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ABSTRACT
Although the concept of application layer overlay routing has re-
ceived much attention lately, there has been little focus on the “co-
existence” and “interaction” of overlays on top of the same physi-
cal network. In this paper, we show that when each overlay plays
the optimal routing strategy so as to optimize its own performance,
there exists an equilibrium point for the overall routing strategy.
However, the equilibrium may beinefficient: (a) it may not be
Pareto optimal, (b) some fairness anomalies of resource allocation
may occur. This is worthy of attention since overlays can be easily
deployed and overlays may not know the existence of each other,
they may continue to operate at a sub-optimal point.

1. INTRODUCTION
In recent years, there has been tremendous interest on the routing

and deployment of overlay or peer-to-peer networks[1, 6]. In par-
ticular, application layer routing schemes are shown to effectively
address the problems of traditional IP routing. Measurements from
[1, 6, 7] indicate that in the current Internet, a large percentage of
traffic can find better routes by relaying packets with the assistance
of overlay nodes. From a theoretic point of view, application layer
routing is a form of optimization in which an overlay maximizes its
utility based on the available network resources and information.

Although the concept of overlay networks has received much at-
tention lately, there has been little focus on the “interaction” of
“co-existence” of overlay networks. In this work, we consider the
scenario when multiple overlays are constructed on top of a com-
mon physical network. These overlays have partially overlapping
paths and even nodes. Each overlay is “selfish” by nature in that
it performs overlay routing so as to optimize its own performance
without considering the impact on other overlays. We explore this
form of interaction and how the interaction can affect the network
stability, performance and fairness in resource allocation.

In this work, we derive the fundamental properties of Internet
overlay interactions systematically. Firstly, we introduce the con-
cept ofoverlay optimal routingpolicy. Secondly, we model the in-
teraction of overlays as a non-cooperative strategic game and show
that even when multiple overlays each striving for its own opti-
mality, there always exists aNash equilibrium, under very mild
assumptions about the delay functions of the overlay’s links and
general network topology. Finally, we report a number of impor-
tant properties of overlay optimization. Namely,

• Sub-optimality: The equilibrium point is not Patero (or so-
cial) optimal, which can cause “tragedy of the commons”,
meaning that the performance ofall overlays can be seriously
degraded, despite their individual routing optimization.

• Fairness paradox: Another more interesting and important

result is on the issue of fairness in resource allocation. Namely,
at the equilibrium, it is possible for some overlays to obtain
a higher percentage of the common resource (e.g., link band-
width) as compared to other overlays and cause these over-
lays to experience a significant performance degradation.

2. OVERLAY OPTIMAL ROUTING: MOD-
ELING

In this section, we first propose the “overlay optimal routing”
policy. Normally there are multiple source-sink pairs in an over-
lay network. Under the optimal routing policy, every source node
decides to split traffic amongall its available overlay paths, coordi-
nated by the overlay network to minimize the average delay for the
wholeoverlay. In this model, we assume that there is no underlying
traffic in the physical network. We show that even under a less dy-
namic environment (which justifies in the long run), the interaction
between overlays can result in some undesirable properties.

Consider aphysical networkwith a setJ of resources, which
denotes a set of physical links. For each linkj ∈ J , let Cj

represent its finite capacity (unit is bps). Let aroute r be a non-
empty subset ofJ , and denoteR as the set of all possible routes
of the physical network. Let|J | = m and |R| = q, we use
A to represent anm × q matrix with Ajr = 1 if j ∈ r, and
Ajr = 0 otherwise. Thus, the matrixA defines a0−1 link-
route indicator matrix. Letdj(lj) denote the delay function for
the physical linkj ∈ J , wherelj is theaggregaterate of traffic
that traverses linkj. Let L = (l1, l2, . . . , lm)T denote a traffic
rate vector for all physical links, and we define a delay function
asD(L) = (d1(l1), . . . , dj(lj), . . . , dm(lm))T . In this work, we
only assume that the delay function is continuous, non-decreasing,
and convex. Note that this is a reasonable assumption since this ap-
plies to a link with a fixed propagation delay, or a link whose delay
is represented by general queueing delay models.

An overlay network is a connected sub-graph of the underlying
physical network which consists of a set of logical nodes and logi-
cal links. A logical path is interpreted as a set of logical links, each
of which may consist of one or more physical links. The logical
topology of the overlay network depends heavily on how this over-
lay is organized. With proper translation, we can map every logical
path to a set of corresponding physical links. Thus, the routing ma-
trix for overlays can be similarly defined asA(s), which is a partial
matrix ofA. Within an overlay, there can be “multiple” source-sink
pairs and each source-sink is associated with a traffic flowf , which
has a constant traffic demand ofxf (units is bps). Suppose there are
a setN of overlays, and for each overlays ∈ N , there is a finite set
Fs of source-sink pairs. For each flowf ∈ Fs, there is a setRf of
distinct paths that can be used by the flowf to deliver information
from its source to its sink. In our model, each overlay has the abil-



ity to control the routing of its trafficwithin its overlay network.
Therefore, source nodes of an overlay network may choose to split
and assign their traffic onto different paths so that the weighted av-
erage delay of thewholeoverlay network can be minimized. Equiv-
alently, the overlay needs to decide, for all its flows, how to assign
traffic to every possible pathr ∈ Rf so as to optimize its desired
performance. Thus, each flowf in the overlays has a routing de-

cision vectory(s,f) =
�
y
(s,f)
1 , y

(s,f)
2 , . . . , y

(s,f)

|Rf |

�T

, wherey
(s,f)
k

is the amount of traffic alongk-th path for flowf in overlays, andP|Rf |

k=1 y
(s,f)
k = xf such that the traffic demand for flowf is sat-

isfied. For the compactness of presentation, we rewrite the routing
decision for overlays as a concatenation of the flow vectors of all

its source-sink pairs:y(s) =
�
y(s,f1), y(s,f2), . . . , y(s,f|Fs|)

�
.

In the overlay optimal routing, one overlay’s goal is to minimize
the average weighted delay of traffic within this overlay, which can
be interpreted as the sum of weighted end-to-end delays on all pos-
sible paths, with the weight being the rate of overlay traffic travers-
ing on that corresponding path. With these notations, the overlay
optimal routing for overlays can be formulated as the following
convex optimization problem1 OVERLAY

(s):

Minimize delay(s) = y(s)T [A(s)T D(
P

i
A(i)y(i))]

s. t. ∀f ∈ Fs,
P|Rf |

k=1 y
(s,f)
k = xf ,

Ay ≤ C, y(s) ≥ 0. (1)

Since the routing decision optimizery(s) of overlays depends on
the current routing decisionsy(−s) of other overlays, there will
be inevitable interaction of routing behaviors between these co-
existing overlays. Therefore, the interaction can be understood as
an iterative process, wherein each overlay periodically calculates its
optimal routing strategy based on other overlays’ routing decisions
(assuming fixed during the calculation), which may be performed at
different time scalings. To analyze the interplay between overlays,
we model the interaction between multiple co-existing overlays as
a non-cooperative Nash routing gameGoverlay. First, the set of
players consists of all overlays. Second, the strategy that overlays
can take is a feasible routing vectory(s) ∈ Γ(s), which is defined
as the feasible region of the optimization problem (1). Lastly, each
overlay prefers a lower average delay. Accordingly, we have the
following definition for theNash Equilibriumin Goverlay:

Definition 1. A feasible strategy profiley∗ ∈ Γ1 × . . . × Γn,
y∗ = (y∗(1), . . . , y∗(s), . . . , y∗(n))T is called a Nash equilibrium
if for every players ∈ N , delay(s)(y∗(1), . . . , y∗(s), . . . , y∗(n)) is
less than or equal todelay(s)(y∗(1), . . . , y

′(s), . . . , y∗(n)) for any
other feasible strategy profiley′(s).

Theorem 1. For the overlay optimal routing game defined above,
there always exists a Nash Equilibrium Point (NEP) if the delay
function delay(s) is continuous, non-decreasing and convex.2

3. IMPLICATIONS OF INTERACTION
In this section, we discuss some intrinsic problems of overlays

interaction. These problems include sub-optimality in performance
and certain fairness anomaly in resource allocation. It is important
to point out that these problems are not unique to overlay optimal
routing policy, but rather, common to all forms of application layer
routing that have interaction among overlays. Worse yet, because

1For the detailed derivation of this optimization model, see [2].
2Please refer to [2] for a detailed proof.
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Figure 1: A simple network with two overlays to illustrate po-
tential problems

overlay may not realize the existence of other overlays, these prob-
lems will persist due to the convergence to the equilibrium point.

Let us use an example to illustrate these issues. A physical net-
work consisting of six nodes is depicted in Figure 1. There are two
overlays in the network: overlay1 consists of nodeA, C, E while
overlay2 consists of nodeB, D, F . For overlay1, all logical links
map to the corresponding physical links except for the logical link
between node C and node E, which corresponds to the physical
links C −D −E. For overlay2, all logical links map to the corre-
sponding physical links except for the logical link between node B
and node D, which corresponds to the physical linksB − C − D.
Thus, the physical linkC −D is the common link which isshared
by these two overlays.

3.1 Sub-optimality of Nash Equilibrium
Assume that both overlays have one source-sink pair and one

unit of traffic demand:x1 = x2 = 1.0. We define the following
delay functions for various physical links in the physical network:
dA,E(y) = a + y; dC,D(y) = byα; dB,F (y) = c + y, while
other links have zero delay. Here,y represents the aggregate traffic
traversing a link, anda, b, c, α are some non-negative parameters
of the delay functions.

Let us consider the routing decisions of these two overlays. For
overlay 1, it routesy(1,1)

1 fractionalunit of traffic through the logi-
cal pathA-C-E and(1−y

(1,1)
1 ) (becausex1 = 1) fractional unit of

traffic via the logical pathA-E. On the other hand, overlay2 routes
y
(2,1)
1 fractional unit of traffic through the logical pathB-D-F and

(1− y
(2,1)
1 ) fractional unit of traffic viaB-F . To find out the Nash

equilibrium point, we write down the Karush-Kuhn-Tucker (KKT)
conditions for overlay 1:
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while the KKT conditions for overlay 2 is
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wherey
(1,1)
1 , y

(2,1)
1 ∈ [0, 1].

One can easily show that in the overlay optimal routing game
described above, the Nash equilibrium point isnot Pareto optimal.
A Pareto optimal point is defined as a strategy profile for all over-
lays such that no overlay can use another routing strategy that can
decrease its own weighted average delaywithout increasing other
overlays’ weighted average delay. Namely, the equilibrium point
is not Pareto optimal since there exists another routing strategy by
which all overlays can achieve abetter performance than at the
Nash equilibrium.



To show the sub-optimality of the Nash equilibrium in the exam-
ple network depicted in Figure 1, we consider the KKT conditions
specified by Equations (2) and (3). Assume we have the follow-
ing parameters for the delay functions:α = 1, a = 1, b = 1
andc = 2.5, one can simply verify that the Nash equilibrium in
this example is{y(1,1)

1 = 0.5, y
(2,1)
1 = 1}, that is, overlay 1 uses

both paths while overlay 2 uses a single path, which consists of
the shared link. The weighted average delay for overlay1 and2 is
both1.5. However, if we consider another routing strategy profile
of {y(1,1)

1 = 0.4, y
(2,1)
1 = 0.9}, one can find that the weighted

average delay for overlay1 and2 are1.48 and1.43 respectively,
which arelower than the delay achieved at the Nash equilibrium.

3.2 Fairness Paradox
Another more severe problem is the notion of fairness in resource

allocation. We use the same network in Figure 1 to illustrate the
problem. Note that these two overlays are symmetric, each having
two paths: a shared path and a private path. As in the previous
example, although overlay 2 is “worse off” by having a private path
(link B−F ) with higher delays than that of overlay 1’s private path
(link A−E), it is able to achieve the same average delay as overlay
1 in the Nash equilibrium. This is because overlay 2 is able to fully
take advantage of the lower delay of the shared path, whereas it
only makes sense for overlay 1 to send part of its traffic over the
shared link due to its superior private path. In fact, one can find
delay functions such that the situation isarbitrarily worse.

To illustrate, note that the delay function for the shared linkC −
D is dC,D(y) = byα. One can ask for what values ofa andc,
which are the parameters of the delay functions for the private link
of overlay 1 and 2, so that the Nash equilibrium solution remains
at {y(1,1)

1 = 0.5, y
(2,1)
1 = 1}? The values fora andc do exist, in

particular, whenb = 1 anda < c, we have:
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In Section 3.1, we showed whena < c andα = 1, delay1 =
delay2. Whenα > 1:

delay1 =

�
3

2

�α

+
α
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�
3

2

�α−1

−
1

4
; delay2 =

�
3

2

�α

,

and observe now thatdelay1 becomesgreater thandelay2. This
implies that the overlay 2 is able to achievebetterperformance de-
spite starting with aworseprivate link in an otherwise symmetric
situation with overlay 1. Furthermore, as we increaseα, this un-
fairness can even beunbounded, that is:

delay1

delay2

����
α→∞

= ∞

as depicted in Figure 2(a). This type of anomaly also exists in other
operating range, for example, whena = 2, c = 4, α = 1 and we
vary the values ofb, one can observe that overlay 1 will have a
worse performance compared to overlay 2 (though the unfairness
is bounded in this case). In summary, we illustrate that there exist
delay functions for the links such that although overlay 1 seemingly
has better paths than overlay 2, it is destined to lose the routing
game to overlay 2 by an arbitrary margin: a rather “paradoxical”
situation.
4. RELATED WORK AND CONCLUSION

Efficiency loss of selfish routing in a non-cooperative environ-
ment has been studied by Roughgarden in [5]. A probabilistic rout-
ing protocol [8] was proposed to implement selfish routing as well
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Figure 2: delay1/delay2 ratio v.s. (a) log(α): unfairness be-
comes unbounded; (b) parameterb with a = 2, c = 4 and
α = 1: bounded unfairness.

as optimal routing in an overlay network. A seminal work on the in-
teraction of an overlay and the underlying ISP was presented in [3],
in which authors use a two-player non-cooperative game model to
study the interaction between one overlay and the underlying ISP.
The contribution of our work is that we use a non-cooperative game
framework to study the interaction betweenmultipleoverlays, in a
static underlay environment. All the players (overlays) are in an
equal stand of the game, while in [3] the overlay and the under-
lay may have different levels of knowledge about the underlying
network. We show that under this fully competitive environment,
unregulated behaviors will converge to an inefficient equilibrium,
and finally results in a series of undesirable properties. Interaction
of overlay and underlay was also discussed in [4].

In this paper, we explore the interactions between multiple co-
existing overlays. We consider the situation wherein overlays can
determine their routing so as to optimize their individual perfor-
mance measures. We model the interaction of these co-existing
overlays as a non-cooperative strategic routing game and analyze
the system stability. We further demonstrate several inherent prop-
erties of this form of individual routing optimization, namely the
performance measure is non Pareto-optimal, and the fairness para-
dox in terms of performance and allocation of common resources.
We believe our result will shed light into the cause of these prob-
lems and bring awareness and stimulate further research in solving
these problems.
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