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Outline

• MapReduce Recap
• Design patterns

• in-mapper combing
• pairs and stripes
• order inversion
• value-to-key conversion
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MapReduce Recap

• Input and output: each a set of key/value pairs.
• Tow functions implemented by users.
• Map (k1, v1) -> list(k2, v2)

• takes an input key/value pair
• produces a set of intermediate key/value pairs

• Reduce (k2, list(v2)) -> list(k3, v3)
• takes a set of values for an intermediate key
• produces a set of output value
• MapReduce framework guarantees that all values associated with 

the same key are brought together in the reducer
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MapReduce Recap

• Optional functions:
• Partition (k’, number of partitions) -> 
partition for k’
• dividing up the intermediate key space and assigning intermediate 

key-value pairs to reducers
• often a simple hash of the key, e.g., hash(k’) mod n

• Combine (k2, list(v2)) -> list(k2’, v2’)
• mini-reducers that run in memory after the map phase
• used as an optimization to reduce network traffic 
• will be discuss later
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MapReduce Recap
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30 CHAPTER 2. MAPREDUCE BASICS

A B C D E Fα β γ δ ε ζ

mapper mapper mapper mapper

ba 1 2 c c3 6 a c5 2 b c7 8

combiner combiner combiner combiner

pp pp pp pp

ba 1 2 c 9 a c5 2 b c7 8

partitioner partitioner partitioner partitioner

Shuffle and Sort: aggregate values by keys

a 1 5 b 2 7 c 2 9 8

p p p p

reducer reducer reducer

X 5 Y 7 Z 9

Figure 2.4: Complete view of MapReduce, illustrating combiners and partitioners in addi-
tion to mappers and reducers. Combiners can be viewed as “mini-reducers” in the map phase.
Partitioners determine which reducer is responsible for a particular key.

a combiner can significantly reduce the amount of data that needs to be copied over
the network, resulting in much faster algorithms.

The complete MapReduce model is shown in Figure 2.4. Output of the mappers
are processed by the combiners, which perform local aggregation to cut down on the
number of intermediate key-value pairs. The partitioner determines which reducer will
be responsible for processing a particular key, and the execution framework uses this
information to copy the data to the right location during the shu✏e and sort phase.13
Therefore, a complete MapReduce job consists of code for the mapper, reducer, com-
biner, and partitioner, along with job configuration parameters. The execution frame-
work handles everything else.

13In Hadoop, partitioners are actually executed before combiners, so while Figure 2.4 is conceptually accurate,
it doesn’t precisely describe the Hadoop implementation.
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Goals

• Key question: MapReduce provides an elegant 
programming model, but how should we recast a multitude 
of algorithms into the MapReduce model?

• Goal of this lecture: provide a guide to MapReduce 
algorithm design:
• design patterns, which form the building blocks of may problems
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Challenges

• MapReduce execution framework handles most complicated 
details 
• e.g., copy intermediate key-value pairs from mappers to reducers 

grouped by key during the shuffle and sort stage 
• Programmers have little control over MapReduce execution: 

• Where a mapper or reducer runs 
• When a mapper or reduce begins or finishes 
• Which input key-value pairs are processed by a specific mapper 
• Which intermediate key-value pairs are processed by a specific 

reducer 
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Challenges

• Things that programmers can control: 
• Construct complex data structures as keys and  

values to store and communicate partial results 
• Execute user-specified initialization/termination code in a map or 

reduce task 
• Preserve state in both mappers and reducers across multiple input 

or intermediate keys 
• Control sort order of intermediate keys, and hence the order of how 

a reducer processes keys 
• Control partitioning of key space, and hence the set of keys 

encountered by a reducer
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Challenges

• What we really want…
• No inherent bottlenecks as algorithms are applied to 

increasingly large datasets
• linear scalability: an algorithm running on twice the amount of data 

should take only twice as long
• an algorithm running on twice the number of nodes should only take 

half as long
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Design Patterns

• Combiners and in-mapper combining
• aggregate map outputs to reduce data traffic being shuffled from 

mappers to reducers
• Paris and stripes

• keep track of joint events
• Order inversion

• sort and control the sequence of computation
• Value-to-key conversion

• allow secondary sorting
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Local Aggregation

• In Hadoop, intermediate results (i.e., map outputs) are 
written to local disk before being sent over the network
• network and disk latencies are expensive

• Local aggregation of intermediate results reduces the 
number of key-value pairs that need to be shuffled from the 
mappers to the reducers

• Default combiner:
• provided by the MapReduce framework
• aggregate map outputs with the same key
• acts like a mini-reducer
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Word Count: Baseline

• What is the number of records being shuffled?
• without combiners?
• with combiners?
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42 CHAPTER 3. MAPREDUCE ALGORITHM DESIGN

1: class Mapper

2: method Map(docid a,doc d)
3: for all term t 2 doc d do
4: Emit(term t, count 1)

1: class Reducer

2: method Reduce(term t, counts [c
1

, c
2

, . . .])
3: sum 0
4: for all count c 2 counts [c

1

, c
2

, . . .] do
5: sum sum + c
6: Emit(term t, count sum)

Figure 3.1: Pseudo-code for the basic word count algorithm in MapReduce (repeated from
Figure 2.3).

The first technique for local aggregation is the combiner, already discussed in
Section 2.4. Combiners provide a general mechanism within the MapReduce framework
to reduce the amount of intermediate data generated by the mappers—recall that they
can be understood as “mini-reducers” that process the output of mappers. In this
example, the combiners aggregate term counts across the documents processed by each
map task. This results in a reduction in the number of intermediate key-value pairs that
need to be shu✏ed across the network—from the order of total number of terms in the
collection to the order of the number of unique terms in the collection.1

An improvement on the basic algorithm is shown in Figure 3.2 (the mapper is
modified but the reducer remains the same as in Figure 3.1 and therefore is not re-
peated). An associative array (i.e., Map in Java) is introduced inside the mapper to
tally up term counts within a single document: instead of emitting a key-value pair for
each term in the document, this version emits a key-value pair for each unique term in
the document. Given that some words appear frequently within a document (for exam-
ple, a document about dogs is likely to have many occurrences of the word “dog”), this
can yield substantial savings in the number of intermediate key-value pairs emitted,
especially for long documents.

1More precisely, if the combiners take advantage of all opportunities for local aggregation, the algorithm would
generate at most m⇥ V intermediate key-value pairs, where m is the number of mappers and V is the vo-
cabulary size (number of unique terms in the collection), since every term could have been observed in every
mapper. However, there are two additional factors to consider. Due to the Zipfian nature of term distributions,
most terms will not be observed by most mappers (for example, terms that occur only once will by definition
only be observed by one mapper). On the other hand, combiners in Hadoop are treated as optional optimiza-
tions, so there is no guarantee that the execution framework will take advantage of all opportunities for partial
aggregation.
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Implementation in Hadoop

public class WordCount { 

}
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public static class TokenizerMapper 
       extends Mapper<Object, Text, Text, IntWritable>{ 

    private final static IntWritable one = new IntWritable(1); 
    private Text word = new Text(); 

    public void map(Object key, Text value, Context context 
                    ) throws IOException, InterruptedException { 
      StringTokenizer itr = new StringTokenizer(value.toString()); 
      while (itr.hasMoreTokens()) { 
        word.set(itr.nextToken()); 
        context.write(word, one); 
      } 
    } 
  }
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Implementation in Hadoop

public class WordCount { 

}

14

  public static class IntSumReducer 
       extends Reducer<Text,IntWritable,Text,IntWritable> { 
    private IntWritable result = new IntWritable(); 

    public void reduce(Text key, Iterable<IntWritable> values, 
                       Context context 
                       ) throws IOException, InterruptedException { 
      int sum = 0; 
      for (IntWritable val : values) { 
        sum += val.get(); 
      } 
      result.set(sum); 
      context.write(key, result); 
    } 
  }
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Implementation in Hadoop

public class WordCount { 

}
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public static void main(String[] args) throws Exception { 
    Configuration conf = new Configuration(); 
    Job job = Job.getInstance(conf, "word count"); 
    job.setJarByClass(WordCount.class); 
    job.setMapperClass(TokenizerMapper.class); 
    job.setCombinerClass(IntSumReducer.class); 
    job.setReducerClass(IntSumReducer.class); 
    job.setOutputKeyClass(Text.class); 
    job.setOutputValueClass(IntWritable.class); 
    FileInputFormat.addInputPath(job, new Path(args[0])); 
    FileOutputFormat.setOutputPath(job, new Path(args[1])); 
    System.exit(job.waitForCompletion(true) ? 0 : 1); 
  }
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Usage

• Environment

• Compile & Package

• Run

16

export JAVA_HOME=/usr/java/default 
export PATH=$JAVA_HOME/bin:$PATH 
export HADOOP_CLASSPATH=$JAVA_HOME/lib/tools.jar

$ bin/hadoop com.sun.tools.javac.Main WordCount.java  
$ jar cf wc.jar WordCount*.class

$ bin/hadoop jar wc.jar WordCount /user/joe/wordcount/
input /user/joe/wordcount/output
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Word Count: Version 1

• in-mapper combining
• emits a key-value pair for each unique term per document
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3.1. LOCAL AGGREGATION 43

1: class Mapper

2: method Map(docid a,doc d)
3: H  new AssociativeArray

4: for all term t 2 doc d do
5: H{t} H{t} + 1 . Tally counts for entire document
6: for all term t 2 H do
7: Emit(term t, count H{t})

Figure 3.2: Pseudo-code for the improved MapReduce word count algorithm that uses an
associative array to aggregate term counts on a per-document basis. Reducer is the same as in
Figure 3.1.

This basic idea can be taken one step further, as illustrated in the variant of the
word count algorithm in Figure 3.3 (once again, only the mapper is modified). The
workings of this algorithm critically depends on the details of how map and reduce
tasks in Hadoop are executed, discussed in Section 2.6. Recall, a (Java) mapper object
is created for each map task, which is responsible for processing a block of input key-
value pairs. Prior to processing any input key-value pairs, the mapper’s Initialize

method is called, which is an API hook for user-specified code. In this case, we initialize
an associative array for holding term counts. Since it is possible to preserve state across
multiple calls of the Map method (for each input key-value pair), we can continue
to accumulate partial term counts in the associative array across multiple documents,
and emit key-value pairs only when the mapper has processed all documents. That is,
emission of intermediate data is deferred until the Close method in the pseudo-code.
Recall that this API hook provides an opportunity to execute user-specified code after
the Map method has been applied to all input key-value pairs of the input data split
to which the map task was assigned.

With this technique, we are in essence incorporating combiner functionality di-
rectly inside the mapper. There is no need to run a separate combiner, since all op-
portunities for local aggregation are already exploited.2 This is a su�ciently common
design pattern in MapReduce that it’s worth giving it a name, “in-mapper combining”,
so that we can refer to the pattern more conveniently throughout the book. We’ll see
later on how this pattern can be applied to a variety of problems. There are two main
advantages to using this design pattern:

First, it provides control over when local aggregation occurs and how it exactly
takes place. In contrast, the semantics of the combiner is underspecified in MapReduce.

2Leaving aside the minor complication that in Hadoop, combiners can be run in the reduce phase also (when
merging intermediate key-value pairs from di↵erent map tasks). However, in practice it makes almost no
di↵erence either way.

counts for entire document
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Word Count: Version 2

• in-mapper combining
• recall a map object is created for each map task
• aggregate all data appearing in the input block processed by the 

map task
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44 CHAPTER 3. MAPREDUCE ALGORITHM DESIGN

1: class Mapper

2: method Initialize

3: H  new AssociativeArray

4: method Map(docid a,doc d)
5: for all term t 2 doc d do
6: H{t} H{t} + 1 . Tally counts across documents
7: method Close

8: for all term t 2 H do
9: Emit(term t, count H{t})

Figure 3.3: Pseudo-code for the improved MapReduce word count algorithm that demon-
strates the “in-mapper combining” design pattern. Reducer is the same as in Figure 3.1.

For example, Hadoop makes no guarantees on how many times the combiner is applied,
or that it is even applied at all. The combiner is provided as a semantics-preserving
optimization to the execution framework, which has the option of using it, perhaps
multiple times, or not at all (or even in the reduce phase). In some cases (although not
in this particular example), such indeterminism is unacceptable, which is exactly why
programmers often choose to perform their own local aggregation in the mappers.

Second, in-mapper combining will typically be more e�cient than using actual
combiners. One reason for this is the additional overhead associated with actually ma-
terializing the key-value pairs. Combiners reduce the amount of intermediate data that
is shu✏ed across the network, but don’t actually reduce the number of key-value pairs
that are emitted by the mappers in the first place. With the algorithm in Figure 3.2,
intermediate key-value pairs are still generated on a per-document basis, only to be
“compacted” by the combiners. This process involves unnecessary object creation and
destruction (garbage collection takes time), and furthermore, object serialization and
deserialization (when intermediate key-value pairs fill the in-memory bu↵er holding map
outputs and need to be temporarily spilled to disk). In contrast, with in-mapper com-
bining, the mappers will generate only those key-value pairs that need to be shu✏ed
across the network to the reducers.

There are, however, drawbacks to the in-mapper combining pattern. First, it
breaks the functional programming underpinnings of MapReduce, since state is be-
ing preserved across multiple input key-value pairs. Ultimately, this isn’t a big deal,
since pragmatic concerns for e�ciency often trump theoretical “purity”, but there are
practical consequences as well. Preserving state across multiple input instances means
that algorithmic behavior may depend on the order in which input key-value pairs are
encountered. This creates the potential for ordering-dependent bugs, which are di�cult
to debug on large datasets in the general case (although the correctness of in-mapper

counts across documents

Setup() in Java

Cleanup() in Java
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Combiners v.s. In-Mapper Combiners

• Advantages of in-mapper combiners:
• Provide control over where and how local aggregation takes place. 

In contrast, semantics of default combiners are underspecified in 
MapReduce.

• In-mapper combiners are applied inside the code. Default 
combiners are applied inside the map outputs (after being emitted 
by the map task).

• Disadvantages:
• States are preserved within mappers -> potentially large memory 

overhead.
• algorithmic behavior may depend on the order in which input key-

value pairs are encountered - > potential order-dependent bugs.
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Combiner Design

• Combiner and reducer must share the same signature
• combiner is treated as mini-reducer
• combiner input and output key-value types must match reducer 

input key-value type
• Remember: combiner are optional optimizations

• with/without combiner should not affect algorithm correctness
• may be run 0, 1, or multiple times, determined by the MapReduce 

execution framework
• In Java, you can specify the combiner class as:

• public void setCombinerClass(Class<? extends Reducer> cls) 

• exactly the Reducer type

20
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Computing the Mean: Version 1

• Any drawback?
• Can we use reducer as combiner?

• i.e., set combiner class to be reducer class

21

3.1. LOCAL AGGREGATION 47

1: class Mapper

2: method Map(string t, integer r)
3: Emit(string t, integer r)

1: class Reducer

2: method Reduce(string t, integers [r
1

, r
2

, . . .])
3: sum 0
4: cnt 0
5: for all integer r 2 integers [r

1

, r
2

, . . .] do
6: sum sum + r
7: cnt cnt + 1
8: r

avg

 sum/cnt
9: Emit(string t, integer r

avg

)

Figure 3.4: Pseudo-code for the basic MapReduce algorithm that computes the mean of values
associated with the same key.

of values associated with the same key, and the reducer would compute the mean of
those values. As a concrete example, we know that:

Mean(1, 2, 3, 4, 5) 6= Mean(Mean(1, 2),Mean(3, 4, 5))

In general, the mean of means of arbitrary subsets of a set of numbers is not the same
as the mean of the set of numbers. Therefore, this approach would not produce the
correct result.5

So how might we properly take advantage of combiners? An attempt is shown in
Figure 3.5. The mapper remains the same, but we have added a combiner that partially
aggregates results by computing the numeric components necessary to arrive at the
mean. The combiner receives each string and the associated list of integer values, from
which it computes the sum of those values and the number of integers encountered (i.e.,
the count). The sum and count are packaged into a pair, and emitted as the output
of the combiner, with the same string as the key. In the reducer, pairs of partial sums
and counts can be aggregated to arrive at the mean. Up until now, all keys and values
in our algorithms have been primitives (string, integers, etc.). However, there are no
prohibitions in MapReduce for more complex types,6 and, in fact, this represents a key
technique in MapReduce algorithm design that we introduced at the beginning of this

5There is, however, one special case in which using reducers as combiners would produce the correct result: if
each combiner computed the mean of equal-size subsets of the values. However, since such fine-grained control
over the combiners is impossible in MapReduce, such a scenario is highly unlikely.

6In Hadoop, either custom types or types defined using a library such as Protocol Bu↵ers, Thrift, or Avro.

Pseudo-code for the basic 
MapReduce algorithm that 
computes the mean of 
values associated with the 
same key.
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Computing the Mean: Version 1

• Mean of the means is not the original mean.
• e.g.,

• mean(1, 2, 3, 4, 5) != mean(mean(1, 2), mean(3, 4, 5)) 

• It’s not a problem for Word Count problem, but it’s a 
problem here.
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Computing the Mean: Version 2

• Does it work? Why?
• recall that combiners must have the same input and output key-

value type
• Why?
• combiners are optimizations that cannot change the correctness of 

the algorithm
23

48 CHAPTER 3. MAPREDUCE ALGORITHM DESIGN

1: class Mapper

2: method Map(string t, integer r)
3: Emit(string t, integer r)

1: class Combiner

2: method Combine(string t, integers [r
1

, r
2

, . . .])
3: sum 0
4: cnt 0
5: for all integer r 2 integers [r

1

, r
2

, . . .] do
6: sum sum + r
7: cnt cnt + 1
8: Emit(string t,pair (sum, cnt)) . Separate sum and count

1: class Reducer

2: method Reduce(string t,pairs [(s
1

, c
1

), (s
2

, c
2

) . . .])
3: sum 0
4: cnt 0
5: for all pair (s, c) 2 pairs [(s

1

, c
1

), (s
2

, c
2

) . . .] do
6: sum sum + s
7: cnt cnt + c
8: r

avg

 sum/cnt
9: Emit(string t, integer r

avg

)

Figure 3.5: Pseudo-code for an incorrect first attempt at introducing combiners to compute
the mean of values associated with each key. The mismatch between combiner input and output
key-value types violates the MapReduce programming model.

chapter. We will frequently encounter complex keys and values throughput the rest of
this book.

Unfortunately, this algorithm will not work. Recall that combiners must have the
same input and output key-value type, which also must be the same as the mapper
output type and the reducer input type. This is clearly not the case. To understand
why this restriction is necessary in the programming model, remember that combiners
are optimizations that cannot change the correctness of the algorithm. So let us remove
the combiner and see what happens: the output value type of the mapper is integer,
so the reducer expects to receive a list of integers as values. But the reducer actually
expects a list of pairs! The correctness of the algorithm is contingent on the combiner
running on the output of the mappers, and more specifically, that the combiner is run
exactly once. Recall from our previous discussion that Hadoop makes no guarantees on

48 CHAPTER 3. MAPREDUCE ALGORITHM DESIGN

1: class Mapper

2: method Map(string t, integer r)
3: Emit(string t, integer r)

1: class Combiner

2: method Combine(string t, integers [r
1

, r
2

, . . .])
3: sum 0
4: cnt 0
5: for all integer r 2 integers [r

1

, r
2

, . . .] do
6: sum sum + r
7: cnt cnt + 1
8: Emit(string t,pair (sum, cnt)) . Separate sum and count

1: class Reducer

2: method Reduce(string t,pairs [(s
1

, c
1

), (s
2

, c
2

) . . .])
3: sum 0
4: cnt 0
5: for all pair (s, c) 2 pairs [(s

1

, c
1

), (s
2

, c
2

) . . .] do
6: sum sum + s
7: cnt cnt + c
8: r

avg

 sum/cnt
9: Emit(string t, integer r

avg

)

Figure 3.5: Pseudo-code for an incorrect first attempt at introducing combiners to compute
the mean of values associated with each key. The mismatch between combiner input and output
key-value types violates the MapReduce programming model.

chapter. We will frequently encounter complex keys and values throughput the rest of
this book.

Unfortunately, this algorithm will not work. Recall that combiners must have the
same input and output key-value type, which also must be the same as the mapper
output type and the reducer input type. This is clearly not the case. To understand
why this restriction is necessary in the programming model, remember that combiners
are optimizations that cannot change the correctness of the algorithm. So let us remove
the combiner and see what happens: the output value type of the mapper is integer,
so the reducer expects to receive a list of integers as values. But the reducer actually
expects a list of pairs! The correctness of the algorithm is contingent on the combiner
running on the output of the mappers, and more specifically, that the combiner is run
exactly once. Recall from our previous discussion that Hadoop makes no guarantees on
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Computing the Mean: Version 3

• Does it work? Why?

24
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1: class Mapper

2: method Map(string t, integer r)
3: Emit(string t,pair (r, 1))

1: class Combiner

2: method Combine(string t,pairs [(s
1

, c
1

), (s
2

, c
2

) . . .])
3: sum 0
4: cnt 0
5: for all pair (s, c) 2 pairs [(s

1

, c
1

), (s
2

, c
2

) . . .] do
6: sum sum + s
7: cnt cnt + c
8: Emit(string t,pair (sum, cnt))

1: class Reducer

2: method Reduce(string t,pairs [(s
1

, c
1

), (s
2

, c
2

) . . .])
3: sum 0
4: cnt 0
5: for all pair (s, c) 2 pairs [(s

1

, c
1

), (s
2

, c
2

) . . .] do
6: sum sum + s
7: cnt cnt + c
8: r

avg

 sum/cnt
9: Emit(string t, integer r

avg

)

Figure 3.6: Pseudo-code for a MapReduce algorithm that computes the mean of values asso-
ciated with each key. This algorithm correctly takes advantage of combiners.

how many times combiners are called; it could be zero, one, or multiple times. This
violates the MapReduce programming model.

Another stab at the algorithm is shown in Figure 3.6, and this time, the algorithm
is correct. In the mapper we emit as the value a pair consisting of the integer and
one—this corresponds to a partial count over one instance. The combiner separately
aggregates the partial sums and the partial counts (as before), and emits pairs with
updated sums and counts. The reducer is similar to the combiner, except that the
mean is computed at the end. In essence, this algorithm transforms a non-associative
operation (mean of numbers) into an associative operation (element-wise sum of a pair
of numbers, with an additional division at the very end).

Let us verify the correctness of this algorithm by repeating the previous exercise:
What would happen if no combiners were run? With no combiners, the mappers would
send pairs (as values) directly to the reducers. There would be as many intermediate
pairs as there were input key-value pairs, and each of those would consist of an integer
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Computing the Mean: Version 4

• Does it work?
• Do we need a combiner?
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1: class Mapper

2: method Initialize

3: S  new AssociativeArray

4: C  new AssociativeArray

5: method Map(string t, integer r)
6: S{t} S{t} + r
7: C{t} C{t} + 1
8: method Close

9: for all term t 2 S do
10: Emit(term t,pair (S{t}, C{t}))

Figure 3.7: Pseudo-code for a MapReduce algorithm that computes the mean of values asso-
ciated with each key, illustrating the in-mapper combining design pattern. Only the mapper is
shown here; the reducer is the same as in Figure 3.6

and one. The reducer would still arrive at the correct sum and count, and hence the
mean would be correct. Now add in the combiners: the algorithm would remain correct,
no matter how many times they run, since the combiners merely aggregate partial sums
and counts to pass along to the reducers. Note that although the output key-value type
of the combiner must be the same as the input key-value type of the reducer, the reducer
can emit final key-value pairs of a di↵erent type.

Finally, in Figure 3.7, we present an even more e�cient algorithm that exploits the
in-mapper combining pattern. Inside the mapper, the partial sums and counts associated
with each string are held in memory across input key-value pairs. Intermediate key-value
pairs are emitted only after the entire input split has been processed; similar to before,
the value is a pair consisting of the sum and count. The reducer is exactly the same as
in Figure 3.6. Moving partial aggregation from the combiner directly into the mapper
is subjected to all the tradeo↵s and caveats discussed earlier this section, but in this
case the memory footprint of the data structures for holding intermediate data is likely
to be modest, making this variant algorithm an attractive option.

3.2 PAIRS AND STRIPES

One common approach for synchronization in MapReduce is to construct complex keys
and values in such a way that data necessary for a computation are naturally brought
together by the execution framework. We first touched on this technique in the previous
section, in the context of “packaging” partial sums and counts in a complex value
(i.e., pair) that is passed from mapper to combiner to reducer. Building on previously
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Pairs and Stripes

• To illustrate how constructing complex keys and values 
improves the performance of computation.
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A New Running Example

• Problem: building a word co-occurrence matrix over a text 
collection
• M = n * n matrix (n = number of unique words)
• m[i][j] = number of times word w[i] co-occurs with word w[j] within a 

specific context (e.g., same sentence, same paragraph, same 
document)
• it is easy to show that m[i][j] == m[j][i]

• Why this problem is interesting?
• distributional profiles of words
• information retrieval
• statistical natural language processing
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Challenge

• Space requirement: O(n^2).
• too big if we simply store the whole matrix with billions of words in 

memory
• a single machine typically cannot keep the whole matrix

• How to use MapReduce to implement this large counting 
problem?

• Our approach:
• mappers generate partial counts
• reducers aggregate partial counts

28
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Pairs

• Each mapper:
• Emits intermediate key-value pairs with each co-occurring word pair 

and integer 1 
• Each reducer:

• Sums up all values associated with the same co-occurring word pair 
• MapReduce execution framework guarantees that all values 

associated with the same key are brought together in the reducer 

29
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Pairs

• Can we use the default combiner here?

30
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1: class Mapper

2: method Map(docid a,doc d)
3: for all term w 2 doc d do
4: for all term u 2 Neighbors(w) do
5: Emit(pair (w, u), count 1) . Emit count for each co-occurrence

1: class Reducer

2: method Reduce(pair p, counts [c
1

, c
2

, . . .])
3: s 0
4: for all count c 2 counts [c

1

, c
2

, . . .] do
5: s s + c . Sum co-occurrence counts
6: Emit(pair p, count s)

Figure 3.8: Pseudo-code for the “pairs” approach for computing word co-occurrence matrices
from large corpora.

1: class Mapper

2: method Map(docid a,doc d)
3: for all term w 2 doc d do
4: H  new AssociativeArray

5: for all term u 2 Neighbors(w) do
6: H{u} H{u} + 1 . Tally words co-occurring with w

7: Emit(Term w, Stripe H)

1: class Reducer

2: method Reduce(term w, stripes [H
1

, H
2

, H
3

, . . .])
3: H

f

 new AssociativeArray

4: for all stripe H 2 stripes [H
1

, H
2

, H
3

, . . .] do
5: Sum(H

f

, H) . Element-wise sum
6: Emit(term w, stripe H

f

)

Figure 3.9: Pseudo-code for the “stripes” approach for computing word co-occurrence matrices
from large corpora.
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Stripes

• Each mapper:
• For each particular word, stores co-occurrence information in an 

associative array 
• Emits intermediate key-value pairs with words as keys and 

corresponding associative arrays as values 
• Each reducer: 

• Sums all the counts in the associative arrays 
• MapReduce execution framework guarantees that all associative 

arrays with the same key are brought together in the reducer 
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Stripes

• Example:

• Each mapper emits 
• a -> {b: count(b), c: count(c), d: count(d) …} 

• Reducers perform element-wise sum of associative arrays

32

(a, b) -> 1 
(a, c) -> 2 
(a, d) -> 5 
(a, e) -> 3 
(a, f) -> 2

a -> {b: 1, c: 2, d: 5, e: 3, f: 2}

    a -> {b: 1,     , d: 5, e: 3      } 
+   a -> {b: 1, c: 2, d: 2,       f: 2} 
———————————————————————————————————————— 
    a -> {b: 2, c: 2, d: 7, e: 3, f: 2}
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Stripes

• pseudo-code of stripes approach
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1: class Mapper

2: method Map(docid a,doc d)
3: for all term w 2 doc d do
4: for all term u 2 Neighbors(w) do
5: Emit(pair (w, u), count 1) . Emit count for each co-occurrence

1: class Reducer

2: method Reduce(pair p, counts [c
1

, c
2

, . . .])
3: s 0
4: for all count c 2 counts [c

1

, c
2

, . . .] do
5: s s + c . Sum co-occurrence counts
6: Emit(pair p, count s)

Figure 3.8: Pseudo-code for the “pairs” approach for computing word co-occurrence matrices
from large corpora.

1: class Mapper

2: method Map(docid a,doc d)
3: for all term w 2 doc d do
4: H  new AssociativeArray

5: for all term u 2 Neighbors(w) do
6: H{u} H{u} + 1 . Tally words co-occurring with w

7: Emit(Term w, Stripe H)

1: class Reducer

2: method Reduce(term w, stripes [H
1

, H
2

, H
3

, . . .])
3: H

f

 new AssociativeArray

4: for all stripe H 2 stripes [H
1

, H
2

, H
3

, . . .] do
5: Sum(H

f

, H) . Element-wise sum
6: Emit(term w, stripe H

f

)

Figure 3.9: Pseudo-code for the “stripes” approach for computing word co-occurrence matrices
from large corpora.
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Pairs v.s. Stripes

• Pairs:
• Pro: Easy to understand and implement 
• Con: Generate many key-value pairs 

• Stripes: 
• Pro: Generate fewer key-value pairs 
• Pro: Make better use of combiners 
• Con: Memory size of associative arrays in mappers could be huge 

• Both pairs and stripes can apply in-mapper combining 
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Pairs v.s. Stripes

• stripes much faster than pairs
• linearity is maintained
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Relative Frequencies

• Drawback of co-occurrence counts
• absolute counts doesn’t consider that some words appear more 

frequently than others
• e.g., “is” occurs very often by itself
• doesn’t imply “is good” occurs more frequently than “Hello World”

• Estimate relative frequencies instead of counts

• How do we apply MapReduce to this problem?

36

Relative Frequencies 
¾Drawback of co-occurrence counts: 

• Absolute counts doesn’t consider that some words 
appear more frequently than others 

• e.g., “is” occurs very often by itself. It doesn’t imply  
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¾Estimate relative frequencies instead of counts: 
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Relative Frequencies

• Computing relative frequencies with the stripes approach is 
straightforward 
• Sum all the counts in the associative array for each word 
• Why is it possible in MapReduce? 
• Drawback: assuming that each associative array fits into memory 

• How to compute relative frequencies with the pairs 
approach? 
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Relative Frequencies with Pairs

• Mapper emits (a, *) for every word being observed
• Mapper makes sure same word goes to the same reducer 

(use partitioner)
• Mapper makes suer (a, *) comes first, before individual 

counts (how?)
• Reducer holds state to remember the count of (a, *), until all 

pairs with the word “a” have been computed
38

(a, *) -> 32 
(a, b1) -> 3 
(a, b2) -> 12 
(a, b3) -> 7 
(a, b4) -> 1 
…

reducer holds this value in 
memory

(a, b1) -> 3/32 
(a, b2) -> 12/32 
(a, b3) -> 7/32 
(a, b4) -> 1/32 
…
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Order Inversion

• Why order inversion?
• Computing relative frequencies requires marginal counts 
• But marginal cannot be computed until you see all counts 
• Buffering is a bad idea! 
• Trick: getting the marginal counts to arrive at the reducer before the 

joint counts 
• MapReduce allows you to define the order of keys being 

processed by the reducer
• shuffle and sort
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Order Inversion: Idea

• How to use the design pattern of order inversion to compute 
relative frequencies via the pair approach? 
• Emit a special key-value pair for each co-occurring word for the 

computation of marginal 
• Control the sort order of the intermediate key so that the marginal 

count comes before individual counts 
• Define a custom partitioner to ensure all pairs with the same left 

word are shuffled to the same reducer 
• Preserve state in reducer to remember the marginal count for each 

word 
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Secondary Sorting

• MapReduce sorts input to reducers by key
• values may be arbitrarily ordered

• What if want to sort value also?
• Scenario:

• sensors record temperature over time
• each sensor emits (id, time t, temperature v)
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Secondary Sorting

• Naive solution
• each sensor emits
• id -> (t, v)
• all readings of sensor id will be aggregated into a reducer
• buffer values in memory for all id, then sort

• Why is this a bad idea?
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Secondary Sorting

• Value-to-key conversion
• each mapper emits
• (id, t) -> v
• let execution framework do the sorting
• preserve state across multiple key-value pairs to handle processing
• anything else?

• Main idea: sorting is offloaded from the reducer (in naive 
approach) to the MapReduce framework
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Tools for Synchronization

• Cleverly-constructed data structures
• Bring data together 

• Sort order of intermediate keys
• Control order in which reducers process keys 

• Partitioner
• Control which reducer processes which keys 

• Preserving state in mappers and reducers 
• Capture dependencies across multiple keys and values
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Issues and Tradeoffs

• Number of key-value pairs 
• Object creation overhead 
• Time for sorting and shuffling pairs across the network 

• Size of each key-value pair
• De/serialization overhead 

• Local aggregation
• Opportunities to perform local aggregation varies
• Combiners make a big difference
• Combiners vs. in-mapper combining
• RAM vs. disk vs. network 
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Debugging at Scale

• Works on small datasets, won’t scale... why? 
• Memory management issues (buffering and object  

creation) 
• Too much intermediate data 
• Mangled input records 

• Real-world data is messy!
• Word count: how many unique words in Wikipedia? 
• There’s no such thing as “consistent data”
• Watch out for corner cases
• Isolate unexpected behavior, bring local 
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Summary

• Design patterns
• in-mapper combing
• pairs and stripes
• order inversion
• value-to-key conversion
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MapReduce Application

• Text retrieval
• inverted indexing

• Data mining
• TF-IDF

• Graph algorithm
• parallel breadth-first search
• parallel dijkstra’s algorithm
• PageRank
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Web Search Problem

• Web search is to retrieve relevant web objects
• e.g., web pages, PDFs, PPT slides

• Web search problem
• crawling: gathering web content
• indexing: constructing search indexing structure
• retrieval: ranking documents given a query

• Challenge
• the web is huge
• billions of web objects, terabytes of information

• Performance goals
• query latency needs to be small
• scalable for a large number of documents
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Inverted Indexes

• Inverted Index
• A data structure that given a term provides access to the list of 

documents that contain the term
• Used by most full-text search engines today
• By documents, we mean web objects

• Retrieval engine uses the inverted index to score documents 
that contain the query terms based on some ranking model
• e.g., based on term matches, term proximity, term attributes, etc. 

50



MapReduce & HadoopMingshen Sun (CUHK)

Inverted Indexes

• Simple illustration of an inverted index. 
• Each term is associated with a list of postings. 
• Each posting is comprised of a document id and a payload, denoted 

by p in this case. 
• An inverted index provides quick access to documents ids that 

contain a term. 

51

74 CHAPTER 4. INVERTED INDEXING FOR TEXT RETRIEVAL

term1

term2

 

terms postings

d1 p d5 p d6 p d11 p

 d11 p d23 p d59 p d84 p

term3

  

 d1 p d4 p d11 p d19 p

terms postings

term1

term2

term3

 d1 p d5 p d6 p d11 p

 d11 p d23d23 pp d59 p d84d84 pp

 d1 p d4 p d11d11 pp d19 p3

  

1 p 4 p 1111 pp 19 p

Figure 4.1: Simple illustration of an inverted index. Each term is associated with a list of
postings. Each posting is comprised of a document id and a payload, denoted by p in this case.
An inverted index provides quick access to documents ids that contain a term.

the front of a postings list. Either way, an auxiliary data structure is necessary to
maintain the mapping from integer document ids to some other more meaningful handle,
such as a URL.

Given a query, retrieval involves fetching postings lists associated with query terms
and traversing the postings to compute the result set. In the simplest case, boolean
retrieval involves set operations (union for boolean OR and intersection for boolean
AND) on postings lists, which can be accomplished very e�ciently since the postings
are sorted by document id. In the general case, however, query–document scores must be
computed. Partial document scores are stored in structures called accumulators. At the
end (i.e., once all postings have been processed), the top k documents are then extracted
to yield a ranked list of results for the user. Of course, there are many optimization
strategies for query evaluation (both approximate and exact) that reduce the number
of postings a retrieval engine must examine.

The size of an inverted index varies, depending on the payload stored in each
posting. If only term frequency is stored, a well-optimized inverted index can be a tenth
of the size of the original document collection. An inverted index that stores positional
information would easily be several times larger than one that does not. Generally, it
is possible to hold the entire vocabulary (i.e., dictionary of all the terms) in memory,
especially with techniques such as front-coding [156]. However, with the exception of
well-resourced, commercial web search engines,6 postings lists are usually too large to
store in memory and must be held on disk, usually in compressed form (more details in
Section 4.5). Query evaluation, therefore, necessarily involves random disk access and
“decoding” of the postings. One important aspect of the retrieval problem is to organize
disk operations such that random seeks are minimized.

6Google keeps indexes in memory.
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Inverted Indexes

• Given a query, retrieval involves fetching postings lists 
associated with query terms and traversing the postings to 
compute the result set. 

• Simple Boolean retrieval:
• Apply union (OR) or intersection (AND) of posting lists 

• General retrieval:
• Document scores are ranked
• Top k documents are returned
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Inverted Indexes

53
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Inverted Indexes: Construction

• How to construct an inverted index? 
• Naive approach: 

• For each document, extract all useful terms, and exclude all 
stopwords (e.g., “the”, “a”, “of”) and remove affixes (e.g., “dogs” to 
“dog”) 

• For each term, add the posting (document, payload) to an existing 
list, or create a posting list if the term is new 

• Clearly, naive approach is not scalable if the document 
collection is huge and each document is large 

• Can we use MapReduce? 
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Baseline Implementation
• Our goal: construct an inverted index given a document 

collection 
• Main idea: 

• Input to each mapper: 
• Document IDs (keys) 
• Actual document content (values) 

• What each mapper does: 
• Analyze each document and extract useful terms 
• Compute term frequencies (per document) 

• Emit (term, posting) 
• What each reducer does 

• Aggregates all observed postings for each term
• Construct the posting list 
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Baseline Implementation

56
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1: class Mapper

2: method Map(docid n, doc d)
3: H  new AssociativeArray

4: for all term t 2 doc d do
5: H{t} H{t} + 1
6: for all term t 2 H do
7: Emit(tuple ht, ni, tf H{t})
1: class Reducer

2: method Initialize

3: t
prev

 ;
4: P  new PostingsList

5: method Reduce(tuple ht, ni, tf [f ])
6: if t 6= t

prev

^ t
prev

6= ; then
7: Emit(term t, postings P )
8: P.Reset()
9: P.Add(hn, fi)

10: t
prev

 t

11: method Close

12: Emit(term t, postings P )

Figure 4.4: Pseudo-code of a scalable inverted indexing algorithm in MapReduce. By applying
the value-to-key conversion design pattern, the execution framework is exploited to sort postings
so that they arrive sorted by document id in the reducer.

representation. Alternatively, document length information can be emitted in special
key-value pairs by the mapper. One must then write a custom partitioner so that these
special key-value pairs are shu✏ed to a single reducer, which will be responsible for
writing out the length data separate from the postings lists.

4.5 INDEX COMPRESSION

We return to the question of how postings are actually compressed and stored on disk.
This chapter devotes a substantial amount of space to this topic because index com-
pression is one of the main di↵erences between a “toy” indexer and one that works on
real-world collections. Otherwise, MapReduce inverted indexing algorithms are pretty
straightforward.

Let us consider the canonical case where each posting consists of a document id
and the term frequency. A näıve implementation might represent the first as a 32-bit



MapReduce & HadoopMingshen Sun (CUHK)

Baseline Implementation
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one fish, two fish
doc 1

red fish, blue fish
doc 2

one red bird
doc 3
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d2 1blue
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reducer
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Shuffle and Sort: aggregate values by keys

reducer reducerreducer
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d1 1one
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d2 1blue

d2 1red d3 1
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Figure 4.3: Simple illustration of the baseline inverted indexing algorithm in MapReduce with
three mappers and two reducers. Postings are shown as pairs of boxes (docid, tf).

4.4 INVERTED INDEXING: REVISED IMPLEMENTATION

The inverted indexing algorithm presented in the previous section serves as a reasonable
baseline. However, there is a significant scalability bottleneck: the algorithm assumes
that there is su�cient memory to hold all postings associated with the same term. Since
the basic MapReduce execution framework makes no guarantees about the ordering of
values associated with the same key, the reducer first bu↵ers all postings (line 5 of the
reducer pseudo-code in Figure 4.2) and then performs an in-memory sort before writing
the postings to disk.7 For e�cient retrieval, postings need to be sorted by document id.
However, as collections become larger, postings lists grow longer, and at some point in
time, reducers will run out of memory.

There is a simple solution to this problem. Since the execution framework guaran-
tees that keys arrive at each reducer in sorted order, one way to overcome the scalability

7See similar discussion in Section 3.4: in principle, this need not be an in-memory sort. It is entirely possible to
implement a disk-based sort within the reducer.
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Baseline Implementation

• In the shuffle and sort phase, MapReduce framework forms 
a large, distributed group by the postings of each term 

• From reducer’s point of view
• Each input to the reducer is the resulting posting list of a term 
• Reducer may sort the list (if needed), and writes the final output to 

disk 
• The task of each reducer is greatly simplified! MapReduce 

framework has done most heavy liftings. 
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Positional Indexes
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Scalability Issue

• Scalability problem in baseline implementation

60
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1: class Mapper

2: procedure Map(docid n,doc d)
3: H  new AssociativeArray

4: for all term t 2 doc d do
5: H{t} H{t} + 1
6: for all term t 2 H do
7: Emit(term t,posting hn, H{t}i)
1: class Reducer

2: procedure Reduce(term t,postings [hn
1

, f
1

i, hn
2

, f
2

i . . .])
3: P  new List

4: for all posting ha, fi 2 postings [hn
1

, f
1

i, hn
2

, f
2

i . . .] do
5: Append(P, ha, fi)
6: Sort(P )
7: Emit(term t, postings P )

Figure 4.2: Pseudo-code of the baseline inverted indexing algorithm in MapReduce. Map-
pers emit postings keyed by terms, the execution framework groups postings by term, and the
reducers write postings lists to disk.

Once again, this brief discussion glosses over many complexities and does a huge
injustice to the tremendous amount of research in information retrieval. However, our
goal is to provide the reader with an overview of the important issues; Section 4.7
provides references to additional readings.

4.3 INVERTED INDEXING: BASELINE IMPLEMENTATION

MapReduce was designed from the very beginning to produce the various data struc-
tures involved in web search, including inverted indexes and the web graph. We begin
with the basic inverted indexing algorithm shown in Figure 4.2.

Input to the mapper consists of document ids (keys) paired with the actual con-
tent (values). Individual documents are processed in parallel by the mappers. First,
each document is analyzed and broken down into its component terms. The process-
ing pipeline di↵ers depending on the application and type of document, but for web
pages typically involves stripping out HTML tags and other elements such as JavaScript
code, tokenizing, case folding, removing stopwords (common words such as ‘the’, ‘a’,
‘of’, etc.), and stemming (removing a�xes from words so that ‘dogs’ becomes ‘dog’).
Once the document has been analyzed, term frequencies are computed by iterating over
all the terms and keeping track of counts. Lines 4 and 5 in the pseudo-code reflect the
process of computing term frequencies, but hides the details of document processing.

Any problem?
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Scalability Issue

• Assumption of baseline implementation:
• Reducer has sufficient memory to hold all postings associated with 

the same term 
• Why? 

• The MapReduce framework makes no guarantees about the 
ordering of values associated with the same key. 

• The reducer first buffers all postings (line 5) and then performs an 
in-memory sort before writing the postings to disk 
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Scalability Issue

• How to solve? Key idea is to let MapReduce framework do 
sorting for us 

• Instead of emitting
• (term t, posting <docid, f>)  

• Emit 
• (tuple <t, docid>, f)  

• Value-to-key conversion!! 
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Revised Implementation

• With value-to-key conversion, the MapReduce framework 
ensures the postings arrive in sorted order (based on <term 
t, docid>) 

• Results can be written to disk directly 
• Caution: you need a customized partitioner to ensure that all 

tuples with the same term are shuffled to the same reducer 
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Revised Implementation
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1: class Mapper

2: method Map(docid n, doc d)
3: H  new AssociativeArray

4: for all term t 2 doc d do
5: H{t} H{t} + 1
6: for all term t 2 H do
7: Emit(tuple ht, ni, tf H{t})
1: class Reducer

2: method Initialize

3: t
prev

 ;
4: P  new PostingsList

5: method Reduce(tuple ht, ni, tf [f ])
6: if t 6= t

prev

^ t
prev

6= ; then
7: Emit(term t, postings P )
8: P.Reset()
9: P.Add(hn, fi)

10: t
prev

 t

11: method Close

12: Emit(term t, postings P )

Figure 4.4: Pseudo-code of a scalable inverted indexing algorithm in MapReduce. By applying
the value-to-key conversion design pattern, the execution framework is exploited to sort postings
so that they arrive sorted by document id in the reducer.

representation. Alternatively, document length information can be emitted in special
key-value pairs by the mapper. One must then write a custom partitioner so that these
special key-value pairs are shu✏ed to a single reducer, which will be responsible for
writing out the length data separate from the postings lists.

4.5 INDEX COMPRESSION

We return to the question of how postings are actually compressed and stored on disk.
This chapter devotes a substantial amount of space to this topic because index com-
pression is one of the main di↵erences between a “toy” indexer and one that works on
real-world collections. Otherwise, MapReduce inverted indexing algorithms are pretty
straightforward.

Let us consider the canonical case where each posting consists of a document id
and the term frequency. A näıve implementation might represent the first as a 32-bit

results are directly written to 
disk
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TF-IDF

• Term Frequency – Inverse Document Frequency (TF-IDF) 
• Answers the question “How important is this term in a document” 

• Known as a term weighting function
• Assigns a score (weight) to each term (word) in a document 

• Very commonly used in text processing and search 
• Has many applications in data mining 
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TF-IDF Motivation

• Merely counting the number of occurrences of a word in a 
document is not a good enough measure of its relevance 
• If the word appears in many other documents, it is probably less 

relevance 
• Some words appear too frequently in all documents to be relevant 
• Known as ‘stopwords’ 

• TF-IDF considers both the frequency of a word in a given 
document and the number of documents which contain the 
word 
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TF-IDF: Definition

• Term Frequency (TF)
• Number of times a term appears in a 

• document (i.e., the count) 
• Inverse Document Frequency (IDF)

• N: total number of documents 
• n: number of documents that contain a term
• TF-IDF 

• TF × IDF 
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Computing TF-IDF With MapReduce  

• Overview of algorithm: 3 MapReduce jobs 
• Job 1: compute term frequencies 
• Job 2: compute number of documents each word  

occurs in 
• Job 3: compute TD-IDF 
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Graph: Real-World Problems

• Finding shortest paths
• Routing Internet traffic and UPS trucks 

• Finding minimum spanning trees
• Telco laying down fiber 

• Finding Max Flow
• Airline scheduling 

• Identify “special” nodes and communities
• Breaking up terrorist cells, spread of avian flu 

• Bipartite matching
• Monster.com, Match.com 

• PageRank 
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Graphs and MapReduce

• Graph algorithms typically involve: 
• Performing computations at each node: based on  

node features, edge features, and local link structure 
• Propagating computations: “traversing” the graph

• Challenge:
• Algorithms running on a single machine and putting  

the entire graph in memory are not scalable 
• Key questions:

• How do you represent graph data in MapReduce? 
• How do you traverse a graph in MapReduce? 
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Graph Representations

• Two common representations
• adjacency matrix
• adjacency list
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n1

n2
n1 n2 n3 n4 n5

n1 0 1 0 1 0

n2 0 0 1 0 1

n1 [n2, n4]

n2 [n3, n5]

n3
n5

n2 0 0 1 0 1

n3 0 0 0 1 0

n4 0 0 0 0 1

n5 1 1 1 0 0

n2 [n3, n5]

n3 [n4]

n4 [n5]

n5 [n1, n2, n3]

n4 adjacency matrix adjacency lists

Figure 5.1: A simple directed graph (left) represented as an adjacency matrix (middle) and
with adjacency lists (right).

parallel breadth-first search (Section 5.2) and PageRank (Section 5.3). Before conclud-
ing with a summary and pointing out additional readings, Section 5.4 discusses a number
of general issue that a↵ect graph processing with MapReduce.

5.1 GRAPH REPRESENTATIONS

One common way to represent graphs is with an adjacency matrix. A graph with n nodes
can be represented as an n⇥ n square matrix M , where a value in cell m

ij

indicates an
edge from node n

i

to node n
j

. In the case of graphs with weighted edges, the matrix cells
contain edge weights; otherwise, each cell contains either a one (indicating an edge),
or a zero (indicating none). With undirected graphs, only half the matrix is used (e.g.,
cells above the diagonal). For graphs that allow self loops (a directed edge from a node
to itself), the diagonal might be populated; otherwise, the diagonal remains empty.
Figure 5.1 provides an example of a simple directed graph (left) and its adjacency
matrix representation (middle).

Although mathematicians prefer the adjacency matrix representation of graphs
for easy manipulation with linear algebra, such a representation is far from ideal for
computer scientists concerned with e�cient algorithmic implementations. Most of the
applications discussed in the chapter introduction involve sparse graphs, where the
number of actual edges is far smaller than the number of possible edges.3 For example,
in a social network of n individuals, there are n(n� 1) possible “friendships” (where n
may be on the order of hundreds of millions). However, even the most gregarious will
have relatively few friends compared to the size of the network (thousands, perhaps, but
still far smaller than hundreds of millions). The same is true for the hyperlink structure
of the web: each individual web page links to a minuscule portion of all the pages on the

3Unfortunately, there is no precise definition of sparseness agreed upon by all, but one common definition is
that a sparse graph has O(n) edges, where n is the number of vertices.

• easy to manipulate with linear algebra
• easy algorithmic implementation
• large memory space, esp. for sparse 

graph

• much more compact representation
• easy to compute over out-links
• much more difficult to compute over 

in-links

• How ever, the shuffle and sort 
mechanism in MapReduce provides 
an easy way to group edges by 
destination nodes.
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Single-Source Shortest Path

• Problem: find shortest paths from a source node to all other 
nodes in the graph 
• Shortest mean smallest hop counts or lowest weights 

• Algorithm: 
• Breadth-first-search: for finding minimum hop counts 
• Dijkstra’s algorithm: for finding minimum-cost paths for general 

graphs 
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Dijkstra’s Algorithm
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Figure 5.3: Example of Dijkstra’s algorithm applied to a simple graph with five nodes, with n
1

as the source and edge distances as indicated. Parts (a)–(e) show the running of the algorithm
at each iteration, with the current distance inside the node. Nodes with thicker borders are
those being expanded; nodes that have already been expanded are shown in black.

(c) that the distance to n
2

has decreased because we’ve found a shorter path. The nodes
that will be expanded next, in order, are n

5

, n
2

, and n
4

. The algorithm terminates with
the end state shown in (f), where we’ve discovered the shortest distance to all nodes.

The key to Dijkstra’s algorithm is the priority queue that maintains a globally-
sorted list of nodes by current distance. This is not possible in MapReduce, as the
programming model does not provide a mechanism for exchanging global data. Instead,
we adopt a brute force approach known as parallel breadth-first search. First, as a
simplification let us assume that all edges have unit distance (modeling, for example,
hyperlinks on the web). This makes the algorithm easier to understand, but we’ll relax
this restriction later.

The intuition behind the algorithm is this: the distance of all nodes connected
directly to the source node is one; the distance of all nodes directly connected to those
is two; and so on. Imagine water rippling away from a rock dropped into a pond—
that’s a good image of how parallel breadth-first search works. However, what if there
are multiple paths to the same node? Suppose we wish to compute the shortest distance
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Dijkstra’s Algorithm

• Dijkstra’s algorithm is designed as a sequential algorithm 
• Key to Dijkstra’s algorithm

• Priority queue that maintains a globally sorted list of nodes by 
current distance 

• Not possible in MapReduce, which doesn’t provide a mechanism for 
exchanging global data 

• Solution:
• Brute-force approach: parallel breadth first search 

• Brute force: Try to revisit many nodes that have been visited 
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Parallel BFS

• Consider simple case of equal edge weights 
• Solution to the problem can be defined inductively 
• Here’s the intuition: 

• Define: b is reachable from a if b is on adjacency list of a 
• DistanceTo(s) = 0 
• For all nodes p reachable from s, DistanceTo(p) = 1 
• For all nodes n reachable from some other set of nodes M, 

DistanceTo(n) = 1 + min(DistanceTo(m), m \in M) 
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Visualizing Parallel BFS
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From Intuition to Algorithm

• Data representation:
• Key: node n
• Value: d (distance from start), adjacency list (nodes reachable from 

n)
• Initialization: for all nodes except for start node, d = infinity

• Mapper:
• exit m  in adjacency list: emit (m, d + 1)

• Sort/Shuffle
• Groups distances by reachable nodes

• Reducer:
• Selects minimum distance path for each reachable node
• Additional bookkeeping needed to keep track of actual path
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Multiple Iterations Needed

• Each MapReduce iteration advances the “frontier” by one 
hop
• Subsequent iterations include more and more reachable nodes as 

frontier expands
• Multiple iterations are needed to explore entire graph

• Preserving graph structure:
• Problem: Where did the adjacency list go?
• Solution: mapper emits (n, adjacency list) as well

78



MapReduce & HadoopMingshen Sun (CUHK)

BFS Pseudo-Code
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Stopping Criterion

• How many iterations are needed in parallel BFS (equal edge 
weight case)?

• Convince yourself: when a node is first “discovered”, we’ve 
found the shortest path

• In practice, we iterate the algorithm until all node distances 
are found (i.e., no more infinity) 

• How?
• Maintain a counter inside the MapReduce program (i.e., count how 

many node distances are found) 
• Require a non-MapReduce driver program to submit a MapReduce 

job to iterate the algorithm 
• The driver program checks the counter value before submitting 

another job 
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Extend to General Weights

• Difference?
• How many iterations are needed in parallel BFS?
• How do we know that all shortest path distances are found?
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Other Graph Algorithms

• PageRank
• Subgraph pattern matching
• Computing simple graph statistics

• Degree vertex distributions
• Computing more complex graph statics

• Clustering coefficient
• Counting triangles
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Random Walks Over the Web

• Random surfer model:
• User starts at a random Web page
• User randomly clicks on links, surfing from page to page

• PageRank
• Characterizes the amount of time spent on any given page
• Mathematically, a probability distribution over pages

• PageRank captures notions of page importance
• Correspondence to human intuition?
• One of thousands of features used in web search (query-

independent)
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PageRank: Definition

• Given page x with inlinks t1…tn, where
• C(t) is the out-degree of t
•    is probability of random jump
• N is the total number of nodes in the graph
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Computing PageRank

• Properties of PageRank
• Can be computed iteratively
• Effects at each iteration are local

• Sketch of algorithm:
• Start with seed PRi values
• Each page distributes PRi “credit” to all pages it links to
• Each target page adds up “credit” from multiple in-bound links to 

compute PRi+1
• Iterate until values converge
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Simplified PageRank

• First, tackle the simple case:
• No random jump factor
• No dangling nodes

• Then, factor in these complexities…
• Why do we need the random jump?
• Where do dangling nodes come from?
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Sample PageRank Iteration (1)
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n1 (0.2)

n4 (0.2)

n3 (0.2)
n5 (0.2)

n2 (0.2)

0.1

0.1

0.2 0.2

0.1 0.1

0.066 0.066
0.066

n1 (0.066)

n4 (0.3)

n3 (0.166)
n5 (0.3)

n2 (0.166)Iteration11
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Sample PageRank Iteration (2)
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n1 (0.066)

n4 (0.3)

n3 (0.166)
n5 (0.3)

n2 (0.166)

0.033
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0.083 0.083

0.1 0.1
0.1

n1 (0.1)

n4 (0.2)

n3 (0.183)
n5 (0.383)

n2 (0.133)Iteration22
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PageRank in MapReduce
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n5 [n1,#n2,#n3]n1 [n2,#n4] n2 [n3,#n5] n3 [n4] n4 [n5]

n2 n4 n3 n5 n1 n2 n3n4 n5

n2 n4n3 n5n1 n2 n3 n4 n5

n5 [n1,#n2,#n3]n1 [n2,#n4] n2 [n3,#n5] n3 [n4] n4 [n5]

Map

Reduce



MapReduce & HadoopMingshen Sun (CUHK)

PageRank Pseudo-code
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PageRank in MapReduce

• Map phase:
• For each node, computes how much PageRank mass is emitted as 

value 
• Shuffle and sort phase:

• Group values passed along the graph edges by destination nodes 
• Reduce phase: 

• PageRank mass contributions from all incoming edges are summed 
to arrive at the updated PageRank value for each node 
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Complete PageRank

• Two additional complexities
• What is the proper treatment of dangling nodes?
• How do we factor in the random jump factor?

• Solution: 
• Second pass to redistribute “missing PageRank mass” and account 

for random jumps

• p is PageRank value from before, p' is updated PageRank value
• N is the number of nodes in the graph
• m is the missing PageRank mass

• Additional optimization: make it a single pass!
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PageRank Convergence

• Alternative convergence criteria
• Iterate until PageRank values don’t change
• Iterate until PageRank rankings don’t change
• Fixed number of iterations

• Convergence for web graphs?
• Not a straightforward question
• Watch out for link spam:

• Link farms
• Spider traps
• …
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