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Abstract—Content-Centric Network (CCN) provides a clean-
slate design for the Internet, where content becomes the primitive
of communications. In CCN, routers are equipped with content
stores, which act as caches for frequently requested content. This
design enables the Internet to provide content distribution ser-
vices without any application-layer support. On the other hand,
as caches are integrated into routers, the overall performance of
CCN will be influenced by the caching efficiency.

This paper studies the performance issues of caches in CCN,
with the aim to gain some understanding on how caches should
be designed to maintain a high performance in a cost-efficient
way. Specifically, we use a two-dimensional discrete-time Markov
chain to model the two-layer cache hierarchy formed by CCN
routers, and develop an efficient algorithm to calculate the hit
ratios of these caches. Simulations validate the accuracy of our
modeling method, and convey some understanding on cache
design in CCN.

I. Introduction

Content-Centric Network [1] (CCN) is a new Internet archi-
tecture in which content is treated as the primitive of commu-
nication. In CCN, each piece of content contains a name that
uniquely identifies it, and is transmitted in a receiver-driven
way. When the requested content is returned from the source,
it is remembered/cached by intermediate routers (termed as
content routers). As a result, these content routers can serve
later requests for the same content, without resorting to the
source again.

Owing to its built-in caching capability, CCN enables the
Internet to support content distribution services directly in
its network layer, without any application-layer solutions,
e.g., CDN. This feature makes CCN a good alternative for
Internet Service Providers (ISPs) to offload their IP backbone
traffics, which are currently overwhelmed by Over-The-Top
(OTT) content like Internet videos. Fig. 1 shows a possible
deployment of CCN in an ISP’s network, where content
routers are organized in layers, with the lowest layer accepting
requests from customers and the topmost layer connecting to
the IP backbone.

The deployment of CCN in ISPs’ networks, however, is
not that straightforward. As caches will be integrated into
routers, the network performance will be influenced by the
caching efficiency. For instance, if the storage volumes of
these caches are too small, the benefits of employing CCN
can even be offset. On the other hand, caches stand as a major
infrastructure investment for ISPs, due to their high demand
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Fig. 1. The hierarchical structure of content routers in CCN.

on both data access speed and storage volume. Thus, how
these caches should be designed cost-efficiently, while still
maintaining a high performance is a problem to be examined.

The caching problem has been extensively studied in the
area of web caching. However, caches in CCNs have some
differences from web caches in the following three aspects.
First, web caches are application-specific (for web browsing),
while CCN caches are for general content distribution services.
Second, web caches use single-path routing, while CCN allows
content to be retrieved and distributed along multiple paths.
Third, web caching is based on objects/files, while caching in
CCN is based on chunks/packets.

There have been some efforts on studying the caching
performance in CCN. However, most of them are based on
trace-driven simulations or experiments. Existing modeling
methods for CCN caches are either complicated to be solved
or fall short in giving valuable guidance on how to design the
caches.

In this paper, we treat the layers of content routers in CCN
as a cache hierarchy (Fig.1), and try to develop models which
can guide the design of caches at different layers. Specifically,
we use discrete-time Markov chains to capture the dynamics
of content occupancy in hierarchical caches, which can be
used to efficiently calculate the cache hit ratios. In addition,
the variables used in our model convey some meaningful
information which can help us better understand the caching
mechanism of CCN. The main contributions of this paper are
as follows:
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1) We propose probability models for two-layer cache hi-
erarchy. These models are based on two-dimensional Markov
chains, each of which contains a relatively large number of
states. To obtain analytical solutions, we introduce a key
variable R to decompose the two-dimensional Markov chain
into a series of one-dimensional Markov chains, which can be
iteratively solved.

2) Based on our models, we develop an efficient algorithm
to calculate the hit ratio for each cache. Simulations show that
the results are accurate with error less than 5%.

3) By analyzing the numerical results obtained from our
models, we gain some understanding on (a) the impact of
cache size on hit ratio, (b) “filter effect” imposed by lower-
layer caches, (c) size requirements on different layers of
caches, etc.

The rest of this paper is organized as follows. In Section II,
we briefly introduce the background of CCN and make some
assumptions. Section III presents two models: the leaf node
model and the layer-1 node model. Section IV validates our
models in terms of simulations, and reports some numerical
results obtained from our models. Section V surveys some
related work and Section VI concludes.

II. Background and Assumptions

A. Background

In CCN, there are two types of packets: Interest and Data. A
user who is interested in a data packet broadcasts an interest
packet over its connections. Any router (termed as content
router) which receives the interest packet checks its content
store, which is a cache of data packets. If the requested data
packet is already cached in the content store, the data packet
would be returned directly by that router. On the other hand,
if the data packet is not found, the content router will look
up in its Forwarding Information Base (FIB), and forward the
interest packet to a list of outgoing interfaces. The router also
keeps track of the pending request by inserting a record to
its Pending Interest Table (PIT). When the corresponding data
packet is returned, the router checks its PIT to decide which
interfaces to forward this data packet. After forwarding, the
router also keeps a replica of the data packet in its content
store. Then, if interest packets for the same content arrive
again, the router can directly return the content.

As seen above, data requests are not constrained to flow
along a single path as in IP networks, but can be routed in a
multi-path fashion. In addition, interest packets for the same
content will be aggregated as a single PIT entry containing
a list of interfaces. When the content is returned, it will be
sent over all these interfaces. This enables CCN to inherently
support multicast transmission.

In CCN, all contents are first splitted into packet-sized
chunks (4KB as specified in current CCNx implementa-
tion [2]). To request a file, users send out a sequence of interest
packets, one for each chunk. Note that these interest packets
can be pipelined to reduce the response time.

TABLE I
Summary of key notations.

IA Indictor function which takes 1 if predicate A is true, and 0 otherwise
C Set of all chunks in the system
K Number of popularity ranks
Ci

k Set of rank-k chunks requested by end hosts connected to vi

αi
k(βi

k) Request ratio of rank-k chunks (a specific chunk) at node vi

gi
k Size of set Ci

k
Si Cache size of node vi

p i
k( j) Probability that any rank-k chunk is stored at the jth slot of vi

b i
k( j) Expected number of rank-k chunks stored in the first j slots of vi

hi(h i
k) Cache hit ratio of node vi (for a specific rank k)

σm,n Probability that node vm forwards missed chunk requests to node vn

δi Probability that when a request comes to the system, it arrives at vi

Rm,n
k ( j)

Probability that a chunk c of rank k is not present in the cache of vn

condition that it is present in the jth slot of vm

Dm,n
k ( j)

Expected number of rank-k chunks in the first j positions
of vm but not existing in node vn

B. Assumptions

In our model, the system consists of three components:
content servers, content routers and end hosts. Content routers
are equipped with content stores (caches), and are organized
in layers, as shown in Fig.1. We term routers of lowest layer
as leaf routers or leaf nodes1. Leaf routers can accept data
requests from end hosts that are directly connected to them.
If data requests cannot be satisfied locally, they would be
forwarded to the upper-layer routers, which we term as layer-1
routers.
Content Popularity. Let C be the collection of all chunks in
the system, and these chunks are classified into K ranks of
popularity. Chunks in lower ranks will be requested by end
hosts with higher probabilities. For each leaf node vi, let C i

k
be the set of rank-k chunks that can be requested by its end
hosts, and define the request ratio α i

k as the probability that a
requested chunk belongs to rank k.
Request Arrival. We assume that the arrival of chunk requests
at any leaf node conforms to the Independent Reference Model
(IRM), which is widely adopted to model cache accesses [3],
[4]. Specifically, let random variable Xj be the rank of the
jth requested chunk at a leaf router vi, then X1, X2, . . . are
independent and identically distributed (i.i.d.). According to
the request ratio defined above, we have P(Xj = k) = α i

k.
Multi-path Routing. We assume that the routing policy for
chunk requests is multi-path. Formally, let N be the number
of nodes in the system, then the routing policy can be
characterized using a matrix M = (σi, j)N×N , where σi, j ∈ [0, 1]
is the probability that node vi forwards missed requests to node
v j. Since a request can be forwarded to multiple nodes,

∑
j σi, j

can be larger than 1.
Cache Replacement. We assume a simple LRU strategy
for cache replacement. Consider the cache of a router as a
sequence of slots. If a requested chunk is not in the cache,
it would be brought from other routers and placed at the first
slot of the cache. All other chunks in the cache are pushed
down one position, and the chunk in the last slot is discarded.
On the other hand, if the requested chunk is already in the

1In our model, we would use routers and nodes interchangeably



cache, it would be brought to the top slot, and all chunks that
are previously ahead of it will be pushed down one position.

III. Model Analysis

This section presents models to evaluate the performance
of hierarchical caches in CCN. We characterize the caching
performance with overall hit ratio hi, defined as the probability
that a requested chunk is stored in the cache of node vi. In
addition, we are also interested in evaluating rank-k hit ratio
hi

k, defined as the probability that a requested chunk of rank-k
is stored in the cache of node vi. Before moving on to the
models, we introduce some more notations that will be used
later.

Let S i be the number of slots in node vi’s cache. Then, for
any j ∈ [1, Si], define p i

k( j) as the probability that any rank-
k chunk is stored at the jth slot of vi. It easily follows that
b i

k( j) =
∑ j

t=1 p i
k(t) is the expected number of rank-k chunks

stored in the first j slots of vi. For simplicity of notation, let
g i

k = |C i
k |, and define β i

k = α
i
k/g

i
k as the request arrival ratio of

a specific rank-k chunk at node vi.

A. Leaf Node Model

Let us consider the caching model for a single leaf node v1,
and develop an expression of hit ratios h1 and h1

k .
By the definitions of p i

k( j) and b i
k( j), the rank-k hit ratio is:

h1
k =

∑S1
j=1 p1

k( j)
∑M

j=1 p1
k( j)
=

b1
k(S1)

g1
k

, (1)

and the overall cache hit ratio is:

h1 =

∑K
k=1 h1

k · α1
k∑K

k=1 α
1
k

(2)

To determine b1
k( j), we construct a Discrete-Time Markov

Chain (DTMC), which captures the dynamics for a specific
chunk c ∈ C1

k in the cache of v1, as shown in Fig. 2. In this
Markov chain, each state represents the slot that c occupies:
state j means that c is in the jth slot; state M = S1 + 1
means that c is outside of the cache. A transition is triggered
when a request arrives to node v1. Let Pi→ j be the transition
probability from state i to state j. In the following, we will
determine all these transition probabilities.

1 2 i S1 M2 3p
1 11S Sp

1S Mp

2 2p i ip1 1p
1 1S Sp M Mp

1ip
1 1Sp

1Mp

1i ip 1i ip1 2p

2 1p

Fig. 2. The Markov chain of the leaf node Model.

Pi→i, i ∈ [2, S1] corresponds to the probability that any
chunk in the first i−1 slots is requested:

Pi→i =

K∑

t=1

β1
t · b1

t (i − 1),

and PM→M is the probability that c is not requested:

PM→M = 1 − β1
k

Pi−1→i, i ∈ [2,M] corresponds to the probability that neither
c nor any other chunk in the first i−2 slot is requested:

Pi−1→i = 1 −
K∑

t=1

β1
t ·
[
b1

t (i − 2) + It=k

]
,

where IA is a indictor function which takes 1 if predicate A is
true, and 0 otherwise.

Pi→1, i ∈ [1,M] is the probability that c is requested:

Pi→1 = β
1
k

Let π⃗ = [π(1), π(2), . . . , π(M)] be the steady state distribu-
tion, then the balance equations are as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

π(1) = β1
k ·
∑M

i=1 π(i)

π( i ) = Pi−1→i · π(i − 1) + Pi→i · π(i), i ∈ [2,M]
∑M

i=1π( i) = 1

According to our definition, p1
k( j) = g1

kπ( j). Combining the
above results, we have the following recursive equations:

p1
k( j) = p1

k( j−1)·
1 −

K∑
t=1
β1

t ·
[
b1

t ( j − 2) + It=k

]

1 −
K∑

t=1
β1

t · b1
t ( j − 1)

, i ∈ [2,M], (3)

with the initial value p1
k(1) = α1

k .
Using Eq(3), we can solve p1

k( j) for j ∈ [1, S1], and obtain
b1

k(S1). Then, h1
k and h1 can be calculated using Eq(1) and

Eq(2), respectively.

B. Layer-1 Node Model

Let us consider the caching model for a single layer-1 node
v0, which is connected with one leaf node v1. We aim to
evaluate the values of h0 and h0

k .
Different from the previous leaf node model, a cache hit of

chunk c at node v0 requires not only that c is in the cache of v0,
but also that c is not in the cache of v1. In other words, the hit
ratio of v0 not only depends on its own state, but also depends
on v1’s state. To this end, we introduce another variable to
express hit ratios of node v0.

Let Ci(c) = j be the event that the chunk c is present in the
jth slot of node vi; Ci(c) = 0 when c is not present in node
vi. Define Rm,n

k ( j) as the probability that a chunk c of rank k
is not present in the cache of vn condition that it is present in
the jth cache slot of vm.

Rm,n
k ( j) = Pr

{
Cn(c) = 0 | Cm(c) = j

}
, j ∈ [1, Sm]

The variable R defined above characterizes the relation
between two nodes. Specifically, Rm,n

k ( j) reflects how useful
a rank-k chunk stored in the jth slot of node vm is for node vn.
Using R, we can express the rank-k hit ratio of node v0 as:

h0
k =

∑S0
j=1 p0

k( j) · R0,1
k ( j)

g0
k

(4)
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Fig. 3. The two-dimensional Markov chain of the layer-1 node model. On
the right side, we list two states (i, j) and (M, j) to illustrate different state
transitions.

The overall hit ratio of v0 can be derived in the similar way
as the leaf node model using Eq(2), with α0

k expressed as:

α0
k =

α1
k(1 − h1

k)
∑K

t=1 α
1
t (1 − h1

t )

Then, we define Dm,n
k ( j) as the expected number of rank-k

chunks present at the first jth slots of vm, but not present in
vn’s cache. Dm,n

k ( j) would be expressed as:

Dm,n
k ( j) =

j∑

i=1

pm
k (i) · Rm,n

k (i) (5)

By modeling the cache of v0 using a one-dimensional
Markov chain, we can derive the following recursive equation
in a similar way as the leaf node model:

p0
k( j) = p0

k( j−1) ·
1−

K∑
t=1
β1

k ·
[
b1

t (S1)+D0,1
t ( j−2)+R0,1

k ( j−1)It=k

]

1 −
K∑

t=1
β1

t ·
[
b1

t (S1) + D0,1
t ( j−1)

] ,

where p0
k(1) = α0

k .
To determine R0,1

k ( j), we construct a two-dimensional
discrete-time Markov chain, as shown in Fig. 3. In
this Markov chain, state (i, j) means that c is present
in the ith slot of node v1 and jth slot of node v0,
where i ∈ {1, 2, ..., S1,M}, j ∈ {1, 2, ..., S0,M}. Let π⃗ =
[π(1, 1), π(1, 2), ..., π(1,M), π(2, 1), ..., π(M,M)] be the steady
state probabilities. Then, R0,1

k ( j) can be expressed as:

R0,1
k ( j) =

π(M, j)
∑S1

i=1 π(i, j) + π(M, j)
(6)

The remaining problem is how to solve this Markov chain
(please refer to Appendix A for the transition probabilities
and balance equations). Since the number of states in this
Markov chain is (S 0+1)× (S 1+1), solving it numerically can
be difficult when the cache sizes are very large or there are
multiple leaf nodes. On the other hand, analytical solutions are

more desirable since they allow more efficient computation,
and can be extended.

Solving this Markov chain analytically is also tricky since
the transition probabilities contain variables R0,1

k ( j), which
are functions of π⃗. This causes a loop which prevents a
straightforward solution. To address this problem, we first
transform the balance equations (see Appendix A), and define
π⃗ j = [π(1, j), π(2, j), . . . , π(M, j)] which corresponds to the
steady state probabilities of the jth vertical chain. Then, we
have two observations: i) π⃗ j, j > 1 can be solved once π⃗ j−1 is
determined; ii) The value of R0,1

k ( j) only depends on the ratio
of elements in π⃗ j.

Based on the first observation, we can solve this two-
dimensional Markov chain by iteratively solving π⃗1, π⃗2, . . . , π⃗M

in sequence. The second observation allows us to bootstrap
this iteration by setting the right side of the first transformed
balanced equation (see Appendix A) to 1. In the following,
we will give details of this solution.

1 2 i S1 M1 2p 2 3p
2 2p

O

1

i ip
1 Op

2 Op
i Op

1 1p

2 1p
1ip

1 1Sp

1i ip M Op
1S Op

1i ip

M Mp

1 11S Sp

1 1S Sp

1S Mp

Fig. 4. MC j, the jth vertical Markov chain.

First, we vertically divide this two-dimensional Markov
chain into S0 + 1 one-dimensional Markov chains
{MC1,MC2, ...,MCS0 ,MCM}. Fig. 4 shows the transition
graph for MC j, where state i means that c is in the ith

slot of v1; state M means that c is not in v1. We add an
absorbing state O to aggregate all the other states that c is not
present in the jth slot of v0. Once the system reaches state
O, the probability of moving out of O is 0. The transition
probabilities of this Markov chain can be derived easily.

Then, we show how to iteratively solve Markov chains from
MC1 to MCS0 . As seen in Fig. 4, the Markov chain has no
steady state, since there is an absorbing state. Here, we adopt
the approach given in [5] as follows.

Let ϕ i
j denote the average number of times that state i is

visited before the chain reaches the absorbing state O. Then,
we have:

ϕ i
j = q i

j +
∑

u

ϕu
j Pui, i, u ∈ {1, ..., S1,M}, (7)

where q i
j is the probability that MC j starts at state i, and

P is the transition probability matrix of MC j. Let q⃗ j =
{q1

j , q
2
j , ..., q

M
j } represent the initial state distribution of MC j.

In our case, the initial-state distribution of MC1 is q⃗1 =
{1, 0, . . . , 0}; q⃗ j( j > 1) can be calculated using the steady
state probability of MC j−1 and the transition probabilities from



MC j−1 to MC j:

q i
j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, i = 1
ϕ i−1

j−1 · P1(i − 1, j − 1), i ∈ [2, S1]

ϕ S1
j−1 · P1(S1, j − 1) + ϕM

j−1 · P4(M, j − 1), i = M
(8)

Thus, we can determine ϕ1
j , . . . ,ϕ

S1
j ,ϕ

M
j , and solve R0,1

k ( j)
using:

R0,1
k ( j) =

ϕM
j

∑S1
i=1 ϕ

i
j + ϕ

M
j

(9)

With R0,1
k ( j), we can calculate p0

k( j). Repeat this process
until we have all the values of R0,1

k ( j) and p0
k( j). Finally, we

can obtain h0
k and h0 according to Eq(4) and Eq(2).

In the above model, we consider the case that the layer-
1 node v0 is only connected with one leaf node v1. It is
possible to extend this model to cases of multiple leaf node
v1, v2, . . . , vn. For details, please refer to the extended layer-1
node model in our technical report[6].

IV. Numerical Results

In this section, we present numerical results obtained based
on our models. We aim to show the accuracy of our model
with simulations, and provide some understanding to guide the
design of hierarchical caches in CCN. For simplicity, we will
term the layer-1 node as root node.

A. Experiment Setup

We use the OMNeT++ [7], a discrete-event simulation
package, to construct the content-centric networking environ-
ment [1]. Rather than implementing a full-fledged one, we
only include the basic functions of CCN: multi-path routing,
chunk-based caching and receiver-driven transport protocol.
The forwarding table of each node is computed using the
CCNdc method introduced in the CCNx project [2].

We developed a simplified version of ProWGen [8] to
generate a large pool of data chunks2. Then, we partition these
trunks into ten popularity ranks from 1 to 10. For each leaf
router, we randomly sample 500 chunks from the chunk pool.

B. Model Verification

In order to verify the accuracy of our models, we calculate
hit ratios for different cache sizes, and compare them to the
simulation results. To verify our three models, we consider
three different kinds of nodes: (1) single leaf node, (2) root
node connected with one leaf node, and (3) root node con-
nected with multiple leaf nodes. For each case, we repeat the
simulations for ten times to cover the randomness of chunk
requests.

Fig. 5(a) reports the hit ratios of a leaf node with cache
size ranging from 10 to 150. The error bars reflects the result
variance of the 10 simulation runs. Note that our modeling

2It is shown that ProWGen can generate workloads that are similar to
empirical traces [9]
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Fig. 5. The relation between hit ratio and cache size for (a) single leaf node,
and (b) root node connected with one leaf node.

results are quite close to the simulative results, with difference
less than 2.5%.

Fig. 5(b) shows the relationship between hit ratio and cache
size for a root node connected with one leaf node. We observe
that: 1) the hit ratio is close to 0 when the cache size is below
21. The reason is that the chunks stored at the first j ≤ 21 slots
are also stored in the leaf node with a high probability. As a
result, R0

k( j) is negligible for these small j, and the hit ratio
is thus very low according to Eq(4); 2) after the cache size
of the root node becomes larger than 21, the hit ratio climbs
quickly, but will not increase much after the size exceeds 130.
This is because these slots at the rear of the cache are mostly
occupied by cold contents which are seldom requested (see the
next experiment for details). These content contributes little to
the overall hit ratio according to Eq(2).

By the above two observations, our model can be employed
to find the two threshold values s1 and s2 (here s1 = 21,
s2 = 130). With the cache size of root node set between s1

and s2, we can expect a quick growth of overall hit ratio.
It is also seen that the shape of curves in Fig. 5(a) and

(b) are remarkably different, owing to the fact their request
arrival patterns are different. For the leaf node, requests arrive
at it according to the IRM assumption (see Section II); while
the root node is fed with non-IRM requests. This confirms
the “filter effect” previously studied in [10]: lower-level nodes
selectively filter out chunk requests, and the resultant requests
are no longer independent of each other.

We continue to consider the scenarios of multiple leaf nodes.
Fig. 6 plots the hit ratio of the root node when the leaf
node number n = 2, 3, 4, 5. As we apply approximation in the
calculation[6], the accuracy drops a little, but the error is still
bounded by 5%. Note that the hit ratios in these cases are all
above 0 even when the cache size is very small. This is due to
the independence of chunk requests from leaf nodes, i.e., the
chunk recently requested by node v1 can still be requested by
v2 within a short period. Another interesting observation is that
as the number of leaf nodes increases, the shapes of curves
become more and more similar to that of the leaf node in
Fig. 5(a). This may imply that the request arrival at root node
tends to follow IRM again, i.e., the “filter effect” becomes less
noticeable with the increase of leaf node number.
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Fig. 6. The relation between hit ratio and cache size of a root node, when the number of leaf nodes is (a) n = 2, (b) n = 3, (c) n = 4, and (d) n = 5.

C. How Large Cache Do We Need for the Root Node?

In the previous experiments, we have mentioned the “filter
effect” imposed by leaf nodes, and gained the intuition that
the root node should have a relatively large cache to maintain
a relatively high hit ratio. In this experiment, we justify this
claim by studying the minimum cache size for the root node
to maintain a hit ratio above 0.5. We vary the number of
leaf nodes connected to the root node from 1 to 6, and the
results are shown in Fig. 7. Note that each point is averaged
over ten runs by varying the input (randomly generated chunk
requests). We have the following two observations:

1) The root node requires a much larger cache size than the
leaf nodes. As shown in Fig. 7, The ratio is 3× when there
is only one leaf node, and 2× when there are six leaf nodes.
This may indicate that using the same replacement policy in
hierarchical caches without any cooperations is inefficient. If
the root node employs a different replacement policy, we may
be able to reduce the required cache size for the root node.

2) The requirement for cache size is lower when there are
more leaf nodes. This is because different nodes have different
popularity assignment (α i

k) in our model, and the requests
for chunks of different popularity tend to be distributed more
uniformly with the increase of leaf nodes.
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Fig. 7. The cache size requirements for root node when connected with
different number of leaf nodes.

V. RelatedWork

Content caching has been extensively studied in the research
area of web cache. Similar as caches in CCN, web caches
can store the recently requested file for a short time so that
subsequent requests can be satisfied locally. Dan et al. [11]
study the LRU and FIFO cache replacement strategies for
a single cache node which is fed with IRM file requests.
As the computation complexity of directly calculating cache
hit probability is very high, they develop an approximated
approach to estimate the hit probability. Che et al. [3] propose
another approximation approach to evaluate the performance
of two-level caches by assuming LRU replacement policy
and IRM request arrival. They approximate the evaluation
by assuming a constant value for inter-arrival times between
two consecutive requests for a same document without cache
misses. This assumption is claimed to be good when they
are a large number of files. Based on [11], Rosensweig et
al. [4] analyze a more general cache network where there
is no fixed topology. The problem of multi-cache problem is
decomposed into a set of single-cache problems, which can
be solved independently. However, they assume that the cache
miss stream to be IRM, which would affect the accuracy of
their model.

There are some efforts on analyzing the caching perfor-
mance in Content-Centric Networks, but they are mostly based
on simulations or experiments [12], [13], [14], [15]. However,
for a fundamental understanding of the performance of CCN
caches, some analytical models are still needed. Towards this
goal, Psaras et al. [16] try to use Continuous-Time Markov
Chain (CTMC) to capture the caching dynamics. They first
introduce a simple model for one node, and then extend the
model to multiple nodes. However, as the time is continuous,
the model is not easy to solve, and not much results are given.
Carofiglio et al. [17] take another approach by assuming the
requests arrivals conform to Markov Modulated Rate Process
(MMRP). But to make the chunks misses to be independent
(similar to IRM), they assume the file size to be “memoryless”,
i.e., geometrically distributed.

To sum up, though web cache has been extensively studied,
they can not be directly applied to CCN hierarchical caching
systems due to features including chunk-based caching and
multi-path request routing. In addition, existing continuous



models are complicated and are short in giving valuable
guidance for cache design.

VI. Conclusion

This paper models and evaluates the performance of hi-
erarchical caches formed by CCN content routers. The main
characteristic that we study is cache hit ratio, including overall
hit ratio and rank-k hit ratio. Our models can be used to
efficiently calculate the hit ratio for up to two layers of caches
in CCN. The accuracy of the proposed models is validated
through extensive experiments. In addition, our models reveal
the relationship between cache size and hit ratio for different
layers of caches. This can help ISPs to strategically choose
the right size for the CCN caches. Our findings also gives
some valuable understanding on the “filter effect” imposed by
lower-layer caches in CCN.
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Appendix
Transition Probabilities and Balance Equations of the

Markov Chain in Section III-B

Transition Probabilities
i) For 1 ≤ i ≤ S1, 1 ≤ j ≤ S0:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0(i, j) =
∑K

t=1 β
1
t ·
[
b1

t (i−1) + Ii=1
]

P1(i, j) = 1−∑K
t=1 β

1
t ·
[
D0,1

t ( j−1) + b1
t (S1)−p1

t (i)+It=k
]

P3(i, j) =
∑K

t=1 β
1
t ·
[
D0,1

t ( j−1) + b1
t (S1)−b1

t (i)
]

P6(i, j) = β1
t

P2(i, j) = P4(i, j) = P5(i, j) = 0

ii) For i = M, 1 ≤ j ≤ S0:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P0(M, j) =
∑K

t=1 β
1
t ·
[
b1

t (S1) + D0,1
t ( j−1)

]

P4(M, j) = 1 −∑K
k=1 β

1
t ·
[
b1

t (S1) + D0,1
t ( j−1) + It=k

]

iii) For j = M:

P3(i,M) = 1 −
K∑

t=1

β1
t ·
[
b1

t (i − 1) + It=k
]

iv) For i = M, j = M:

P0(M,M) = 1 − β1
k

Balance Equations
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π(1, 1) =
S1∑

u=2
P6(u,1)π(u,1)+

M∑
u=1

P6(M,u)π(M,u)+P0(1,1)π(1,1)

π(i, 1) = P3(i−1, 1)π(i−1, 1) + P0(i, 1)π(i, 1) i ∈ [2, S1]

π(M,1)= P0(M, 1)π(M, 1)

π(1, j) =
M∑

u=2
P6(u, j)π(u, j) + P0(1, j)π(1, j) j ∈ [2,M]

π(i, j) = P3(i−1, j)π(i−1, j) + P0(i, j)π(i, j)

+P1(i−1, j−1)π(i−1, j−1) i, j ∈ [2, S0]

π(M, j)= P1(S1, j−1)π(S1, j−1) + P4(M, j−1)π(M, j−1)

+P3(S1, j)π(S1, j) + P0(M, j)π(M, j) j ∈ [2,M]
M∑

i=1

M∑
j=1
π( i, j) = 1

Transformed Balance Equations with π(i, j) changed to π i
j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − P0(1, 1))π1
1 −

S1∑
u=2

P6(u, 1)πu
1 =

M∑
u=1

P6(M, u)πM
u

(1 − P0(i, 1))π i
1 − P3(i − 1, 1)πi−1

1 = 0 i ∈ [2, S1]

(1 − P0(M, 1))πM
1 = 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − P0(1, j))π1
j −

M∑
u=2

P6(u, j)πu
j = 0 j ∈ [2,M]

(1 − P0(i, j))π i
j − P3(i − 1, j)πi−1

j i, j ∈ [2, S0]

= P1(i − 1, j − 1)πi−1
j−1

(1 − P0(M, j))πM
j − P3(S1, j)πS1

j j ∈ [2,M]

= P1(S1, j − 1)πS1
j−1 + P4(M, j − 1)πM

j−1


