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Abstract

In this paper, we present the design and implementation of a programmable and extensible router architecture. The proposed
architecture not only provides the conventional packet forward/routing functions, but also the flexibility to integrate additional ser-
vices (or extension) into a router. These extensions are dynamically loadable modules so one can easily deploy new services, such as
reliability and security enhancement, onto the router in a dynamic and incremental fashion. To avoid new extensions that may
monopolize system resource and degrade the performance of normal packet forwarding/routing function, we propose a novel
CPU resource reservation scheme which facilitates the efficient use of resources and increases the stability of extension execution.
To illustrate the ‘‘extensibility’’ and ‘‘effectiveness’’ of the proposed architecture, we present the results of a new service, namely, how
to perform ‘‘Distributed Denial-of-Service (DDoS) attack traceback’’. In particular, we illustrate the deployment of the probabilistic
marking in performing IP traceback. Note that this approach requires the collaboration of routers so that effective traceback can be
performed. Currently, the programmable router platform is released as an open source1 and we believe the system provides an ideal
platform for researchers to experiment and to validate new services and protocols.
� 2005 Elsevier Inc.. All rights reserved.
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1. Introduction

The basic functionality of a network router is to
determine where and how a packet should be forwarded
within a network core. Majority of router implementa-
tions on market today is either hardware oriented or
proprietary in nature. Hence, it is difficult for research-
ers to experiment with new protocols or add new ser-
vices since these routers are not open for user/kernel
level programming. In contrast to the limitations in
hardware routers, software programmable routers have
the potential to provide additional features in a dynamic
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q This research is supported in part by the RGC Earmarked Grant.
* Corresponding author. Tel.: +852 260 98407; fax: +852 260 35024.

E-mail address: cslui@cse.cuhk.edu.hk (J.C.S. Lui).
1 It can be downloaded from: www.cse.cuhk.edu.hk/~cslui/ANSR-

lab/software/opera
and incremental fashion. Therefore, new services such as
QoS supports (Li and Ravindran, 2002; Striegel and
Manimaran, 2003), enhanced multicast service supports
(Tsai et al., 2004) and security-related policies (Sun
et al., 2004; Vaughn et al., 2002) can be easily integrated
into a software programmable router. The aim of this
work is to present an architecture for software program-
mable router that offers both flexibility and extensibility
so researchers and network engineers and easily experi-
ment with new protocols and services.

There exists software router architectures in both var-
ious research institutions (Dong et al., 2004; Kohler
et al., 2000, 2002; Yau and Chen, 2001). Nevertheless,
the design on the architecture of router program mod-
ules is still not very mature. In this paper, the main focus
of the overall design is thus on the ‘‘router extensions’’
on an open platform. Extensions are extra modules
that can be dynamically loaded and provide additional
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Fig. 1. An overview of the components in the OPERA architecture.
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packet processing capabilities. Using these extensions,
one can construct a value-added router that supports
various kinds of ‘‘services’’.

The contribution of our work is as follows:

• To link up the existing routing and packet processing
facilities with additional modules added and con-
struct a comprehensive software programmable rou-
ter architecture.

• To design a flexible architecture so one can securely
add modules onto a router.

• To provide resource management for basic packet
routing/forwarding elements and various added
modules.

• To develop some important and illustrative applica-
tions (i.e., policies for QoS and security support) for
the proposed programmable router architecture. In
particular, we will present two possible approaches
of performing the DDoS traceback at later section
of this paper.

Currently, OPERA implementation supports basic
routing facilities, CPU resource reservation and dy-
namic loading of both kernel and user-space extensions.
Security extension loading feature is also supported so
as to avoid malicious extension loading. To demonstrate
the extensibility and effectiveness of the proposed pro-
grammable router architecture, we illustrate a new ser-
vice which is the Distributed Denial-of-Service (DDoS)

attack traceback and detection. The DDoS attack detec-
tion is an important service to enhancing network secu-
rity feature.

The balance of this work is as follows: In Section 2,
we present the architecture and implementation of the
proposed programmable architecture. In Section 3, we
present two new extensions of detecting DDoS attack.
Experimental results of the effectiveness of the DDoS
detection and traceback are presented in Section 4.
Related work is given in Section 5 and Section 6
concludes.
2. System architecture of OPERA

Fig. 1 illustrates the overview of the OPERA archi-
tecture. The OPERA�s kernel consists of three modules,
namely, the core module, the extension module and the
security module. The components of each module will
be discussed in the following sub-sections.

2.1. Architecture overview

2.1.1. The core module

The core module provides the basic routing facilities
and handles internal resource management. It has three
components and their functionalities are:
• Routing engine: The routing engine supports the com-
mon routing protocols such as RIP, OSPF and BGP.
The duty of the engine is to help broadcasting and
forwarding route advertisements as well as updating
its routing table based on the advertised information.
The route information will be used to determine the
next hop a packet should be forwarded to.

• Resource kernel: The resource kernel is responsible
for resource management. Since there can be multiple
extensions running on the OPERA router at the same
time, the extensions may compete for CPU system
resources. In order to ensure all extensions operate
properly without monopolizing the common CPU
resource, the OPERA router is resource-award and
manages the CPU resource.

• Packet classifier: The packet classifier serves the pur-
pose for packet classification and directing packets
for further processing. It is the entry point to the
extension engine in the OPERA architecture. The sup-
port of a generic and comprehensive packet classifica-
tion can make the work easier to identify a specific
type of packet or flow and then direct the target to
corresponding processing routines.

2.1.2. The extension module

The extra packet processing capabilities of the router,
which we call them ‘‘services’’, are provided in the exten-
sion module. Each processing module is called an
‘‘extension’’. Several extensions can be installed on the
router simultaneously to provide different services. The
extension module consists of the extension engine and
dynamically loadable extensions:

• Extension engine: The engine manages extensions in a
centralized manner. It supports dynamically loading/
unloading of extensions at system runtime.
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• Extensions: The extensions in the proposed router
basically refer to dynamically loadable programs with
packet processing capabilities. One or more exten-
sions can be loaded into the router and provide differ-
ent kinds of services. An extension can be packet filter
which performs a passive scanning of packets passing
through the OPERA router and perform filtering, if
necessary. The extension can also take an active role
such as modifying packet contents or interacting with
other applications (both in kernel or in the user-
space) to achieve other purposes.

2.1.3. The security module
It is paramount that security is built into the OPERA

architecture so as to avoid any malicious extension
installation or faking of any extension�s communication.
Therefore, it is essential to provide the feature of router

authentication while at the same time, maintain a certain
level of convenience and flexibility. We implement an
efficient authentication scheme for securing the router
communication. Upon receiving any sensitive data, an
OPERA router has to authenticate the sender and en-
sure the integrity and credibility of the data before pro-
cessing any process.

2.2. System implementation

In the previous section, we described the overall
architecture of the proposed router. A prototype archi-
tecture has been implemented on the Linux platform.
The relationship between the architecture design and ac-
tual implementation is shown in Fig. 1. Parts of the rou-
ter implementation are based on some existing facilities
in Linux. We employ the netfilter2 architecture inside the
Linux 2.4.x kernel to implement packet classification
and parts of the extension engine. We also use the zebra3

as the routing engine. The implementation details of
some important parts of the proposed router will be
discussed in the following.

2.2.1. Implementation of the resource kernel

Under OPERA, we modify and enhance the Linux
kernel to become a resource kernel. In particular, we
built a resource kernel framework inside the Linux
2.4.18 kernel. The framework provides basic supports
for resource management. In general, resource manage-
ment can be applied to many resources such as CPU,
memory, disk storage, I/O or network bandwidth. So
far, we focus on the CPU resource sharing since it
is the most critical measure of the extensions�
performance.
2 The netfilter/iptables Project. Available from: http://www.
netfilter.org/

3 GNU Zebra. Available from: http://www.zebra.org/
(1) Resource reservation: The major duty of the
resource kernel is to grant system resources to pro-
cesses. Processes can communicate with the
resource kernel through the system call rk_sig-
nal which we added to the kernel. All commands
are sent to the resource kernel using this system call
with different parameters.
When a process wants to make a reservation on
any resource, it has to bind a ‘‘resource set’’ first.
A resource set is used by the resource kernel, which
is a structure holding the information of resources
associated with a process. After binding a resource
set, the process can make a resource reservation.
As mentioned before, CPU is the only resource
available for reservation at this stage. When a pro-
cess terminates, all the resources reserved and the
resource set binded by it will be released automat-
ically. It can also be explicitly release the resources.

(2) CPU Reservation and scheduling: The policy of
CPU time sharing in the proposed router is based
on CPU reservation. Each process can make a
request to the kernel to reserve a portion of CPU
time. This enables the CPU resource can be fairly
shared among processes according to their pro-
cessing requirements.
In the current implementation, we define each pro-
cess committing CPU reservation to be a ‘‘client’’.
Each client is associated with two parameters,
share and weight. Share is the fraction of total
CPU time owned by a client, where weight is the
relative share of a client compared to others. A cli-
ent can join one of the two reservation classes:
absolute (ABS) and proportional (PROP). The
absolute reservation provides a basic support for
processing requirements by some real-time clients.
Once this kind of reservation is granted by the
resource kernel, the target client will obtain a frac-
tion of total CPU share it requested. On the other
hand, the proportional reservation is to maintain a
proportional share of CPU time among all PROP
clients. The remaining CPU shares, excluding
those owned by ABS clients, are assigned propor-
tionally to PROP clients according to their
weights.
In this work, we use a round-robin class algorithm
called Virtual Time Round-Robin (VTRR) (Nieh et
al., 2001). This algorithm uses a proportional share
basis of scheduling with a coarse error bound and
the scheduling overhead is relatively small, as com-
pared with other proportional share algorithms
like the EEVDF (Stoica and Abdel-Wahab, 1995;
Goddard and Tang, 2000). In particular, the sched-
uling decision can be carried in constant time.
We have implemented the VTRR scheduling algo-
rithm in the Linux kernel. The original process
scheduling routine is not abandoned but the

http://www.netfilter.org/
http://www.netfilter.org/
http://www.zebra.org/
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VTRR scheduler is built aside the original one. We
treat all processes that are not in any reservation
classes (ABS and PROP) as a virtual client. It
shares all remaining CPU time after the clients in
reservation class are granted for CPU resources.
Within the scheduling period of the virtual client,
the original process scheduling policy in the kernel
is executed.

2.2.2. Implementation of the extension module

The extension part is developed based on the netfilter

framework. In general, netfilter provides an efficient and
scalable way for packet filtering, network address trans-
lation (NAT) and packet mangling. netfilter defines a set
of hooks (Fig. 2) inside the kernel�s network stack which
allows kernel modules to register callback functions. We
can therefore attach our packet processing routines in
several intermediate points in the protocol stack. When
a network packet traverses one of those hooks, the re-
lated callback functions will be invoked to process the
packet.

In conjunction with netfilter, iptables is an interface to
define a set of rules in a table structure. Every rule with-
in a table consists of some classifiers (matches) and cor-
responding action (target). The matches and targets are
implemented as kernel modules that provides packet
classification and manipulation, respectively. We em-
ploy iptables in packet classification and forwarding
packets to different extensions.

There are two classes of extensions in our design, the
kernel space and the user-space extensions:
Network Interfaces

Local Processes

Pre-routing Route Forward Post-routing

Local In

Local Out

Route

Kernel network stack

Hook point
Packet flow

Fig. 2. Hook points for netfilter: pre-routing, forward, post-routing,
local-in and local-out.
(1) Kernel space extensions: The kernel space exten-
sions are implemented as netfilter modules which
are attached to one of the hooks defined in netfil-

ter. This class of extension is suitable for services
which require low-latency processing. As this class
of module is directly inserted into kernel space, the
number of buffer copy and the packet traveling
time is minimized. It provides comparably higher
processing performance over the user-space one.
However, coding a kernel module is less flexible
than a user-space one as there are fewer libraries
supported in kernel.

(2) User-space extensions: The user-space extensions
are implemented with the aid of ipqueue which is
an kernel module for netfilter (the QUEUE target)
that provides user-space packet queuing facility.
With ipqueue, packets can be pulled out from the
kernel and queued to user-space for further pro-
cessing. The meta-data (nfmark, MAC
address, . . . , etc.) of a packet and the IP payload
(optional) are sent to an user-space process via
the netlink socket (Fig. 3). Hence, one can develop
customized packet handling routines using the net-

filter-provided library for ipqueue called ‘‘libipq’’
without much modification to the kernel codes.
This class of extension is suitable for user customi-
zed and complicated services. User-space modules
can easily make use of existing libraries and inter-
act with other user level applications. Hence it pro-
vides a convenient solution to implement various
kinds of services. The trade-off to this flexibility
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Fig. 3. Overview of the user-space extension architecture.
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is the lower performance of user-space extension
as compared to the kernel extension as it requires
two extra buffer copies, from kernel to user-space
and vice versa for communication.

Here are the components related to the user-space
extension class:

• ipqueue extension daemon (ipqextd): Since currently
only one user-space process is supported by ipqueue

facility, we designed and implemented an user-space
extension daemon to de-multiplex packets to multiple
extensions. The daemon runs on top of ipqueue. It
handles the registration/de-registration of user-space
extensions, keeps track of loaded extensions and
assigns the packets queued in ipqueue to correspond-
ing extensions. For the remaining of the paper, we
will simply call it daemon for easy presentation.

• ipqueue extension manager (ipqext): The extension

manager provides an interface to the daemon. The
manager communicates with the daemon through
Unix domain socket. Users can control the daemon
and manage extensions at runtime via the manager.
The manager mainly supports basic controls such as
loading/unloading and starting/stopping extensions.
The syntaxes of the manager is designed similar to
iptables2 so that users can easily pick up the
commands.

• Dynamically loadable extensions: User-space exten-
sions are implemented as dynamic libraries (modules)
which can be loaded by the daemon on user demand.
Using dynamic modules instead of static ones gives
the flexibility of integrating services into the proposed
router at run time without the need to shut down or
reboot the router. It also reduces the resources in the
router as unused extensions can be temporarily
stopped or offloaded.

In order to fit into the extension architecture, every
extension module has to fulfill several criteria. There is
an extension information structure (ipext_t) in each
module which contains the internal status variables
and function pointers. This information block enables
the daemon to reach the functionalities and internal
status of an extension.
5 start
extension

iptables
mark

ipqueue Extension
Daemon
(ipqextd)
/* ipqext structure */
typedef struct ipqext ipqext_t;
struct ipqext{
Userspace
4 set mark

processed
packets

Kernel

ip_queue module
(QUEUE target)

marked
packets

ipt_MARK module
(MARK target)

packets

Fig. 4. Flow of packet processing under the user-space extensions.
struct ipqext *prev, *next;
void* handle;
int active;
const char *name;
const char *version;
unsigned long groupmask;
int (*proc)(ipq_packet_msg_t *m);
int (*start)( );
int (*stop)( );
int (*reset)( );
const char* (*info)( );

};

Each module also needs to export several standard-
ized functions such that extensions with different func-
tionalities can be plugged into the router in a
generalized way. The standardized functions are

_init: initialization procedures initiated when the
daemon loads the extension,

_fini: finalization or cleanup procedures executed
when the daemon unloads the extension

proc: packet processing routine called by the daemon

when a packet targeted for the extension
arrives,

start: procedures executed when the daemon starts
the extension,

stop: procedures executed when the daemon stops
the extension,

reset: function to reset the internal status and vari-
ables of the extension,

info: function to obtain the information of internal
status of the extension.

In the following, we will describe the flow of packet
processing in user-space extensions as depicted in Fig. 4.

During the module initialization (_init), an exten-
sion registers itself to the daemon by passing its exten-
sion information structure. The daemon keeps a list of
extension information structure of loaded extensions.
Extensions are loaded into the daemon in a sequential
order. Each extension is associated with an index that
indicates its order of execution. Packets are processed



Table 1
Average quanta per cycle received by each client

Client Share
requested

Average number
of quanta per cycle

Average relative
share received
(normalized w.r.t client A)

A 5 44.74898 5.00000 (1.00000)
B 10 88.76735 9.91540 (1.98308)
C 15 132.33214 14.77987 (2.95597)
D 20 177.28673 19.80266 (3.96053)
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by corresponding extensions one by one with the small-
est index first. Several extensions can be simultaneously
loaded into the daemon. An loaded extension can either
be in ‘‘started’’ or ‘‘stopped’’ state which indicates
whether it processes packets or not.

The proc function of an extension will be called when
a packet targeted for the extension is ready for process-
ing. Directing a packet or a flow to a specific extension
is done by ‘‘packet marking’’. We use the MARK target
provided by netfilter for marking packets. Once the dae-

mon starts, packets or flows can be directed to it using
iptables. Packets targeted for user-space processing are
first filtered by specific rules in the ‘‘mangle’’ table of
iptables. These rules pass the packets to the MARK tar-
get which alters the netfilter mark (nfmark) field associ-
ated with each packet. In our design, we treat the mark as
a 32-bit vector with each bit representing a group of
extensions. A group can consist of some extensions and
an extension can belong to several group. An extension
belongs to the ith group if the ith bit of its group mask
is set. Each marked packet enters ipqueue and is delivered
to corresponding extension modules by the daemon. The
marked packet is processed by the extensions in the ith
group if the ith bit of the mark is set.

Every time an extension finishes the processing on a
packet, the proc function returns a verdict which deter-
mines the fate of the packet. In normal case, the func-
tion returns NF_QUEUE to inform the daemon that the
packet has been processed and is ready for further pro-
cessing by other extensions. Then the packet will be
passed to the next extension in the chain. If the return
value is NF_ACCEPT, the packet will immediately exit
from the user-space queue and return to kernel even
the packet has not passed through all user-space exten-
sions. If NF_DROP is returned, the packet will skip fur-
ther processing and be dropped.

2.2.3. Implementation of the security module
Sometimes system administrators may want to in-

stall/update the modules or launch some services remo-
tely on a programmable router. In some applications, a
set of programmable routers often need to collaborate
together to complete an IP traceback (e.g., probabilistic
marking algorithm, which will be discussed in later sec-
tion). Both the module update and module communica-
tion involve exchanges of information, commands and
even dynamic program modules. In the following text,
we simply call these data ‘‘sensitive data’’.

Inadequate security measure in router communica-
tion can make a router become vulnerable. Attackers
can make use of the transmission of sensitive data to at-
tack, break in or take over the routers. They can bring
down some router services by sending fake commands
to a router. They can also install some malicious codes
remotely into a router via the security holes in the mod-
ule update mechanism. Therefore, security control plays
an important role in the extensible router architecture.
And particularly, it is essential to enable router authenti-

cation. In order to prohibit previously mentioned at-
tacks while maintaining a certain level of convenience
and flexibility, we need an efficient authentication
scheme for securing the router communication. Upon
receiving any sensitive data, a router has to authenticate
the sender and ensure the integrity and credibility of the
data before proceeding the process.

We use the widely used electronic certificate and digital

signature technology in the public key infrastructure

(PKI) standard (Rescorla, 2000; Viega et al., 2002) to
support the router authentication. In the current imple-
mentation, every router has its own certificate issued by
a common certificate authority (CA). The certificate is
used to prove the identity of a router in every authentica-
tion process. During the information exchange, a router
will attach a digital signature and its certificate together
with the sensitive data to be sent. On receiving any sensi-
tive data, a router will check the attached digital signature
and certificate so as to ensure the credibility of the sender
and the data integrity. In addition to message authentica-
tion, the sensitive data can be optionally encrypted to pre-
vent any unauthorized access to the content.

2.3. Evaluating the effectiveness of CPU reservation

To verify the performance of the implemented VTRR
scheduling algorithm, we tested the VTRR scheduler on
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the Linux Opera router. In the experiment, there were
four identical client processes which reserved CPU re-
sources through the resource kernel. They were all abso-
lute class clients and granted with 5%, 10%, 15% and
25% of total CPU share, respectively. In each scheduling
cycle, the number of quanta consumed by each client
was recorded. Table 1 shows the average number of
quanta per cycle received by each client and Fig. 5 shows
the related CPU share for whole measurement period of
2000 time units. The result shows that the OPERA sys-
tem can accurately allocate CPU resources to each client
according to the value they reserved.
3. New service on DDoS traceback services

DDoS traceback is an important step to tackle the
flooding-based DDoS attack since it can identify the
source of the attack. However, this type of service is cur-
rently not available or not supported by the network
routing core. To perform effective traceback, one needs
to first obtain the attack graph topology (Savage et al.,
2000; Law et al., 2002, in press) and a running statistics
of traffic volume from different sources destined to the
victim site. With the attack graph, one can determine
the suspicious sources of attack and carry out further ac-
tions, for example, limit the incoming traffic to a con-
trollable level and maintain the availability of services
to legitimate users. Another requirement for efficient
traceback is to determine the location of attack on the
fly during the period when a victim is under a DDoS
attack.

Note that for DDoS traceback, simply examining the
source address of every incoming packet at the gateway
router of the victim is not effective because an attacker
can easily hide itself by using spoofed source IP ad-
dresses. One way to resolve the problem requires all
Internet Service Providers to enforce some mechanisms
to prevent IP spoofing. However, this is difficult to
achieve since it requires universal adaptation. In this
work, we illustrate the probabilistic marking (Law et
al., 2002, in press) to implement the traceback service
on the proposed programmable router. Note that the
methodology relies on the collaboration of a set of coor-
dinated routers associated with a victim site. Since this is
a new service, one needs to provide hookpoints and
extensions to the proposed programmable routers.

Unless we state other wise, any mentioned ‘‘traffic’’ is
referred to the one destined for a victim site. Each par-
ticipating router carries both transitive (forwarded) and
local traffics to the victim site. The transitive traffics are
aggregated to a router from its upstream routers while
the local traffics are generated within the local adminis-

trative domain of that router. These two traffics contrib-
ute to the outgoing traffic of the router destined for the
victim. If an attack traffic is generated within the do-
main of one participating router while the others carry
normal traffics, the local traffic rate of that router would
be significantly higher than the others transitive traffics.
By determining the local traffic rates of all participating
routers, one can compare these values and deduce the
approximate location of attack. Therefore, one can then
narrow down the search scope to a small number of
domains and continue the traceback until the source
of attack is found.

In the following sections, we formally describe the
traceback methodology.

3.1. DDoS attack traceback—probabilistic marking
approach

This approach (Law et al., 2002, in press) extends the
probabilistic edge marking algorithm (Savage et al., 2000)
to determine the local traffic rates of participating
routers.

Under the probabilistic edge marking, packet mark-
ing is a path encoding method to overcome the problem
of IP spoofing. With the support of the underlying pro-
grammable routers, the path information can be re-
corded on a packet during its traversal along the
routers. Provided that the involved routers are trusted
and the mark information is authenticated, the informa-
tion can be used to recover the attack path and eventu-
ally the attack graph.

Note that recording the complete traversed path
information on a packet may be prohibitive because
the size of mark information grows linearly with the
number of routers the packet has visited. Therefore,
the space needed to store the variable length marker
cannot be pre-determined and thus may introduce the
difficulty on storing the complete mark. Marking every
packet also burdens a router since this requires too
much processing. An alternative approach is probabilis-
tic edge marking (Savage et al., 2000).

Under the probabilistic edge marking, a router deci-
des to mark on every forwarding packets with a marking
probability p. Each mark records a ‘‘partial path infor-

mation’’ which corresponds to a segment (edge) along
the whole route to the victim site. It consists of three sta-
tic fields, start, end and distance, which represent the IP
addresses of routers on the two ends of a segment, and
the distance of that segment from the victim site. Since
the size of mark does not grow with the number of rou-
ters a packet has visited, therefore the storage overhead
of the edge information is reduced to minimal.

Under the probabilistic marking, if a router decides
to mark a packet, it puts its address into the start field
and initialize the distance field to zero. Otherwise, it first
checks whether the packet is marked with a distance
equal to zero. In this case, the router puts its IP address
into the end field. If a router decides not to mark a
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packet, the router always increments the distance field
by one.

Under the probabilistic edge marking, every router
has a probability p to mark the transitive packets and
so every edge information is eventually included in the
marked packets. By collecting sufficient number of
marked packets, one can collect all the edge information
which packet traversed and can then construct the
attack graph by the following algorithm:

Algorithm. (Attack graph construction procedure at the
victim site V)

Initialize the tree G to have a root node which is the
victim site V;
Filter out unmarked packets;
Sort the marked packets in ascending order of the
value of the distance field;
/* attach each marked edge to the tree G */
For (each marked packet w) {
4 The OpenSSL project. Available from: http://www.openssl.org/
5 Privacy Enhanced Mail format defined in RFC1421.
If (w.distance == 0) {
insert edge (w.start, V, 0) into G;

}
Else {

If ((w.end == one of the outermost node in G) and
(w.distance == that outermost node�s distance))

insert edge (w.start, w.end, w.distance) into G;
}

}
Extract path (Ri . . . Rj) by enumerating acyclic paths
in G;

Using the above attack graph construction proce-
dure, the victim can gather the information about the at-
tack graph topology. When a router Ri sends packets to
the victim V, all routers that are on the path between Ri

and V can mark the packets with certain probability. So,
if a suitable marking probability is chosen and there is a
sufficient amount of attack packets, one can gather the
marked packets with all different edges on that path
and recover the attack path completely.

With the marked packets and attack graph informa-
tion, the local traffic rates of different routers can be de-
duced mathematically based on the concept of stochastic
comparison (Ross, 1996). A minimum stable time tmin is
defined in (Law et al., 2002, in press) to determine the
minimum time required for the traffics to be stable so
that one can determine the local traffic rates of all par-
ticipating routers. The end result is that one can rank

all these local traffic rates, in a non-increasing order,
and find out the possible sources of DDoS attacks. Note
that the probabilistic marking has to be performed by
participating routers. We have implemented this new
service in the programmable router. The detail of deter-
mining the local traffic rates and the minimum stable
time will be given in the next subsection.
3.2. Implementation details

3.2.1. Implementation of the security functions

The security part of the router is implemented with
the OpenSSL toolkit.4 OpenSSL is an open source tool-
kit provides the library for implementing Secure Sockets
Layer (SSL v2/v3) and Transport Layer Security (TLS

v1) protocols as well as cryptography library.
As the authentication scheme is based on electronic

certificate and digital signature, every router has to
equipped with its own certificate. A X.509 certificate is
generated per router and signed by a certificate author-
ity (CA). In the current scheme, the certificate is stored
in PEM5 format or PKCS#12. For a small scale deploy-
ment, one can use the OpenSSL toolkit to setup a CA
for a group of routers. To simplify the certificate verifi-
cation process, one level certification hierarchy can be
used such that all router certificates are signed by a
self-maintained root CA. The certificate chain is thus
shorten.

To provide the authentication on sensitive data, a
digital signature is generated per message by using hash
function (SHA-1, MD5) and public key cryptography
(DSA, RSA). A message digest of sensitive data is com-
puted by a hash function. The message digest is then en-
crypted with the private key of a public key
cryptographic algorithm. We currently use SHA-1 with
RSA to implement the digital signature but it can be eas-
ily changed to different combinations with the OpenSSL
toolkit. A timestamp is appended, when necessary, to
sensitive data before digesting so as to prevent replay
attacks.

Message authentication can only guarantee the data
integrity and credibility. In order to prevent any unau-
thorized access to the content of sensitive data, the data
can be optionally encrypted using the cryptography
library provided in OpenSSL. Alternatively, a secure
SSL communication channel can be established in
advance for a large amount of data transfer.

3.2.2. Implementation of the DDoS traceback service:

probabilistic marking approach

We implement the packet edge marking process as a
kernel space extension. All the transitive and local traffic
destined for the specified site are directed to the kernel
module using iptables rules.

The implementation of probabilistic edge marking in
the original paper (Savage et al., 2000) uses the identifi-
cation field of IP header together with the compressed
edge fragment sampling algorithm to store the mark
information. This technique minimizes the storage over-
head as well as preserving the robustness. Yet the com-

http://www.openssl.org/
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pressed edge fragment sampling algorithm does involve
much processing.

In the current implementation, we chose a simpler way
to store the mark information by using IP options. We
store the mark directly as IP options without compres-
sion. This simplifies the mark processing while the storage
for mark information is still kept at an acceptable size.

The internal status of the edge marking kernel exten-
sion can be retrieved via the Linux proc file system

(procfs). It is provided for system administrators to
keep track of the marking process.

3.2.3. Attack graph construction

The attack graph construction algorithm we use is the
algorithm which we depicted in Section 3.1. Before the
attack graph construction, a linked list structure is used
to store the edges and their frequency in ascending order
of edge distance. Then a tree data structure is con-
structed for the attack graph. Starting from the victim
as the root node, the edges are recursively joined to
the tree. If the edges cannot join any node on the tree,
it will be ignored. So there is no broken path in the
resulting attack graph G.

3.2.4. Determination of local traffic rates and minimum

stable time

With the attack graph information, the remaining is-
sue is to determine the local traffic rates of all participat-
ing routers. Before we introduce the methodology, let us
use an example to illustrate the concept.

Fig. 6 illustrates a general topology wherein each rou-
ter may be connected by several upstream and down-
stream routers. For example, router Rj in the figure
has three upstream routers Rj+1, Rj+2 and Rj+3 and
two downstream routers Rj�1 and Rk. For this attack
graph, the furthest router from the victim site V is router
Rn, which has a distance of d P 1 hops away from V.
Each router receives its local traffic from its network do-
main, some of these traffics are destined to the victim site
V. Let kj denotes the average local traffic rate, in unit of
packets per second, from the router Rj to the victim site
V. Let kin

j denotes the total average traffic rate from all
upstream routers of Rj to the victim site V and kout

j de-
notes the total average traffic rate from router Rj to all
its downstream routers which are targeted to the victim
site V. Again, the goal is to deduce the local traffic rate kj
Rn Rj-1 R1 V

Rk Rp

Rj

λj

Rj+2

Rj+1

Rj+3

λj

in λj

out

Fig. 6. A general attack graph G.
for all routers in an attack graph, then based on their lo-
cal traffic intensities, we can identify the locations of the
potential attackers.

Let G denotes the attack graph based on the con-
struction method we described in Section 3.1. We say
that a router is a leaf router in the attack graph G if it
is not connected to any upstream router. For example,
in Fig. 6, router Rn is a leaf router. All other routers
are called internal routers. Let (i, j) denotes an edge be-
tween router Ri and Rj, we define k(i!j) as the average
traffic rate to the victim site V that passes through the
edge (i, j) between router Ri and Rj.

The average local traffic rate kj for router Rj 2 G is

kj ¼
kout
j if Rj is a leaf router;

kout
j � kin

j if Rj is an internal router;

(
ð1Þ

where kin
j and kout

j are the average traffic rates into and
out of router Rj, respectively. These average traffic rates
can be computed by

kin
j ¼

X
8ði;jÞ where Ri is an upstream router of Rj

kði!jÞ; ð2Þ

kout
j ¼

X
8ðj;kÞ where Rk is a downstream router of Rj

kðj!kÞ: ð3Þ

Therefore, if we can estimate the average traffic rate k(i!j)

for all marked edges (i, j) in the attack graph G, then we
can deduce the average local traffic rate of each router
based on Eqs. (1)–(3). In Fig. 7, we present the procedure
to estimate k(i!j) for each marked edge (i, j) in G.

Let eN out

j ðtÞ be the random variable denoting the num-
ber of marked packets received by the victim site V at time
t such that the start field is equal to router Rj. Let eN in

j ðtÞ
be the random variable denoting the number of marked
packets received by the victim site V at time t such that
the end field is equal to router Rj. After a sufficient
amount of time in collecting these marked packets, we
have the following stochastic relationship (Ross, 1996):eN out

j ðtÞPst
eN in

j ðtÞ 8Rj 2 G: ð4Þ

The above relationship holds because

1. there is non-negative local traffic originated from rou-
ter Rj to the victim site V, therefore, the number of
marked output packets from Rj can be greater than
the number of marked input packets to Rj in the long
run;

2. the probabilistic edge marking algorithm will mark
any transit packet to V from the upstream of router
Rj. Therefore, the router Rj may erase any edge mark-
ing of a transit packet from its upstream routers.

The remaining issue is that to have an accurate esti-
mation of the local traffic rate kj, we have to guarantee
that the conditions in Eq. (4) are satisfied. Once the



Fig. 7. Procedure to estimate k(i!j) for every marked edge (i, j) in G.
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conditions of Eq. (4) are satisfied, we can then estimate
local traffic rate kj based on Eqs. (1)–(3) to traceback the
potential attackers. In the following, we provide an ana-
lytical method to derive the minimum stable time tmin

such that the conditions of Eq. (4) are satisfied.
Let N out

j ðtÞ be the number of marked packets received
by the victim site V at time t such that the start field is
equal to router Rj. Let N in

j ðtÞ be the number of marked
packets received by the victim site V at time t such that
the end field is equal to router Rj. We have the follow-
ing relationship:

N in
j ðtÞ ¼

X
8ði;jÞ

kði!jÞðtÞpð1 � pÞdði!jÞ�1t; ð5Þ

N out
j ðtÞ ¼

X
8ðj;kÞ

kðj!kÞðtÞpð1 � pÞdðj!kÞ�1t; ð6Þ

where k(i!j)(t) and k(j!k)(t) are the traffic rate estimation
of the corresponding edge (i, j) and (j,k) at time t accord-
ing to the procedure given in Fig. 7, d(i!j) and d(j!k) are
the hop count from router Ri to victim V and from rou-
ter Rj to victim V, respectively.

To simplify notation, let us define k0in
j ðtÞ and k0out

j ðtÞ as

k0in
j ðtÞ ¼

X
8ði;jÞ

kði!jÞðtÞpð1 � pÞdði!jÞ�1
;

k0out
j ðtÞ ¼

X
8ðj;kÞ

kðj!kÞðtÞpð1 � pÞdðj!kÞ�1
;

N in
j ðtÞ ¼ k0in

j ðtÞt and Nout
j ðtÞ ¼ k0out

j ðtÞt:

ð7Þ

One can re-formulate the problem of finding the min-
imum stable time tmin such that
Prob
� eN out

j ðtminÞ P eN in

j ðtminÞ
�

P pthreshold 8Rj 2 G; ð8Þ

where pthreshold is a large probability (e.g., pthresh-

old = 95%). The formulation implies to find the minimum

time such that with a very high probability, the number of

collected packets marked by the router Rj is higher than
the number of collected packets marked by the upstream
routers of Rj, for all routers in the attack graph G.
Assuming that the random variable is a Poisson process,
we have

Prob
� eN out

j ðtminÞ P eN in

j ðtminÞ
�

¼
X1

k¼0
Prob

� eN out

j ðtminÞ P k
�
Prob

� eN in

j ðtminÞ ¼ k
�

¼
X1

k¼0

X1
n¼k

½k0out
j ðtminÞtmin�n

n!
e�½k0out

j ðtminÞtmin�

" #

�
½k0in

j ðtminÞtmin�k

k!
e�½k0inj ðtminÞtmin� 8Rj 2 G: ð9Þ

Again, one can easily determine the minimum stable
time tmin using some standard numerical methods.
4. DDoS experiments and results

In order to test the two extensions for DDoS trace-
back, we carry out two experiments to verify the imple-
mentation with the theoretical and simulation results in
(Law et al., 2002, in press). The two experiments con-
cern with the minimum stable time in the probabilistic
marking approach in performing the traceback.



R2R1 VR3R4

victim

Fig. 8. The linear network topology for verifying the minimum stable
time.
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4.1. Verification of the theoretical minimum stable time

This set of experiments aims to verify the theoretical
minimum stable time tmin in (Law et al., 2002, in press) un-
der the current implementation and real network traffics.
The theoretical minimum stable time tmin is defined as

P ¼ Prob
� eN jðtminÞ P eN jþ1ðtminÞ

�
P pthreshold

8j 2 f1; . . . ; d � 1g: ð10Þ

In this set of experiments, we setup a small scale lin-
ear network topology as shown in Fig. 8 which consists
of four routers. There is one attacker in the local admin-
istrative domain of one of the routers which generates a
larger amount of traffic while the traffic from other rou-
ters is kept at 50 pkts/s.

We increment the attack traffic rates from 100 to
200 pkts/s with a increase of 50 pkts/s each time. For a
particular attack traffic rate, we sample Nj(t), the number
of marked packets received by the victim site V at different
time t (from t = 0 to 10tmin) such that the start field is
equal to router Rj for all router. We take 200 samples
for each attack traffic rate. Over the 200 samples, we
count the number of times such that Nj(t) P Nj+1(t)
"j 2 {1, . . . ,d � 1}. This gives the probability P in Eq.
(10). Theoretically, the inequality holds at t P tmin.
Therefore, we try to see at which time P is greater than
or equal to Pthreshold from the experimental results. In
all experiments, the marking probability of each router
is set to p = 0.25. The value of Pthreshold is set to 0.95.

Experiment A. (Attacker at node R4) In this experi-
ment, the attacker resides in the local domain of the
furtherest router from the victim site V and the result of
the experiment is
Attack traffic rate
 Probability P at different time
tmin
 1.25tmin
 1.5tmin
 1.75tmin
100
 0.93
 0.955

125
 0.94
 0.955

150
 0.915
 0.95

175
 0.925
 0.94
 0.97

200
 0.88
 0.93
 0.94
 0.955
From the results listed above, one can notice that the
value of P is close to Pthreshold at t = tmin. With no more
than 1.75 tmin, the inequality P P Pthreshold holds. In
other words, one can determine the location of attackers
within 1.75 min.
Experiment B. (Attacker at node R1) In this experi-
ment, the attacker resides in the local domain of the
nearest router from the victim site V and the result of
the experiment is
Attack traffic rate
 Probability P at different
time
tmin
 1.25tmin
100
 0.95

125
 0.94
 0.98

150
 0.935
 0.965

175
 0.93
 0.96

200
 0.94
 0.96
From the results, we can notice that the value of P is
close to Pthreshold at t = tmin. After t P 1.25tmin,
P P Pthreshold. In other words, one can determine the
location of attackers within 1.25 min.
5. Related work

Authors (O�Malley and Peterson, 1992) propose the
component-based synthesis of routing protocol in x-ker-
nel was first reported in O�Malley and Peterson (1992).
This work was solely concentrated on the routing func-
tionalities without providing the capability of adding
new service to routers. Recently, this platform has been
extended to other applications and services (Descaper et
al., 1998; Kohler et al., 2000; Merugu et al., 2000; Spa-
link et al., 2001; Yau and Chen, 2001) but these revised
platforms are not available to research community. Re-
cently, the Click architecture (Kohler et al., 2000) also
supports service extensions under the push/pull data
movement paradigm. The main contribution of Click
is a new paradigm of 1 h ‘‘configuration language’’ and
system support in construction flow service pipelines.
On the other hand, our proposed architecture is targeted
for easy service extension and deployment on an open
architecture. Authors (Descaper et al., 1998) propose a
router plug-in for programmable routers. However,
these plug-in gates are fixed in the IP forwarding path
and cannot be dynamically extended. Under our pro-
posed architecture, one can extend various hook-points,
either in the kernel space IP forwarding path or at the
user level so that extensions can be easily added.

For the network security, Savage et al. (2000) pro-
posed probabilistic marking for traceback without gen-
erating separate ICMP packets to the victim. Routers
mark packets probabilistically and store the partial path
information in the IP header. Each piece of information
represents a sample edge of the attack path. Victim col-
lects the attack packets and can reconstruct the attack
path based on the partial path information. This
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approach does not need the coordination among the
network administrators and it does not increase the traf-
fic flow or the storage requirement of a router. Park and
Lee (2001) analyzed this marking approach and pointed
out that spoofing of the marking field may impede trace-
back by the victim. Attackers may choose the spoofed
marking value, source address to hide themselves. Dean
et al. (2001) formulated the traceback problem as a poly-
nomial reconstruction problem, They used algebraic
coding theory to encode traceback information in the
packet, similar to Savage approach. It also suffers the
same spoofing problem and may be more vulnerable
without the distance field in the marking. Song and Per-
rig (2001) reported that if the victim knows the map of
its upstream routers, it does not need the full IP address
in the packet marking. They improved Savage�s marking
approach by hashing so as to achieve a lower false posi-
tive rate and a lower computation overhead. They pro-
posed efficient authentication of packet markings to
filter packets with spoofed markings from the attackers.
Note that approaches by Savage et al. (2000) and Song
and Perrig (2001) provide the topology of the attack
graph. Our approach can be view as a complementary
approach to their so as to locate potential attackers in
the attack graph.
6. Conclusion

In this paper, we present the design and implementa-
tion of an open architecture of a programmable and
extensible router architecture. The platform is built on
top of the open source kernel and it can be easily acces-
sible by general public. The objectives are to provide an
open platform for researchers to experiments with new
network protocols and extension services. Our program-
mable router architecture not only provides the tradi-
tional packet forward/routing functions, but also
provides the flexibility to integrate additional extension
into a router. These extension are dynamically loadable
modules so services can be deployed on the fly without
shutting down the routing elements. We provide a
framework for CPU resource management so that no
extensions can monopolize system sources (e.g., CPU re-
source). We also illustrate the extensibility of the pro-
posed architecture for implementing a new service
extension that can perform DDoS traceback, namely:
IP traceback via the probabilistic marking algorithm.
We performed experiments to illustrate that the pro-
posed architecture can allocate CPU resource precisely
and the added extensions can achieve their objectives
effectively, e.g., tracing the attackers within a short per-
iod of time. Our programmable router platform pro-
vides an ideal platform and flexibility for researchers
to experiments new Internet protocols and security
services.
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