GPU cluster scheduling for
machine learning workloads,” CoRR, vol. abs/1907.01484, 2019.
[Online]. Available: http://arxiv.org/abs/1907.01484

[7] H. Zhang, L. Stafman, A. Or, and M. J. Freedman,
“SLAQ: quality-driven scheduling for distributed machine
learning,” in Proceedings of the 2017 Symposium on Cloud
Computing, SoCC 2017, Santa Clara, CA, USA, September
24-27, 2017. ACM, 2017, pp. 390–404. [Online]. Available:
https://doi.org/10.1145/3127479.3127490

[8] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao,
and F. Yang, “Analysis of large-scale multi-tenant GPU
clusters for DNN training workloads,” in 2019 USENIX
Annual Technical Conference, USENIX ATC 2019, Renton, WA,
USA, July 10-12, 2019, 2019, pp. 947–960. [Online]. Available:
https://www.usenix.org/conference/atc19/presentation/jeon

[9] P. Joaquim, M. Bravo, L. E. T. Rodrigues, and M. Matos,
“Hourglass: Leveraging transient resources for time-constrained
graph processing in the cloud,” in Proceedings of the
Fourteenth EuroSys Conference 2019, Dresden, Germany, March
25-28, 2019, 2019, pp. 35:1–35:16. [Online]. Available:
https://doi.org/10.1145/3302424.3303964

[10] L. Liu and H. Xu, “Elasecutor: Elastic executor scheduling in
data analytics systems,” in Proceedings of the ACM Symposium
on Cloud Computing, SoCC 2018, Carlsbad, CA, USA, October
11-13, 2018. ACM, 2018, pp. 107–120. [Online]. Available:
https://doi.org/10.1145/3267809.3267818

[11] A. Qiao, A. Aghayev, W. Yu, H. Chen, Q. Ho, G. A.
Gibson, and E. P. Xing, “Litz: Elastic framework for high-
performance distributed machine learning,” in 2018 USENIX
Annual Technical Conference, USENIX ATC 2018, Boston, MA,
USA, July 11-13, 2018., 2018, pp. 631–644. [Online]. Available:
https://www.usenix.org/conference/atc18/presentation/qiao

[12] W.-Y. Lee, Y. Lee, J. S. Jeong, G.-I. Yu, J. Y. Kim, H. J. Park, B. Jeon,
W. Song, G. Kim, M. Weimer, B. Cho, and B.-G. Chun, “Automat-
ing system configuration of distributed machine learning,” in 2019
IEEE 39th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2019, pp. 2057–2067.

[13] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu,
and X. Zheng, “Tensorflow: A system for large-scale machine
learning,” in 12th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016., 2016, pp. 265–283. [Online]. Avail-
able: https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/abadi

[14] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer.
(2017) Automatic differentiation in pytorch. [Online]. Available:
https://openreview.net/forum?id=BJJsrmfCZ

[15] Huawei, “Mindspore,” https://e.huawei.com/us/products/cloud-
computing-dc/atlas/mindspore, 2021.

[16] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang, “Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed

systems,” CoRR, vol. abs/1512.01274, 2015. [Online]. Available:
http://arxiv.org/abs/1512.01274

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016, 2016, pp. 770–778. [Online]. Available:
https://doi.org/10.1109/CVPR.2016.90

[18] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, 2015. [Online].
Available: http://arxiv.org/abs/1409.1556

[19] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and
Z. Wojna, “Rethinking the inception architecture for computer
vision,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, Las Vegas, NV, USA,
June 27-30, 2016, 2016, pp. 2818–2826. [Online]. Available:
https://doi.org/10.1109/CVPR.2016.308

[20] S. Kim, G. Yu, H. Park, S. Cho, E. Jeong, H. Ha, S. Lee,
J. S. Jeong, and B. Chun, “Parallax: Sparsity-aware data
parallel training of deep neural networks,” in Proceedings
of the Fourteenth EuroSys Conference 2019, Dresden, Germany,
March 25-28, 2019, 2019, pp. 43:1–43:15. [Online]. Available:
https://doi.org/10.1145/3302424.3303957

[21] P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce
algorithms for clusters of workstations,” Journal of Parallel
Distribitued Computing, vol. 69, no. 2, pp. 117–124, 2009. [Online].
Available: https://doi.org/10.1016/j.jpdc.2008.09.002

[22] Nvidia, “Nvidia nccl,” https://developer.nvidia.com/nccl.
[Online]. Available: https://developer.nvidia.com/nccl

[23] Y. Huang, T. Jin, Y. Wu, Z. Cai, X. Yan, F. Yang, J. Li, Y. Guo, and
J. Cheng, “Flexps: Flexible parallelism control in parameter server
architecture,” PVLDB, vol. 11, no. 5, pp. 566–579, 2018. [Online].
Available: http://www.vldb.org/pvldb/vol11/p566-huang.pdf

[24] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and
B. Su, “Scaling distributed machine learning with the
parameter server,” in 11th USENIX Symposium on Operating
Systems Design and Implementation, OSDI ’14, Broomfield, CO,
USA, October 6-8, 2014., 2014, pp. 583–598. [Online]. Avail-
able: https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/li mu

[25] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei,
P. Xie, and E. P. Xing, “Poseidon: An efficient communication
architecture for distributed deep learning on GPU clusters,” in
2017 USENIX Annual Technical Conference, USENIX ATC 2017,
Santa Clara, CA, USA, July 12-14, 2017., 2017, pp. 181–193. [Online].
Available: https://www.usenix.org/conference/atc17/technical-
sessions/presentation/zhang

[26] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee,
X. Zheng, P. Xie, A. Kumar, and Y. Yu, “Petuum: A new
platform for distributed machine learning on big data,” in
Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Sydney, NSW, Australia,
August 10-13, 2015, 2015, pp. 1335–1344. [Online]. Available:
https://doi.org/10.1145/2783258.2783323

[27] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and
C. Guo, “A generic communication scheduler for distributed
DNN training acceleration,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP 2019, Huntsville,,
ON, Canada, October 27-30, 2019., 2019, pp. 16–29. [Online].
Available: https://doi.org/10.1145/3341301.3359642

[28] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and G. Pekhimenko,
“Priority-based parameter propagation for distributed DNN
training,” CoRR, vol. abs/1905.03960, 2019. [Online]. Available:
http://arxiv.org/abs/1905.03960

[29] A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed
deep learning in tensorflow,” CoRR, vol. abs/1802.05799, 2018.
[Online]. Available: http://arxiv.org/abs/1802.05799

[30] M. R. Asia. Project philly traces. https://github.com/msr-
fiddle/philly-traces.

[31] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch
SGD: training imagenet in 1 hour,” CoRR, vol. abs/1706.02677,
2017. [Online]. Available: http://arxiv.org/abs/1706.02677

[32] Y. You, I. Gitman, and B. Ginsburg, “Scaling SGD batch size

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 15

to 32k for imagenet training,” CoRR, vol. abs/1708.03888, 2017.
[Online]. Available: http://arxiv.org/abs/1708.03888

[33] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[34] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.
Tang, “On large-batch training for deep learning: Generalization
gap and sharp minima,” in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017. [Online].
Available: https://openreview.net/forum?id=H1oyRlYgg

[35] E. Hoffer, I. Hubara, and D. Soudry, “Train longer, generalize
better: closing the generalization gap in large batch training of
neural networks,” in Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing
Systems 2017, 4-9 December 2017, Long Beach, CA, USA, I. Guyon,
U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N.
Vishwanathan, and R. Garnett, Eds., 2017, pp. 1731–1741.
[Online]. Available: http://papers.nips.cc/paper/6770-train-
longer-generalize-better-closing-the-generalization-gap-in-large-
batch-training-of-neural-networks

[36] Y. Wu, K. Ma, Z. Cai, T. Jin, B. Li, C. Zheng, J. Cheng, and F. Yu,
“Seastar: Vertex-centric programming for graph neural networks,”
in Proceedings of the Fourteenth EuroSys Conference 2021, April 26-28,
2021. ACM, 2021.

[37] Z. Cai, X. Yan, Y. Wu, K. Ma, J. Cheng, and F. Yu, “Dgcl: An
efficient communication library for distributed gnn training,” in
Proceedings of the Fourteenth EuroSys Conference 2021, April 26-28,
2021. ACM, 2021.

[38] J. Haochen and S. Sra, “Random shuffling beats SGD after
finite epochs,” in Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, 2019, pp. 2624–2633. [Online]. Available:
http://proceedings.mlr.press/v97/haochen19a.html

[39] L. Bottou, “Curiously fast convergence of some stochastic gradient
descent algorithms,” in Proceedings of the symposium on learning and
data science, Paris, 2009.

[40] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-
free coordination for internet-scale systems,” in 2010 USENIX An-
nual Technical Conference, Boston, MA, USA, June 23-25, 2010, 2010.
[Online]. Available: https://www.usenix.org/conference/usenix-
atc-10/zookeeper-wait-free-coordination-internet-scale-systems

[41] etcd. (2019) etcd. [Online]. Available: https://github.com/etcd-
io/etcd

[42] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
hadoop distributed file system,” in IEEE 26th Symposium on
Mass Storage Systems and Technologies, MSST 2012, Lake Tahoe,
Nevada, USA, May 3-7, 2010, 2010, pp. 1–10. [Online]. Available:
https://doi.org/10.1109/MSST.2010.5496972

[43] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi, “Naiad: a timely dataflow system,” in ACM
SIGOPS 24th Symposium on Operating Systems Principles, SOSP
’13, Farmington, PA, USA, November 3-6, 2013, 2013, pp. 439–455.
[Online]. Available: https://doi.org/10.1145/2517349.2522738

[44] J. Nagle, “Congestion control in IP/TCP internetworks,”
RFC, vol. 896, pp. 1–9, 1984. [Online]. Available:
https://doi.org/10.17487/RFC0896

[45] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, 4-9
December 2017, Long Beach, CA, USA, I. Guyon, U. von Luxburg,
S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan,
and R. Garnett, Eds., 2017, pp. 5998–6008. [Online]. Available:
http://papers.nips.cc/paper/7181-attention-is-all-you-need

[46] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P.
Xing, “Geeps: scalable deep learning on distributed gpus with a
gpu-specialized parameter server,” in Proceedings of the Eleventh
European Conference on Computer Systems, EuroSys 2016, London,
United Kingdom, April 18-21, 2016, C. Cadar, P. R. Pietzuch,
K. Keeton, and R. Rodrigues, Eds. ACM, 2016, pp. 4:1–4:16.
[Online]. Available: https://doi.org/10.1145/2901318.2901323

[47] Tensorflow. (2019) tf cnn benchmark. [Online]. Available:
https://github.com/tensorflow/benchmarks/tree/master/scripts/tf-
cnn-benchmarks

[48] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: flexible, scalable schedulers for large compute clusters,”

in Eighth Eurosys Conference 2013, EuroSys ’13, Prague, Czech
Republic, April 14-17, 2013, 2013, pp. 351–364. [Online]. Available:
https://doi.org/10.1145/2465351.2465386

[49] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes, “Large-scale cluster management
at google with borg,” in Proceedings of the Tenth European
Conference on Computer Systems, EuroSys 2015, Bordeaux, France,
April 21-24, 2015, 2015, pp. 18:1–18:17. [Online]. Available:
https://doi.org/10.1145/2741948.2741964

[50] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
in Advances in Neural Information Processing Systems 14 [Neural
Information Processing Systems: Natural and Synthetic, NIPS 2001,
December 3-8, 2001, Vancouver, British Columbia, Canada], 2001, pp.
601–608. [Online]. Available: http://papers.nips.cc/paper/2070-
latent-dirichlet-allocation

[51] Baidu. (2019) paddlepaddle. [Online]. Available:
https://www.paddlepaddle.org.cn/

[52] A. Financial. (2019) Elasticdl. [Online]. Available:
https://github.com/sql-machine-learning/elasticdl

[53] Y. Peng, Y. Bao, Y. Chen, C. Wu, C. Meng, and W. Lin,
“DL2: A deep learning-driven scheduler for deep learning
clusters,” CoRR, vol. abs/1909.06040, 2019. [Online]. Available:
http://arxiv.org/abs/1909.06040

[54] A. Or, H. Zhang, and M. J. Freedman, “Resource elasticity in
distributed deep learning,” in Proceedings of the Third Conference
on Machine Learning and Systems, MLSys2020. Austin, USA, March
2-4, 2020.

[55] Amazon. (2019) Amazon ec2 spot instance. [Online]. Available:
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-
spot-instances.html

[56] G. Cloud. (2019) Google pre-
emptible vm instances. [Online]. Available:
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-
spot-instances.html

[57] A. Harlap, A. Tumanov, A. Chung, G. R. Ganger, and P. B.
Gibbons, “Proteus: agile ML elasticity through tiered reliability
in dynamic resource markets,” in Proceedings of the Twelfth
European Conference on Computer Systems, EuroSys 2017, Belgrade,
Serbia, April 23-26, 2017, 2017, pp. 589–604. [Online]. Available:
https://doi.org/10.1145/3064176.3064182

[58] A. Harlap, A. Chung, A. Tumanov, G. R. Ganger,
and P. B. Gibbons, “Tributary: spot-dancing for elastic
services with latency slos,” in 2018 USENIX Annual
Technical Conference, USENIX ATC 2018, Boston, MA, USA,
July 11-13, 2018., 2018, pp. 1–14. [Online]. Available:
https://www.usenix.org/conference/atc18/presentation/harlap

[59] P. Sharma, T. Guo, X. He, D. E. Irwin, and P. J. Shenoy,
“Flint: batch-interactive data-intensive processing on transient
servers,” in Proceedings of the Eleventh European Conference
on Computer Systems, EuroSys 2016, London, United Kingdom,
April 18-21, 2016, 2016, pp. 6:1–6:15. [Online]. Available:
https://doi.org/10.1145/2901318.2901319

[60] Y. Yang, G. Kim, W. W. Song, Y. Lee, A. Chung, Z. Qian, B. Cho,
and B. Chun, “Pado: A data processing engine for harnessing
transient resources in datacenters,” in Proceedings of the Twelfth
European Conference on Computer Systems, EuroSys 2017, Belgrade,
Serbia, April 23-26, 2017, 2017, pp. 575–588. [Online]. Available:
https://doi.org/10.1145/3064176.3064181

[61] Y. Yan, Y. Gao, Y. Chen, Z. Guo, B. Chen, and T. Moscibroda,
“Tr-spark: Transient computing for big data analytics,” in
Proceedings of the Seventh ACM Symposium on Cloud Computing,
Santa Clara, CA, USA, October 5-7, 2016, 2016, pp. 484–496.
[Online]. Available: https://doi.org/10.1145/2987550.2987576

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 16

Yidi Wu is currently a Ph.D. candidate in the
Department of Computer Science and Engineer-
ing at the Chinese University of Hong Kong. His
research interests include machine learning sys-
tems, distributed data processing systems, and
cluster scheduling systems.

Kaihao Ma is currently a Ph.D. student in the
Department of Computer Science and Engineer-
ing at the Chinese University of Hong Kong.
His research interests include deep learning and
graph neural networks.

Xiao Yan is currently a Ph.D. candidate in the
Department of Computer Science and Engineer-
ing at the Chinese University of Hong Kong. His
research interests include large-scale similarity
search, distributed machine learning, federated
learning and graph neural networks.

Zhi Liu is currently a Ph.D. student in the De-
partment of Computer Science and Engineer-
ing at the Chinese University of Hong Kong.
His research interests include graph databases,
stream processing systems and cluster manage-
ment.

Zhenkun Cai is currently a Ph.D. candidate in
the Department of Computer Science and En-
gineering at the Chinese University of Hong
Kong. His research interests include distributed
deep learning, graph neural network systems
and GPU cluster scheduling.

Yuzhen Huang is a Research Scientist at Face-
book. He obtained his Ph.D. degree from the
Department of Computer Science and Engineer-
ing at the Chinese University of Hong Kong.
His research interests include distributed deep
learning systems, large-scale machine learning
and distributed data analytic systems.

James Cheng is currently an associate pro-
fessor in the Department of Computer Science
and Engineering at the Chinese University of
Hong Kong. His research interests include graph
databases, distributed computing systems, clus-
ter management and job scheduling, graph neu-
ral networks, and large-scale similarity search.

Han Yuan received her Ph.D. degree from
Harbin Institute of Technology. She is currently
a researcher in the Theory of Computation Lab
of Huawei. Her research interests include deep
learning and combinatorial optimization.

Fan Yu received his Ph.D. degree from Univer-
sity of Science and Technology of China. He
has been working in Huawei for 10 years and is
currently the leading architect of Huawei’s Mind-
Spore. He has led the development of Huawei’s
MindSpore, Huawei Cloud cluster management
system and large scale SDN routing architec-
ture. He has obtained over 30 patents.

