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Abstract— Truth discovery is an effective paradigm which
could reveal the truth from crowdsouced data with conflicts,
enabling data-driven decision-making systems to make quick
and smart decisions. The increasing privacy concern promotes
users to perturb or encrypt their private data before outsourcing,
which poses significant challenges for truth discovery. Although
several privacy-preserving truth discovery mechanisms have been
proposed, none of them take personal privacy expectation into
consideration. In this work, we propose a novel personalized
privacy-preserving truth discovery (PPPTD) framework over
crowdsourced data streams to achieve timely and accurate
truth discovery while guaranteeing the protection of individual
privacy. The key challenges of PPPTD lie in improving the
accuracy of truth estimation from the perturbed streaming data
with personalized protection level. To address these challenges,
we first develop a personalized budget initialization mechanism to
quantify each user’s privacy protection requirement, and allocate
personalized privacy budgets to users according to their privacy
requirements. Then we propose a deviation-aware weighted
aggregation method to improve the accuracy of truth discovery
from streaming data with varying degrees of perturbation.
In order to achieve privacy-utility tradeoff, we further propose
an influence-aware adaptive budget adjustment mechanism that
adaptively re-allocates privacy budgets to users based on the
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evolution of their influence in the weighted aggregation. We prove
that PPPTD can achieve ε-differential privacy over the whole
data generated by users and satisfy individual personalized
privacy requirements. Extensive experiments on two real-world
datasets demonstrate the effectiveness of PPPTD.

Index Terms— Crowdsourcing, truth discovery, privacy
preserving, personalization, streaming data.

I. INTRODUCTION

THE ubiquitous mobile devices and the widely used net-
working technologies have led to the flourish develop-

ment of crowdsourcing, which can perceive and identify the
physical world through the sensing capability of the devices
carried by users. The sensory data collected from users can
be analyzed to benefit people’s daily life in many applica-
tions [1]–[4]. A notable issue of crowdsourcing is that the
sensory data provided by users are usually noisy, unreliable
or inaccurate [5]. Thus, it is challenging to eliminate conflicts
among multi-source data and obtain the truthful information.

Truth discovery attempts to solve the problem with the
ability of automatically capturing user quality and accurately
inferring reliable information from conflicting data through
weighted aggregation. The general principle of truth discov-
ery is that a user is judged to be with high quality if he
provides reliable information frequently, and the information
is more likely to be true if supported by many users with
high quality. Based on this principle, truth discovery can
improve the aggregation accuracy [6] from conflicting data,
enabling data-driven decision making systems to make smart
decisions. Therefore, it has been used in many applications
like air quality monitoring [7], social sensing [8], and network
quality measurement [9]. Specifically, it is crucial to achieve
timely truth discovery for the real-time decision-making sys-
tems since only the fresh and truthful data can be helpful.
Many truth discovery algorithms [10]–[15] have been proposed
ensure the efficiency and accuracy of real-time truth discovery
with streaming data. However, due to the threat of individual
information disclosure, people become more concerned about
their privacy and there is a strong preference that personal data
should be protected (e.g., GDPR was launched to regulate the
protection of personal data and privacy).

Without a doubt, users have their privacy concerns in truth
discovery since the data submitted by users may contain
some sensitive information [16]–[20], which brings forward
new demands for the design of truth discovery mechanism
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with privacy protection guarantee. Some works have achieved
truth discovery in the setting of privacy-aware crowdsourc-
ing, which proposed to encrypt or perturb data of each
user independently and then aggregate truthful information
through these encrypted or perturbed data [21]–[27]. For
example, Miao et al. [21] adopted a cloud-based privacy-
preserving truth discovery scheme to protect users’ sensory
data by using threshold Paillier cryptosystem, and performed
weighted aggregation on users’ encrypted data to obtain truths.
Sun et al. [26] proposed a privacy-preserving truth inference
method under local differential privacy (LDP), where each
user randomizes their answers independently before sending
them to the task requester for truth aggregation. Nevertheless,
to the best of our knowledge, none of existing works on truth
discovery take the different requirements of privacy protection
expected by users into account. The fact is that these “one
size fits all” approaches are not that applicable to real-world
scenarios. For instance, those perturbation-based methods add
the same amount of noise to all users’ data, which may lead
to the situation that some users are overprotected while others
are insufficiently protected. Hence, it is necessary to design
a new truth discovery mechanism that can satisfy different
privacy expectations of users.

The goal of this paper is to achieve timely and accurate truth
aggregation from crowdsouced data streams, and at the same
time provide personalized privacy guarantees for individual
users. To this end, we have to address two main challenges.
The first challenge is: how to provide personalized privacy
protection for each user? Since it is difficult to measure users’
privacy requirements with specific values, it is challenging to
quantify users’ requirements to decide to what extent they
should perturb their data. Another challenge is: how to accu-
rately find the truth from the perturbed data with different per-
sonalized protection levels? Users’ weights and submitted data
are two decisive factors of truth weighted aggregation. After
perturbation, the user’s uploaded data changes, which then
leads to the change of the user weight. In the case where both
the user data and weights deviate from their original value,
the truth estimated by weighted aggregation process are most
likely to be inaccurate. Moreover, personalized perturbation
allows each user to have different deviation levels. Thus, it is
a big challenge to rectify the varying deviations on user data
and weights caused by personalized perturbation to achieve
accurate truth discovery for crowdsourced data streams.

To address the above challenges, we propose a personal-
ized privacy-preserving truth discovery framework over data
streams (PPPTD) to achieve timely and accurate truth discov-
ery while guaranteeing the protection of individual differential
privacy. In this framework, users perturb their sensory data
with their own personalized privacy budgets according to their
privacy protection requirements at each timestamp, and then
the perturbed data are collected and our system will infer
truthful information through weighted aggregation in time.
Specifically, we first propose a personalized budget initializa-
tion mechanism to quantify each user’s privacy requirement
and allocate a specific privacy budget that meets the protec-
tion requirement to the user. Then we propose a deviation-
aware weighted aggregation mechanism to accurately infer

truths from data with varying degrees of perturbation in time.
Moreover, we present an influence-aware adaptive budget
adjustment mechanism to reallocate privacy budgets to users
based on the evolution of their influence in the weighted
aggregation process, which allows users with high quality to
exert positive influence in the truth computation process so that
achieving a trade-off between user privacy and truth accuracy.

Our main contributions are summarized as follows:
• We propose a personalized privacy-preserving truth dis-

covery (PPPTD) framework over data streams. To the best
of our knowledge, this is the first work that takes the
individual privacy protection requirements into account
in the truth discovery process.

• We allocate personalized privacy budgets to users, and
develop an influence-aware adaptive budget adjustment
mechanism and a deviation-aware weighted aggregation
mechanism to achieve accurate inference of truths from
the perturbed data submitted by users.

• We prove that PPPTD can provide personalized privacy
protection for different users. The extensive experiments
on two real-world datasets demonstrate that PPPTD
can achieve high accuracy while satisfying ε-differential
privacy.

The rest of this paper is organized as follows. Section II
describes existing truth discovery methods, and Section III
presents the system model and the problem formulation.
Section IV briefly introduces the preliminary knowledge
of truth discovery and differential privacy. Section V and
Section VI present the proposed PPPTD and its privacy protec-
tion analysis, respectively. Section VII shows the performance
evaluation and Section VIII concludes the paper.

II. RELATED WORK

Truth discovery has been greatly developed and applied
in recent years. In this section, we discuss truth discovery
methods for static scenarios, dynamic scenarios, and privacy-
aware scenarios, respectively.

At the very beginning, the research of truth discovery
focused on the field of traditional database. Yin et al. [28] first
formally defined the truth discovery problem, and proposed an
iterative method-based TruthFinder algorithm to find true facts
from conflicting information provided by different websites.
It determines the true facts by iteratively inferring the proba-
bilities of facts being true and the trustworthiness of websites.
In [29], an unsupervised Bayesian probabilistic model for
truth finding on numerical data was designed, which can
leverage the characteristics of numerical data in a principled
manner, and infer the real-valued truth and source quality.
Reference [30] gave an optimization-based answer aggregation
method for multiple-choice question answering. It estimated
participant weights and aggregated answers simultaneously,
and used lightweight machine learning techniques to optimize
the accuracy of the results. Numbers of works realized that
there are various factors that can raise challenges to truth
discovery, and tried to improve the accuracy of user quality
estimation and truth discovery results under the circumstances.
For instance, a new confidence-aware truth estimation scheme
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Fig. 1. The system model of PPPTD.

was developed in [31], in which the fact that a source might
have different degrees of confidence for his/her different obser-
vations was considered, and the truth estimation problem was
taken as a maximum likelihood estimation problem. Aware
that a source may vary in reliability on different topics or
domains, [32] and [33] focused on estimating fine grained
source reliability and achieving a more precise truth discovery.

As it moves forward, researchers explored truth discovery
in some more complex data scenarios such as data streams.
An optimization framework was proposed in [34] to infer
truths among conflicting sources of heterogeneous data types,
and the proposed framework was further adapted for streaming
data and large-scale data. In [10], a model named EvolvT
based on hidden Markov model was proposed for dynamic
truth discovery on numerical data, which captured source
dependency besides truth transition regularity and source
quality, and established an expectation-maximization (EM)
algorithm to infer parameters. Yang et al. [11] proposed an
iterative-based truth discovery method to dynamically com-
pute source weights over data streams, where the previous
source weights could be used to approximately compute the
current truths if the truth inference error caused by not
changing source weights at certain timestamps was under a
threshold. A streaming fact-finder based on expectation max-
imization (EM) was designed in [12], which can update pre-
vious truth estimates with new arrived data. Zhao et al. [13]
took the problem of truth discovery over data streams as
a probabilistic inference problem, and proposed algorithms
to real-timely infers the truth as well as source quality,
which can read the data only one time. Considering quan-
titative crowdsourcing applications involving big or streaming
data, Ouyang et al. [14] proposed parallel and streaming truth
discovery algorithms to realize effective and scalable truth
discovery through decomposing large-scale truth discovery
problem and leveraging online expectation maximization (EM)
algorithm. Li et al. [15] developed a novel truth discovery
framework for data streams, which incorporated various iter-
ative methods to effectively infer truths, and can adaptively
decide the frequency of source weight computation to improve
the efficiency.

With respect to privacy concerns of data sources in truth
discovery process, Miao et al. [21] put forward a cloud-
enabled privacy-preserving truth discovery (PPTD) framework

for crowd sensing systems, which protected users’ sensory
data and reliability scores with homomorphic encryption,
and performed weighted aggregation on the encrypted data
to accurately inferred truths. Based on [21], lightweight
privacy-preserving truth discovery frameworks are studied [22]
and [23], where additively homomorphic cryptosystem was
adopted to guarantee both strong privacy and reduce the
overhead of users. Zhang et al. [35] leveraged homomorphic
Paillier encryption to achieve lightweight privacy-preserving
truth discovery and applied it in real-life CIoT applica-
tions. Liu et al. [36] considered the dropout of workers in
mobile crowdsensing system and proposed a real-time privacy-
preserving truth discovery framework for crowdsenced data
streams based on secure summation aggregation, which can
be robust and achieve highly efficient computation and
enough accurate truthful information. A balanced truth dis-
covery (BTD) framework was proposed in [37], which sat-
isfied three requirements in IoT: user privacy, data integrity,
and limited computational cost by blurring user data and
reducing user participation in the truth discovery process.
Sun et al. [26] presented privacy-preserving truth inference
method with local differential privacy guarantee, where the
truths were inferred from the perturbed answers uploaded by
workers. In view of the challenge brought by answer sparsity,
a new matrix factorization algorithm is designed to achieve the
balance between privacy and utility. These methods treated
all users equally and provided them with the same level of
privacy guarantee. Li et al. [27] proposed a local differen-
tial privacy-based efficient privacy-preserving truth discovery
method, which allowed users to add personalized noise to
their answers, but the amount of noise was determined by
the sampling mechanism. In a word, none of existing methods
can provide privacy guarantee according to the personalized
privacy requirements of users. This paper aim to achieve
personalized privacy-preserving truth discovery by quantifying
each user’s privacy requirement and adding personalized noise
to the sensory data accordingly.

III. PROBLEM DEFINITION

In this section, we first describe the system model and the
threat model, and then formally present the problem to be
solved in this paper.

A. System Model

The structure of PPPTD is shown in Figure 1, which con-
tains three main entities: data requesters, the server, and users.
Data requesters are the customers who send data requests
to the server and publish tasks on it. The server is a cloud
platform of mobile crowdsourcing (e.g., AMT) that can assign
tasks to users, allocate personalized privacy budgets to users
according to their privacy protection requirements, and collect
users’ perturbed sensory data to conduct weighted aggregation
to infer the truthful information needed by data requesters.
Users are those who carry their mobile devices, and have the
ability to perform various sensing tasks assigned by the server
and submit the sensory data to the server. It is worth noting
that users perturb their sensory data with differential privacy
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before submitting, and the perturbation levels are controlled
by their allocated privacy budgets.

B. Threat Model

We assume that the server and users are curious-but-honest.
The server will follow the PPPTD protocol faithfully, but
may be curious regarding user individual sensitive information,
which means that it may infer some private information of
users from the sensory data they submit. Meanwhile, the users
will follow the protocol and will not collude with each other,
but are likely to deduce the sensory data of others. In this
case, users’ sensory data should be protected and prevented
from being disclosed to any other entity.

C. Problem Formulation

Suppose that data requesters publish N sensing tasks on
the server, and there are M users who are interested in these
N tasks. At each timestamp t ∈ {1, 2, . . . , T}, these users
perform the tasks and provide sensory data for them. Let
xt

ij denote the sensory data from the i-th user for the j-th
task at timestamp t, then the observation of the i-th user at
timestamp t is Xt

i = {xt
ij}N

j=1
, and the observation of all

users at timestamp t is Xt = {Xt
i}M

i=1 = {xt
ij}M,N

i=1,j=1
. The

goal of truth discovery is to infer truthful values of all tasks
on all timestamps through the weighted aggregation, denoted
by Z = {Z1,Z2, . . . ,ZT }, where Zt = {Zt

j}N

j=1
, and Zt

j is
the truth of task j at timestamp t.

In this paper, in order to guarantee personalized privacy pro-
tection, each user perturbs his original sensory data according
to his privacy protection requirement and only submits the
perturbed data to the server. Let X̂t

i = {x̂t
ij}N

j=1
denote the

submitted perturbed data of the i-th user at timestamp t, and
X̂t = {X̂t

i}M
i=1 = {x̂t

ij}M,N

i=1,j=1
is the perturbed data with

personalized protection level collected from all users by the
server at timestamp t. Thus, the problem we address in the
paper is to infer truthful information Z = {Z1, Z2, . . . , ZT }
from X̂ = {X̂1, . . . , X̂T}. To ensure the accuracy of the
inferred truths, Z should be close to Z as much as possible.

IV. PRELIMINARIES

In this section, we introduce some preliminary knowledge
of truth discovery and differential privacy.

A. Truth Discovery

Truth discovery emerges to solve the conflicts among
sensory data collected from users, which can automatically
estimate source quality from the data in the form of source
weights and identify the reliable information (i.e., the truths)
among conflicting sources of data. All existing truth discovery
mechanisms follow two general principles: a user will be
judged to be with high quality if he provides reliable informa-
tion frequently, and the information will be more likely to be
the truth if it is broadly supported by users with high quality.
Besides, existing truth discovery mechanisms mainly use a
weighted aggregation method, which can be summarized as

a two-step iterative procedure: Truth Computation and Weight
Estimation. A common process is: truth discovery begins with
the initialization of user weights, and then iteratively conducts
the truth computation step and weight estimation step until
convergence.

1) Truth Computation: In this step, the user weights are
assumed to be known. The truth for the j-th task at timestamp
t is calculated based on the following weighted aggregation:

Zt
j =

∑M
i=1(w

t
i · xt

ij)∑M
i=1 wt

i

(1)

2) Weight Estimation: In this step, the aggregated truths are
fixed. The weight of the i-th user at timestamp t is estimated
based on the quality of data he provides currently. The closer
the data provided by the user is to the aggregated truth,
the higher the weight will be assigned to this user. That is:

wt
i = f(

N∑

j=1

d(xt
ij ,Zt

j)) (2)

where d(·) is a distance function that measures the difference
between user-provided data and the aggregated truths, and f
is a monotonically decreasing function.

In this paper, we adopt the weight estimation of CRH [38]
as an instantiation of Eq. (2):

wt
i = − log(

lti∑M
i′=1 lti′

) (3)

where lti refers to the normalized squared loss function of the
i-th user at timestamp t [38], i.e.,

lti =
N∑

j=1

(xt
ij −Zt

j)
2

std(xt
1j , x

t
2j , . . . , x

t
Mj)

(4)

3) Truth Discovery Over Data Streams: Typical truth dis-
covery methods usually conduct iterative procedures of user
weight estimation and truth computation on static data. As it
moves forward, some truth discovery mechanisms on data
streams have been proposed [12]–[15]. In this paper, we con-
sider the real-time crowdsourcing scenarios, so a truth dis-
covery mechanism for crowdsourced data streams is needed.
As shown in Algorithm 1, a typical truth discovery mechanism
over crowdsourced data streams assumes that the qualities
of most users do not change much between two adjacent
timestamps, so the user weight at the previous timestamp can
be used as the initialized user weight at the current moment.
At each timestamp, it begins with the initialization of user
weights, and then iteratively conducts the truth computation
step and weight estimation step until convergence.

B. ε-Differential Privacy

Differential privacy tries to prevent individual record in a
dataset from being identified.

Definition 1 (ε-Differential Privacy [39]): A privacy
mechanism M gives ε-differential privacy, where ε > 0, if for
any datasets D and D′ differing on at most one record, and
for all sets S ⊆ Range(M),

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] (5)
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Fig. 2. Framework of the personalized privacy-preserving truth discovery mechanism.

Algorithm 1 Truth Discovery Over Crowdsourced Data
Streams
Input: Crowdsourced data streams from all users:

{X1, X2, . . . , XT }
Output: The truths of all tasks at each timesatmp:

{Z1,Z2, . . . ,ZT }
1 Initialize users’ weights as W 0 = {w0

i }M

i=1, for each
i ∈ {1, 2, . . . , M}, w0

i = 1;
2 for each timestamp t, t ∈ {1, 2, . . . , T} do
3 while the convergence criterion is not satisfied do
4 Initialize user weights with W t−1;
5 for each task j, j ∈ {1, 2, . . . , N} do
6 Update the truth Zt

j according to Eq.(1) based
on the current estimation of user weights to get
Zt;

7 for each user i, i ∈ {1, 2, . . . , M} do
8 Update the user weight wt

i according to Eq.(2)
based on the current aggregated truths;

9 Return {Z1,Z2, . . . ,ZT } ;

where the privacy budget ε represents the degree of privacy
offered by the mechanism, and controls how much noise that
should be added to the dataset. In general, a larger perturbation
noise is required for a smaller ε, which leads to stronger
privacy guarantee but worse utility of the dataset.

Definition 2 (Sensitivity): [40] For any function f : D →
Rd, the sensitivity of f w.r.t. D is

�(f) = max
D,D′∈D

||f(D) − f(D′)||

for all D, D′ differing on at most one record.
The Laplace mechanism is the most commonly used mech-

anism to satisfy ε-differential privacy.
Theorem 1 (Laplace Mechanism [40]): For any function

f : D → Rd, a mechanism M that adds noise generated
independently from a zero-mean Laplace distribution with
scale �(f )/ε to each of the output values of f(D) satisfies
ε-differential privacy, if

M(D) = f(D) + 〈Lap(�(f)/ε)〉d (6)

Now we state two composition properties of differential
privacy.

Theorem 2 (Sequential Composition [41]): Let M1,
M2, . . . ,Mr be a set of mechanisms where Mi, i ∈
{1, 2, . . . , r} provides εi-differential privacy. Let M be
another mechanism that executes M1,M2, . . . ,Mr in
sequence and uses independent randomness for each Mi.
Then M satisfies

∑
i εi-differential privacy.

Theorem 3 (Parallel Composition [41]): Let Q1, Q2, . . . ,
Qπ be the disjoint subsets of dataset Q satisfying Q = ∪π

i=1Qi

and Qi ∩ Qj = ∅ (∀ i 
= j). Let M1,M2, . . . ,Mπ be a set
of mechanisms where Mi(Qi) = f(Qi)+ Lap(�(f)/ε) pro-
vides εi-differential privacy. Let M(Q) = ∪π

i=1Mi(Qi) using
independent randomness for each Mi and f(Q) = ∪π

i=1f(Qi).
Then, M(Q) satisfies max{ε1, . . . , επ}-differential privacy.

V. PERSONALIZED PRIVACY-PRESERVING TRUTH

DISCOVERY MECHANISM

We propose a personalized privacy-preserving truth discov-
ery mechanism over crowdsourced data, called PPPTD, to real-
timely and accurately infer truthful values while providing
personalized privacy protection for each user with differential
privacy. In this section, we first give a high-level overview
of PPPTD, and then introduce the proposed mechanisms in
detail.

A. Overview of PPPTD

Figure 2 shows the framework of PPPTD, consisting of
the process of perturbation at each user, and the process
of personalized budget initialization, influence-aware adaptive
budget adjustment and deviation-aware weighted aggregation
at the server. The personalized budget initialization mechanism
can quantify each user’s privacy protection requirement, and
allocate a specific privacy budget that meets the requirement
of each user. The influence-aware adaptive budget adjustment
mechanism can reallocate privacy budget for users based on
the evolution of user influence in truth computation. The basic
idea of this mechanism is that when the user’s influence in
the truth computation increases to a certain extent, it is more
reasonable to add less perturbation noise to user’s sensory data
on the premise of satisfying his privacy protection requirement.
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Algorithm 2 PPPTD Algorithm
Input: Crowdsourced data streams from all users:

X = {Xt}T
t=1 = {Xt

i}M,T
i=1,t=1

Output: The truths of all tasks at each timesatmp:
Z = {Z1, Z2, . . . , ZT }

1 The server performs the personalized budget initialization
mechanism to allocate proper initial privacy budget to
each user according to his privacy protection
requirement, and get ε0 = {ε0i }M

i=1;
2 for each timestamp t, t ∈ {1, 2, . . . , T} do
3 The server performs the influence-aware adaptive

budget adjustment mechanism to reallocate privacy
budgets for users whose influence in truth weighted
aggregation increase to a certain extent, and get
εt = {εt

i}M
i=1;

4 for each user i, i ∈ {1, 2, . . . , M} do
5 The user conducts the personalized perturbation

mechanism to perturb his sensory with the privacy
budget assigned to him and submits the perturbed
data to the server,
X̂t

i = Mt
i(X

t
i ) = f(Xt

i ) + Lap(�(f)/εt
i));

6 The server collects X̂t = {X̂t
i}M

i=1, and conducts the
deviation-aware weighted aggregation mechanism on
X̂t until the convergence criterion is satisfied to get
Zt;

7 Return Z = {Z1, Z2, . . . , ZT} ;

Only in this way, can the users with high quality greatly
exert their positive influence in the truth computation process.
The deviation-aware weighted aggregation mechanism can
accurately infer truths from the perturbed crowdsourced data
with personalized protection levels, in which the impacts of
personalized perturbation on weighted aggregation can be
eliminated as far as possible. The general process of PPPTD is
shown in Algorithm 2. The defined parameters and variables
are summarized in Table I.

B. Personalized Budget Initialization

We aim to provide personalized privacy protection for
each user with differential privacy according to their privacy
requirements, which means that users should perturb their data
at different levels. In differential privacy, a smaller privacy
budget means a greater perturbation degree, and will provide
stronger privacy guarantee. In turn, when a user has a high
privacy protection requirement, a small privacy budget should
be allocated to him. Since it is unrealistic for a user to set a
specific privacy expectation value in reality, it is difficult to
directly map the privacy expectation to a certain privacy budget
value. We set up user-friendly instructions for users to enable
them to clearly indicate their privacy protection requirements,
that is, high, medium and low privacy requirement. After the
privacy protection requirements of users are clarified, we can
quantify them through privacy budgets.

From the practical point of view, we limit the value of
user privacy budget to an interval [ε0, ε1]. Since users’ privacy

TABLE I

NOTATION OF THE VARIABLES

requirements are expressed in three levels (high, medium,
and low), it is reasonable to divide the privacy budget into
sub-intervals corresponding to these privacy requirement lev-
els. We allocate ε1 to those with low privacy protection
requirements as their privacy budgets, and tend to divide
the total privacy budget interval into two parts [ε0, εm) and
[εm, ε1). Then the server samples privacy budgets for users
with high and medium privacy requirements from the first and
the second sub-interval, respectively.

The studies in [42], [43] showed that a large majority
of users (more than 70% in [42] and 89.3% in [43]) are
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concerned about privacy leakage arising from the use of their
data, and [43] further pointed out that users with high privacy
concern are more than those with medium privacy concern,
which means a user is more likely to have high privacy
protection requirement. In view of the fact that a smaller
privacy budget corresponds to a higher privacy guarantee,
we assume the privacy budget of the user obeys exponential
distribution on the interval [ε0, ε1]. Thus, the user privacy
budget should be sampled from the exponential distribution
at the interval that corresponds to his privacy protection
requirement.

As we mentioned earlier, the total privacy budget interval
can be divided into two sub-intervals [ε0, εm) and [εm, ε1).
It is important to find a suitable εm and an intuitive way
is allocating two sub-intervals according to the proportion of
users in different privacy budget requirement levels. Suppose
that the proportion of users with high and medium privacy
protection requirements is α and β respectively, then the
fraction of users with low privacy protection requirements
is 1 − α − β. On an exponential distribution f(y, λ) =
λe−λy(y ≥ 0), we divide the domain of y according to
the proportion α, β and then find the mapping relationship
between y and ε. Suppose we have divided the domain of y
into four intervals: [0, y0), [y0, ym), [ym, y1), [y1, +∞). If we
sample a value for the random variable y on the exponential
distribution, the probability that it falls on the interval [y0, ym),
[ym, y1), and [y1, +∞) should be α, β, and 1−α−β−F (y0),
respectively, where F is the cumulative distribution function,
and F (y, λ) = 1 − e−λy(y ≥ 0). Then we should map y0 to
ε0, map ym to εm, and map y1 to ε1. We get the value of ym

and y1 by:

ym = C1−α−F (y0), y1 = C1−α−β−F (y0) (7)

where C1−α−F (y0) is a {1−α−F (y0)}-quintile that satisfies
P (y > C1−α−F (y0)) = 1 − α − F (y0), and C1−α−β−F (y0)

is a {1 − α − β − F (y0)}-quintile that satisfies P (y >
C1−α−β−F (y0)) = 1 − α − β − F (y0). Given that y0 is
bound to map to ε0, and is generally a very small value that
approximately equals to 0, it can be assumed that F (y0) = 0.
Therefore, we let

ym = C1−α, y1 = C1−α−β (8)

After getting the value of ym, y1, with the mapping rela-
tionship between y and ε, we have ym/εm = y1/ε1. Given a
fixed ε1, we can obtain the value of εm. Then the total privacy
budget interval can be divided into two parts: [ε0, εm), [εm, ε1).

Next the server samples a personalized initial privacy bud-
get for each user from the corresponding privacy budget
interval. In this way, we can successfully quantify users’
privacy requirements through specific privacy budgets, thereby
map the privacy protection requirements of users to specific
perturbation levels.

C. Influence-Aware Adaptive Budget Adjustment

In the scenario of truth discovery over crowdsouced data
streams, the quality of a user is not fixed even for the same
task, and the user’s influence on the final aggregated truth

may also change over time. We believe that when the user’s
influence in truth computation increases to a certain extent, it is
reasonable to add less perturbation noise to user’s sensory data
on the premise of satisfying his privacy protection require-
ment. For a user with great influence on the computation
of truth values, less perturbation on his data leads to less
deviation, and enables the user to better exert their positive
influence in the truth computation. Therefore, when a user’s
influence in the truth computation increases over time, it is
a logical choice to re-allocate a larger privacy budget to this
user while still satisfying his privacy protection requirement.
If we do so, users with high influence in the truth compu-
tation process would better assist to achieve accurate truth
discovery.

We define user i’s influence in weighted aggregation at
timestamp t as:

ζt
i = wt

i/

M∑

i′=1

wt
i′

Then ζt
i may be different for different timestamp t. We aim

to capture the evolution of user influence in the truth aggre-
gation, and adaptively adjust the privacy budget allocated to
the user according to it. But the challenge is: when should we
reallocate privacy budget to users? It is unrealistic to update
the budget each time when the user influence changes, because
it will lead to huge amount of computation, and go against the
timely truth discovery. In addition, sometimes the change in
user influence may be very small and may not make much
difference to the final truth discovery result, so there is no
need to update the budget each time when the user influence
changes.

Using the similar methodology in [15], we first capture the
evolution of user influence, and then measure the changes of
truth values caused by the change of the user influence (error)
to decide when to reallocate privacy budget for users. If the
error is within acceptable limits, namely the changes of users’
influence over a period of time has little effect on the truth
aggregation result, we can ignore them and do not need
to reallocate privacy budgets to users; if the changes of
users’ influence over a period of time lead to great change
in the true aggregation result which exceeds the acceptable
limits, then we need to reallocate privacy budgets to these
users.

Since user i’s influence in the weighted aggregation at
timestamp t is ζt

i = wt
i/

∑M
i′=1 wt

i′ , let �wt
i denotes user i’s

influence evolution at timestamp t, which can be computed
by:

�wt
i = ζt

i − ζt−1
i = wt

i/

M∑

i′=1

wt
i′ − wt−1

i /

M∑

i′=1

wt−1
i′ (9)

Let Φ = Φt
t−1 (t ∈ 1, 2, . . . , T ) denote the unit error of

truth aggregation result that caused by the changes of users’
influence, which is given by:

Φ = (

∑M
i=1 |�wt

i | · xt
ij

xt
max,j

)2 (10)
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where xt
max,j is the absolute maximum value of j-th task’s

observations at timestamp t. Then we have

√
Φ =

∑M
i=1 |�wt

i | · xt
ij

xt
max,j

=
M∑

i=1

|�wt
i | · xt

ij

xt
max,j

Since xt
ij ≤ xt

max,j , we have

√
Φ ≤

M∑

i=1

|�wt
i | (11)

Given a unit error threshold π, with the Eq. (11), if for each
user, the user influence evolution holds |�wt

i | ≤
√

π/M , then
the unit error Φ ≤ π is satisfied. That is, the unit error Φ
should be no more than π if Eq. (12) is satisfied.

|�wt
i | ≤

√
π/M (1 ≤ i ≤ M) (12)

Let Ψu
v denotes the cumulative error of truth aggregation

result that caused by the changes of users’ influence over a
period of time, which is defined as the sum of unit errors in
a time period, and it is computed by:

Ψu
v =

v∑

h=u+1

Φu
h (13)

The maximum value of the cumulative error in a time period
under the condition that Eq. (12) holds is:

Ψu
v ≤ �T (�T + 1)(2�T + 1)π/6 (14)

where �T = v−u, and the Eq. (14) has been proved in [15].
Assume that timestamp u is the timestamp where user pri-

vacy budgets are adjusted, at the beginning it is the timestamp
that users are assigned their personalize initial privacy budgets.
The challenge of when to reallocate privacy budgets to users
can be tracked by solving the following optimization problem:

max v = u + �T

s.t. �T (�T + 1)(2�T + 1)π/6 ≤ ρ

|�wh
i | ≤

√
π/M (u ≤ h ≤ v, 1 ≤ i ≤ M) (15)

where �T is the maximum period of time where users
influence evolutions are always less than

√
π/M , and the

changes of true computation results (the cumulative error)
caused by the total changes of users’ influence are controlled
within a certain range. In other words, during this time period,
user influence changes to the maximum acceptable extent.
Then it’s time to reallocate user privacy budgets. Since �T is
dispersed variable and has a finite number of possible values,
the optimization problem Eq. (15) can be solved with the
enumeration method.

The user whose total influence evolution
∑v

h=u �wh
i is

positive, and influence evolution �wh
i (∀h ∈ [u, v] (�wh

i ≥
0(u ≤ h ≤ v))) is more than 50% likely to be non-negative is
the one that has increasing influence in the truth computation.
For these users, we should reallocate privacy budgets at
timestamp v. The method is: In the privacy budget interval
corresponding to the user’s privacy protection requirement,
a new privacy budget for the user is obtained by resampling
from the interval. Take the i-th user as an example, suppose

the adjusted budget allocated to him at timestamp v is εv
i , then

it should satisfy the following constraint:

εv
i − εu

i ≤ γ (16)

where εu
i is user i’s last reallocated budget at timestamp u,

and γ is the budget adjustment threshold that limits the range
of budget adjustments. With γ, we can prevent the privacy
budget from exceeding the upper bound of the interval after
several adjustments. In this paper, we adopt an empirical value
for the value of γ.

In summary, we can determine when to update users’
budgets through Eq. (15), and how much to update through
Eq. (16).

D. Personalized Perturbation

At each timestamp t, each user i perturbs his own sensory
data Xt

i with the privacy budget he is allocated to get the
perturbed data X̂t

i , calculated by:

X̂t
i = Mt

i(X
t
i ) = f(Xt

i ) + Lap(�f/εt
i)

Since each user has their own personalized privacy budget
that corresponds to their privacy protection requirement, users
are protected in different levels and the degrees of perturbation
on their data are also different. The deviation between each
user’s original data and submitted data is caused by pertur-
bation, and different degrees of perturbation lead to different
levels of deviation. That is, personalized deviation exists in
the users’ submitted data, which can be formulated as: for
∀p, q ∈ {1, 2, . . . , M}, and ∀t ∈ {1, 2, . . . , T}, if εt

p 
= εt
q,

then |X̂t
p − Xt

p| 
= |X̂t
q − Xt

q|. Then users just submit the
perturbed data to the server to from X̂t = {X̂t

1, X̂
t
2, . . . , X̂

t
M},

which is the total perturbed data with personalized privacy
protection level at timestamp t.

E. Deviation-Aware Weighted Aggregation

We design a deviation-aware weighted aggregation mech-
anism to accurately infer truths from the perturbed crowd-
sourced data with personalized protection levels. At each
timestamp t, the server collects all users’ submitted data as
X̂t, and performs the deviation-aware weighted aggregation
on it to get the truths Zt = {Zt

1, Z
t
2, . . . , Z

t
N}.

In weighted aggregation method, user weights and user
submitted data are two decisive factors of truth, among which
user weights correspond to the quality of users. The user’s per-
sonalized perturbation on his or her data is the key to achieve
the personalized privacy protection. However, personalized
perturbations bring different deviations to user qualities and
their submitted data, leading to greater bias to the aggregated
truth values. Only by eliminating these personalized deviations
and correcting user weights and user submitted data as much
as possible can accurate truth discovery be achieved. Since a
large amount of noise leads to the situation that the perturbed
data submitted by users diverges greatly from the reality, and
causes a huge deviation in user weights. In that case the
credibility of users in the weighted aggregation has reduced.
Thus, the principle to be followed in the deviation-aware
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Fig. 3. The max value of W t
i .

weighted aggregation is that the more noise a user adds to his
data, the more his influence in the aggregation progress should
be reduced. That is, the influence of a user in the aggregation
progress should be proportional to his privacy budget to some
extent.

Let W t
i = l̂ti�M

i′=1 l̂t
i′

, where l̂ti =
∑N

j=1

(x̂t
ij−Zt

j)
2

std(x̂t
1j ,x̂t

2j,...,x̂t
Mj)

.

Based on Eq. (3), the standard way to estimate the user weight
through perturbed data should be:

wt
i = − logW t

i = − log
l̂ti∑M

i′=1 l̂ti′
(17)

With the principle mentioned above, we expect a new
deviation-aware weight estimation method which can reduce
the influence of users who add large amount of noise to their
data in the process of weighted aggregation. For that, we use
a monotonic decreasing function g(εt

i) = loga(c − εt
i�

M
i′=1 εt

i′
)

to revise Eq. (17), and propose that the user weight can be
estimated according to:

wt
i = − log(W t

i · g(εt
i))

= − log(
l̂ti∑M

i′=1 l̂ti′
· loga(c − εt

i∑M
i′=1 εt

i′
)) (18)

where a and c are constants, and a > 1, c ∈ ( εt
i�

M
i′=1 εt

i′
+

a,
εt

i�
M
i′=1 εt

i′
+ a2) for any i ∈ {1, 2, . . . , M} and t ∈

{1, 2, . . . , T}. With these restrictive conditions, we have
1 < g(εt

i) < 2.
Empirically we have 0 < W t

i ≤ 0.5, which is demonstrated
in Figure 3. Then we can get 0 < W t

i · g(εt
i) < 1, so Eq. (18)

is rational.
Suppose that there are two users p and q, whose weights

estimated at timestamp t are the same, but user p adds more
perturbation noise to his data than user q. That is, W t

p =
W t

q , and εt
p < εt

q . With this, we have g(εt
p) > g(εt

q). If we
estimate their weights through Eq. (18), we can obtain wt

p <
wt

q . Thus, we can say that Eq. (18) is valid, because with which
the influence of the user who adds larger amount of noise to
his data is reduced more. In conclusion, the adjusted weight
estimation function of Eq. (18) is reasonable and consistent
with the principle.

Hence, the truth can be calculated by:

Zt
j =

∑M
i=1(w

t
i · x̂t

ij)∑M
i=1 wt

i

(19)

Based on Eq.(18) and Eq.(19), we can achieve
deviation-aware weighted aggregation, which effectively
weakens the personalized deviation caused by personalized
perturbation and enables accurate truth discovery.

VI. THEORETICAL ANALYSIS

In this section, we theoretically analyse the proposed
PPPTD mechanism from the perspective of privacy protection.

Theorem 4: PPPTD can provide personalized privacy guar-
antee for each user.

Proof: Let M1
i ,M2

i , . . . ,MT
i be a set of mechanisms

where for each t ∈ [1, . . . , T ], Mt
i(X

t
i ) = f(Xt

i ) +
Lap(�(f)/εt

i) provides εt
i-differential privacy in isolation.

Since Mi(Xi) = {M1
i (X

1
i ),M2

i (X
2
i ), . . . ,MT

i (XT
i )},

and M executes M1
i , . . ., MT

i in sequence, according to
Theorem 2, Mi(Xi) provides

∑
εt
i-differential privacy.

In PPPTD, for each user i, the total perturbed data he
submits to the server satisfies: X̂i = Mi(Xi), where Mi

is a perturbation function that satisfies εi-differential privacy,
and εi =

∑
εt
i. Therefore PPPTD can provide personalized

privacy guarantee for each user.
Theorem 5: PPPTD satisfies ε-differential privacy.

Proof: Let M1,M2, . . . ,MM be a set of mechanisms
where Mi(Xi) = f(Xi) + Lap(�(f)/εi) provides εi-
differential privacy. Since X1, X2, . . . , XM are the disjoint
subsets of dataset X satisfying X = ∪M

i=1Xi and Xp ∩
Xq = ∅ (∀ p, q ∈ {1, 2, . . . , M} and p 
= q), M(X) =
{M1(X1),M2(X2), . . . ,MM (XM )}. According to Theo-
rem 3, we can get that M(X) satisfies max{ε1, ε2, . . . , εM}-
differential privacy.

Since the privacy budget assigned to users ranges from ε0
to ε1, we have

max{ε1, . . . , εM} = max{
T∑

t=1

εt
1, . . . ,

T∑

t=1

εt
M} = ε1 T = ε

Thus, M satisfies ε1 T -differential privacy, namely PPPTD
satisfies ε-differential privacy, where ε = ε1 T .

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of PPPTD on
real-world datasets to validate its effectiveness.

A. Experiment Settings and Baselines

We conduct experiments on two real-world datasets to
compare PPPTD with baseline methods to demonstrate the
effectiveness of PPPTD.

1) Datasets: We use two real-world crowdsourcing datasets:
Weather dataset [44] and Intel Lab Data dataset [45]. Weather
dataset contains weather data of 30 major USA cities reported
by 18 websites every 45 minutes in six days of March 2010.
We adopt the temperature property for evaluation. Intel Lab
Data contains temperature, humidity, light and voltage data
of 54 observation points collected by Intel Berkeley Research
Lab every 31 seconds from February 28th to April 5th in 2004.
The voltage property are adopted for evaluation. With these
two real-world datasets, we can construct crowdsouced data
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Fig. 4. Evaluation on parameter λ.

streams that contain time-series observation data of some
tasks from some users. However, in these two datasets, not
every user completes all tasks, which would cause null values
in the data streams we construct. Thus, we extract subsets
from the datasets to avoid null values, where each task is
completed by all users. In result, we extract 26 tasks and
16 users from the Weather dataset, and compress the six-day
data into 40 timestamps, and we extract 50 tasks and 100 users
from the Intel Lab Data, and compress the 38-day data into
80 timestamps.

2) Utility Metric: We use the Mean Absolute Error (MAE)
and Mean Absolute Percentage Error (MAPE) as the utility
metric to evaluate the performance of the mechanisms. For
any task j(j ∈ {1, 2, . . . , N}), let Zj = {Z1

j , Z2
j , . . . , ZT

j }
denote the sequence of truthful values for task j inferred
by the PPPTD mechanism at each timestamp, and Zj =
{Z1

j ,Z2
j , . . . ,ZT

j } denote the truths sequence discovered from
the raw data. The MAE and MAPE for task j can be computed
by:

MAE(Zj ,Zj) =
1
T

T∑

t=1

|Zt
j −Zt

j | (20)

MAPE(Zj ,Zj) =
1
T

T∑

t=1

|Z
t
j −Zt

j

Zt
j

| (21)

In the experiments, we first calculate the MAE and MAPE
for each task and then count up the average of all tasks as the
final result of PPPTD.

3) Personalization Metric: We use the Percentage of
Un-Personalized users (PUP) as the personalization metric to
evaluate the ability of the mechanisms to provide personalized
privacy protection for users. It shows the percentage of users
who add the same level of perturbation noise to their data
at each timestamp. PUP is realistically the percentage of
users whose budgets are updated to the upper bound of the
interval with the influence-aware adaptive budget adjustment
mechanism. The larger the value of PUP, the less ability of
PPPTD to provide personalized privacy protection.

4) Compared Methods: We first test the effect of each
mechanism of the proposed PPPTD. For the influence-aware
adaptive budget adjustment mechanism (IAA), we con-
duct experiments of PPPTD with and without it over two
real-world datasets to evaluate the effectiveness of it. For
the deviation-aware weighted aggregation mechanism (DWA),
we conduct similar experiments to evaluate it’s effectiveness.

As for the baseline method, we implement a
perturbation-based truth discovery method that can meet
every user’s privacy protection requirement at the same time.
For that, all users add the same level of noise to their data
with differential privacy before uploading to the server, and
the amount of noise must guarantee the highest privacy
requirement of users. Then the server conducts weighted
aggregation on the perturbed data to infer truths.

5) Environment: All the mechanisms are implemented in
Python, and run on the same machine with 8G RAM, Intel
Core i5 processor. We run each experiment 100 times, and
report the average results.

B. Evaluation on Parameters

In this section, we evaluate the effects of parameters λ, π,
ρ, and γ on the performance of PPPTD. We test the effect
of a parameter over the Weather Dataset and Intel Lab Data
Dataset by changing the value of the parameter while fixing
the others. Particularly, we set α = 0.54, β = 0.37, which
are chosen based on findings reported in [43], and we set
a = 2, c = 3, which can ensure the rationality of Eq. (18).

1) The Effect of λ: The value of λ determines the division
of privacy intervals, which affects the values of initial budgets
allocated to users, as well as the space that user budgets can be
updated, thus also the personalization of PPPTD. We evaluate
the effect of λ on the utility and personalization of PPPTD,
and on the sum of initial budgets and budget update space.
For Weather Dataset, we fix π to 0.2, ρ to 1, and γ to 1, and
make λ varies from 0.1 to 1.9.

Figure 4(a)-(d) shows the evaluation results of the effect of
λ on PPPTD over the Weather Dataset. As Figure 4(a) shows,
MAE first increases and then decreases as λ varies from 0.1 to
1.9. With Figure 4(b) and 4(c), we can explain this state. The
value of λ directly affects the value of εm, that is the division
of budget intervals. In PPPTD we first allocate a personalized
initial privacy budget to the user from the corresponding
budget interval that meets his privacy requirement, and then
adaptively adjust the user budget in the same budget interval.
So the division of budget intervals can determine the initial
budgets allocated to users and the space that user budgets can
be updated. Figure 4(b) shows that as λ increases, the sum of
initial budgets of users decreases, which means the total noise
added to data increases, leading to worse utility. Figure 4(c)
shows that the space that user budgets can be updated grows as
λ goes from 0.1 to 1.9. Larger update space means that the user
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Fig. 5. Evaluation on parameter π.

budgets have higher probability to be updated to larger values,
so users can add less noise to achieve better utility. MAE
increases when λ increases from 0.1 to 1 because the sum of
initial budgets of users is decreasing and the update space is
small. MAE decreases when λ increases from 1 to 1.9 because
the update space is large and increasing, and the sum of
initial budgets of users only goes down a little bit. Moreover,
Figure 4(d) shows influence of different values of λ on PUP,
we can learn that PPPTD achieves better personalization when
λ is small.

After comprehensive consideration, in the subsequent exper-
iments, we decided to set λ = 0.4 for the Weather Dataset.

2) The Effect of π: The unit error threshold π affects when
to update the budgets for which users, and the case of user
budgets adjustment is critical to how much noise is added
to data totally and how many users can be provided with
personalized privacy protection. We evaluate the effect of π
on the utility and the personalization of PPPTD. For Weather
Dataset, we fix ρ to 1000, and γ to 1, and make π varies from
0.1 to 0.5.

The evaluation results of the effect of π over Weather
Dataset is shown in Figure 5. Figure 5(a) shows the influence
of different values of π on MAE. MAE increases as π
increases, which is due to the decrease in the frequency of user
budget updates. Figure 5(b) shows the influence of different
values of π on PUP, and we can find that the smaller the value
of π, the larger the PUP. The reason is when the value of π
is very small, the user budgets will update very frequently,
thus the budgets of many users are likely to be adjusted to
the upper limit of the corresponding interval, leading to poor
personalization of PPPTD. In the subsequent experiments,
we set π = 0.3 for the Weather Dataset.

3) The Effect of ρ: Similarly, we evaluate the effect of ρ
on the noise scale and the personalization of PPPTD. For
Weather Dataset, we fix γ to 1, and make ρ take values in
{0.6, 1, 2, 6}.

The evaluation results of the effect of ρ over Weather
Dataset is shown in Figure 6, in which MAE increases as
ρ increases, and PUP decreases as ρ increases. The reason
for this can refer to the above analysis for π since π and ρ
have similar effects to PPPTD. In the subsequent experiments,
we set ρ = 1 for the Weather Dataset.

4) The Effect of γ: The adjustment constraint threshold γ
controls how much to adjust user budgets. We evaluate the
effect of γ on the utility and the personalization of PPPTD.

Fig. 6. Evaluation on parameter ρ.

Fig. 7. Evaluation on parameter γ.

The results are shown in Figure 7, where MAE decreases
and PUP increases when γ varies from 0.1 to 1.7. The
reasons are as follows. Smaller γ leads to smaller-scale budget
adjustments, which results in only a small reduction in the
level of perturbation, and means that users need more updates
to reach the upper bound of the interval. Therefore, the smaller
the value of γ, the larger the value of MAE, and the smaller the
value of PUP. In the subsequent experiments, we set γ = 0.7
for the Weather Dataset.

We also tested the effect of each parameter on the perfor-
mance of PPPTD over the Intel Lab Data Dataset. Due to
the space constrain, we do not show the performance results
here. As a result, we set λ = 0.4, π = 0.02, ρ = 0.1, and
γ = 0.0008 for the Intel Lab Data Dataset in the subsequent
experiments.

C. Performance Evaluation

In this section, we first test the effect of each mechanism of
the proposed method PPPTD, and then compare PPPTD with
the baseline method.

1) The Effect of Influence-Aware Adaptive Budget Adjust-
ment: we conduct experiments of PPPTD with and without the
influence-aware adaptive budget adjustment mechanism (IAA)
over two real-world datasets to evaluate the effectiveness of
the influence-aware adaptive budget adjustment mechanism.
Figure 8 shows the result of utility comparison of PPPTD with
and without IAA over two real-world dataset, from which we
can find that both MAE and MAPE in PPPTD are smaller
than PPPTD without IAA for any given ε. Figure 9 further
demonstrates that with a fixed ε, the MAE and MAPE of
PPPTD are always less than those of PPPTD without IAA,
and the distance between them becomes larger over time. IAA
works more and more over time, thus brings more improve-
ment to utility of PPPTD. It proves that the influence-aware
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Fig. 8. Evaluation on IAA when ε changes. (“w/o” stands for “without”).

Fig. 9. Evaluation on IAA over time.

adaptive budget adjustment mechanism is useful in improving
the utility of PPPTD and it will be more useful as time goes
on. Moreover, we also evaluate the average percentage of
users whose budgets are updated per timestamp in PPPTD,
and the results are shown in Figure 10. We can find that at
almost every timestamp, there are a small part of users whose
privacy budgets are updated, and the percentage decreases over
time. As time goes by, IAA re-allocates larger privacy budgets
for more and more users, and fewer and fewer users whose
privacy budgets need to be updated are leaving, which leads
to the situation that almost no one needs to update its privacy
budget at the final stage. These results also demonstrates the
effectiveness of the influence-aware adaptive budget adjust-
ment mechanism.

2) The Effect of Deviation-Aware Weighted Aggregation:
we conduct experiments of PPPTD with and without the

Fig. 10. Evaluation on the average percentage of users whose privacy budgets
are updated per timestamp when (π, ρ) changes.

Fig. 11. Evaluation on DWA when ε changes.

Fig. 12. Performance comparison of PPPTD and the baseline method.

deviation-aware weighted aggregation mechanism (DWA) over
two real-world datasets to evaluate the effectiveness of the
deviation-aware weighted aggregation mechanism. Figure 11
shows the result of utility comparison of PPPTD with and
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without DWA. We observe that DWA reduces both MAE and
MRE for any given ε. Thus, we draw a conclusion that the
proposed deviation-aware weighted aggregation mechanism
does improve the utility of PPPTD.

3) Performance Comparison With the Baseline Method:
Figure 12 shows the results of utility comparison between
PPPTD and the baseline method on two real-world datasets.
In terms of utility, we can observe that PPPTD overperforms
the baseline method for both Weather Dataset and Intel Lab
Data Dataset. This is because PPPTD takes into full consid-
eration the different privacy requirements of users and allows
to add different levels of noise to each user’s data, so that
the total noise is reduced and the data utility is improved.
Then we can conclude that PPPTD can provide personalized
privacy preserving for users and at the same time achieve high
accuracy.

VIII. CONCLUSION

In this paper, we proposed a personalized privacy-preserving
truth discovery framework over crowdsourced data streams,
called PPPTD, to provide personalized privacy protection
for users to meet their personal privacy requirements while
real-timely and accurately inferring the truths. In PPPTD,
each user is assigned a personalized budget that meets
his own privacy requirement, and personally disturbs his
data with differential privacy before submitting data to the
server. An influence-aware adaptive budget adjustment mech-
anism and a deviation-aware weighted aggregation mechanism
were further proposed for improving the accuracy of inferred
truths.

We theoretically proved that PPPTD can provide person-
alized privacy guarantee for each user meanwhile satisfying
differential privacy. The experimental results on two real-world
datasets showed that the proposed mechanisms of PPPTD can
indeed lead to better utility with a low impact on the overall
efficiency, and PPPTD outperforms the baseline method that
treats all users equally and does not meet everyone’s person-
alized privacy need.
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