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Abstract—To provide fast and accurate risk evaluation on network rare threats, importance sampling (IS) is widely used in the rare
threat simulation; however, it becomes costly to deal withmany rare threats simultaneously. For example, a rare threat can be the failure
to provide quality-of-service (QoS) guarantees to a critical network flow. Considering network providers often need to deal with many
critical flows (i.e., rare threats) simultaneously, if using IS, network providers have to simulate each rare threat with its customized
importance distribution individually. To reduce such simulation cost, we propose an efficient mixture importance distribution to simulate
multiple rare threats, and then formulate a mixture importance sampling optimization problem (MISO) to select the optimal mixture. We
first show that it is challenging to locate the optimal mixture for the “search direction” is computationally expensive to evaluate. We then
formulate an online learning (OL) framework to estimate the “search direction” and learn the optimal mixture from simulation samples of
threats. And our OL framework has a “zero learning cost” as the samples generated in the learn phase can be reused to provide
accurate estimation on the rare threats. We develop two multi-armed bandit OL algorithms so as to: (1) Minimize the sum of estimation
variances with a regret of ðlnT Þ2=T ; and (2) Minimize the simulation cost with a regret of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnT=T

p
, where T denotes the number of

simulation samples. We demonstrate the versatility of our method on different network applications. When compared with the uniform
mixture IS, our method reduces cost measures (i.e., sum of estimation variances and simulation cost) by as high as 61.6 percent in the
Internet backbone network scenario.

Index Terms—Large scale network rare threats simulation, mixture importance sampling, online learning

Ç

1 INTRODUCTION

IN simulating highly fault-tolerant systems like large scale
networks or mobile 5G networks, we often have to deal

with rare threats; these are events that occur rarely but have
catastrophic impacts or consequences. They could poten-
tially arise in many networking applications, and are not
easily accessible for the information-bearing signals often
lie in a broad set of irrelevant events (i.e., causes). For
instance, in communication networks, the network compo-
nent failures caused by some undesirable events (e.g.,
equipment ageing or power shortage) can significantly
degrade the intended network service [1]. On the Internet,
some unexpected node and link failures can result in the
undeliveries of critical flows. In smart grids, the network
component damages caused by some sudden unforeseen
events (e.g., excessive load demand or lighting) may give
rise to large-scale blackouts [2]. To quantify such rare threats,
one needs to evaluate their risks (i.e., occurrence probabili-
ties) accurately. For large and complex networks, this is
computationally expensive as illustrated below.

Example 1. Consider a rare threat E, which corresponds to
the failure of providing promised quality-of-service
(QoS) guarantees for a critical flow in a large-scale net-
work. The QoS guarantees for the critical flow is influ-
enced by the status (i.e., operational or failed) of M2Nþ
components (i.e., links or nodes) of the network. Let
x , ðx1; . . . ; xMÞ denote a configuration of all these com-
ponents, where xm ¼ 1 represents the operational state
and xm ¼ 0 represents the failed state of component
m2½M&. Each configuration x occurs with a probability
P ðxÞ. The rare threat E is represented by a set of profiles
x, which is often unknown and of a large cardinality, say
Oð2MÞ. Given x, an indicator function 1EðxÞ can simulate
the network to test the occurrence of E (i.e., x2E), but
have no functional description of E. Thus, as many as
Oð2MÞ enumerations are needed to evaluate E’s occur-
rence probability. For more background readings related
to this example, readers can refer to static network reli-
ability literatures [3], [4], [5], [6], [7], [8].

A typical method to address the high computational cost
issue, as illustrated in Example 1, is Monte Carlo (MC) sam-
pling. It estimates the occurrence of a rare threat E via gen-
erating samples x from P ðxÞ and obtaining simulation
results from 1EðxÞ. However, to obtain accurate estimations,
MC needs to simulate plenty of samples x so to capture suf-
ficient occurrences of E (i.e., 1EðxÞ ¼ 1). To improve the esti-
mation efficiency of MC, importance sampling (IS) takes a
customized importance distribution QðxÞ to “boost” the
occurrence of E. One limitation of IS is that it has to simulate
each rare threat with its customized importance distribution
individually. This leads to an excessively high simulation
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cost, especially when dealing with a large number of rare
threats as shown below:

Example 2. Consider N critical flows in Example 1. Let the
rare threat En be the failure to provide promised QoS
guarantees for flow n, where n2½N&. Each En is associated
with a customized importance distribution QnðxÞ and an
indicator function 1EnðxÞ that tests whether x2En. Sup-
pose, using IS to estimate each En requires T samples
from QnðxÞ. To estimate all N events, we need TN sam-
ples, which is expensive for a large scale network because
even simulating a single sample can take many hours.

A straightforward idea to reduce such simulation cost
burden of IS is to design a simulation distribution Q that
works efficiently and accurately for every rare threat. There-
fore, we consider the mixture importance sampling (MIS) with
a mixture parameter w ¼ ðw1; w2; . . . ; wNÞ

Qðx;wÞ ¼
P

n2½N&wnQnðxÞ;

where wn(0; n2½N& and
P

n2½N&wn ¼ 1. Through this, each
sample x drawn from distribution Qðx;wÞ can be used
for “all” rare threats fEngNn¼1. We aim to answer:

' How to quantify the “simulation cost” for a mixture w?
' How to locate the optimal mixture w)?
The design of proper simulation cost metrics for w

requires the careful consideration of simulation cost resulted
from Qðx;wÞ for each En. Such metrics (i.e., cost measures)
are functions ofQðx;wÞ. To search forw) minimizing the sim-
ulation cost, one needs to evaluate the search direction by
marginalizing x in the metric with a sample space of size 2M .
To address this challenge, we formulate a multi-armed ban-
dit (MAB) online learning (OL) framework to estimate the
“search direction” and learn w) from simulation samples x
drawn from fQnðxÞgNn¼1. Onemay use the classical stochastic
optimization (SO) method to derive w), but it has a much
more expensive learning cost (i.e., the number of samples x
generated to learn w)) than our framework: in the learning
phase, to guarantee a fast convergence to w), SO needs suffi-
cient samples from Qðx;wðtÞÞ to locate an efficient “search
direction” in each round t, and wðtÞ is the estimated mixture;
and in the estimation phase, additional samples from
Qðx;wðT ÞÞ are required to provide accurate estimation for

fEnðxÞgNn¼1. In contrast, our framework only needs a single
sample x generated from one of fQnðxÞgNn¼1 in each round of
learning, and the generated samples can be directly used for
providing accurate estimation for fEnðxÞgNn¼1. This leads to a
“zero learning cost”, but also makes it challenging to esti-
mate the “search direction” as well as learn w). The contribu-
tions of our work are:

' We propose two metrics to quantify the simulation
cost for a mixture strategy and propose a mixture
importance sampling optimization problem (MISO)to
select the optimal mixture. We show the search
direction of mixture is costly to evaluate, making it
challenging to locate the optima.

' We formulate a MAB OL framework which estimates
the search direction and learn the optimal mixture
from “simulation samples”. Instead of using sufficient
simulation samples from Qðx;wðtÞÞ, our framework

reduces the simulation cost by generating only a single
simulation sample x from one of fQnðxÞgNn¼1 in each
round of learning. Hence, achieving a zero cost on
extra samples.

' We develop MAB learning algorithms to efficiently
learn w) under different cost measures, i.e.: (1) Sum-
Var, to minimize the sum of variances with a regret
of ðlnT Þ2=T , and (2) SimCos, to minimize the simula-
tion cost with a regret of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lnT=T

p
, where T is the

number of samples. For each algorithm, we provide:
(a) convexity and smoothness analysis; (b) algorithm
to estimate the search direction of w with zero cost
on extra samples, as well as provable concentration;
(c) regret analysis and reveal the impact of key fac-
tors, e.g., similarity of fQnðxÞgNn¼1, on the regret.

' To demonstrate the versatility of our framework, we
apply it to conduct rare event simulation over an
Internet backbone network and a smart grid net-
work, both of which are supported by real-world
data.

2 PROBLEM FORMULATION

We start by introducing the MIS model with a mixture
parameter w. Then, we formulate an optimization frame-
work that minimizes a general cost measure via selecting a
proper w. To address the computational challenge in locat-
ing the optimal mixture w), we develop an OL framework
to estimate w). Finally, we present two important instances
of the OL framework with specific cost measures.

2.1 Mixture Importance Sampling
Assume there are N rare events and each event is induced
by a subset of M potential causes denoted by ½M&. We aim
to estimate the occurrence probability for each individual
event. Let V , f0;1gM. We denote x ¼ ðx1; . . . ; xMÞ 2 V as
the occurrence profile of all M causes, where xm indicates
whether the cause m occurs (1: yes, 0: no). Let x occur with
a probability P ðxÞ2 ½0; 1&, where

P
x2VP ðxÞ ¼ 1. Denote the

event n2½N& as En*V, of which the occurrence is indicated
by a membership oracle

1EnðxÞ ,
1; if x 2 En,
0; otherwise.

"
(1)

Notice that 1EnðxÞ can be used with causes indicated by sam-
ple x to test whether E occurs, i.e., x 2 E, as long as x is pro-
vided. Yet, 1En has no other functional description of En.
And the occurrence probability is denoted by

mn ¼ Px+P ½1EnðxÞ ¼ 1& ¼
P

x2EnP ðxÞ: (2)

In many real-life applications, En has a large cardinality,
which makes the exact value of mn computationally expen-
sive to evaluate. For instance, consider an Internet-scale net-
work with M physical links, where the mth link fails with a
probability of pm. There are N competing flows, of which
the undelivery of the nth flow is represented by En*V. For
each x2V, the probability to obverve the occurrence of x in
the real-life can be expressed as

P ðxÞ ¼
Q

m2½M& p
xm
m ð1, pmÞ1,xm: (3)
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Due to the high complexity of traffic engineering, En is usually
unknown andwith a large cardinality, resulting in a computa-
tional complexity of Oð2MÞ to evaluate the exact value of mn.
Eq. (3) assumes the independence of potential causes, and this
assumption is also considered in many previous works [3],
[4], [5], [6], [7], [9]. We are also aware of notable works [10],
[11] dealing with dependent potential causes. Dependent
potential causes greatly complicate the problem and we leave
it as our futurework.

As it is rare to see the occurrence of En, it is costly to esti-
mate mn via simulating x with P ðxÞ, i.e., the classical MC
method. One typicalmethod to address this challenge is the IS
method [12], [13]. To improve the efficiency ofMC, IS replaces
the sampling distribution P ðxÞ with QnðxÞ to increase the
occurrence of event En, and assigns each sample x a weight to
recover the unbiasedness. Specifically, it replaces Eq. (2) by

m ¼ Ex+P 1EnðxÞ ¼ 1½ &

¼
R
1EnðxÞ

P ðxÞ
QnðxÞQnðxÞdx ¼ Ex+Qn 1En

P ðxÞ
QnðxÞ

h i
:

(4)

Assume each En corresponds to a customised pure importance
distribution QnðxÞ. IS provides an efficient estimation of mn if
takingQnðxÞ to simulate x, butQnðxÞmay not work for other
rare events. The one-run variance for estimating mn withQnðxÞ
to simulate x is

Vx+Qn

#
1EnðxÞ

P ðxÞ
QnðxÞ

$
, Ex+Qn

#
1EnðxÞ

P2ðxÞ
Q2
nðxÞ

$
, m2

n: (5)

Note that the one-run variance is an essential metric to mea-
sure the estimation efficiency, and it also determines the
simulation cost. Here fQnðxÞgNn¼1 can be obtained utilizing
IS or Sequential IS methods proposed in [9].

However, given a limited simulation budget and a large
N , one usually could not afford to estimate each mn individ-
ually with the corresponding QnðxÞ. What one needs is an
efficient sampling distribution working for multiple inter-
ested events simultaneously. Assume we take a mixture of
fQnðxÞgNn¼1 as the importance distribution to simulate x.
Formally, we have

Qðx;wÞ ,
P

n2½N&wnQnðxÞ; (6)

where w , ðw1; . . . ; wNÞ; wn(0 and
P

n2½N&wn ¼ 1. For the
ease of presentation, denote the set of all possible choices of

w as the probability simplex D , fwjwn(0;
PN

n¼1wn ¼ 1g.
Here, we define the “!-similarity” as a metric to
quantify how well the occurrences of interested events

fEngNn¼1 can be efficiently estimated together by the follow-
ing definition:

Definition 1 (. !-similarity) Events fEngNn¼1 are !-similar if
their corresponding pure importance distributions fQnðxÞgNn¼1

satisfy: for !2½1;1&, 8x2V; 8n; n02½N &; 1! -
QnðxÞ
Qn0 ðxÞ

- !.

To illustrate, consider fQnðxÞgNn¼1 have different (or
even disjoint) supports, then ! ¼1. Fig 1 shows more
examples with different levels of !-similarities.

2.2 General Optimization and Learning Framework
Given the mixture w, we take Qðx;wÞ to simulate x, and the
one-run variance of En is

s2
nðwÞ , Vx+Q

#
1EnðxÞ

P ðxÞ
Qðx;wÞ

$
: (7)

One can evaluate the overall simulation efficiency associ-
ated with the mixture parameter w by the cost measure
LðssðwÞÞ2R where ssðwÞ , ðs1ðwÞs2ðwÞ; . . . ; sNðwÞÞ (Refer to
Section 2.3 for some examples). We now formulate the mix-
ture importance sampling optimization problem as follows:

Problem 1 (. Mixture Importance Sampling Optimization
(MISO) Problem) Given M causes, associated with a natural
occurrence distribution P ðxÞ; N interested events, associated
with efficient pure importance distributions fQnðxÞgNn¼1; and
the cost measure LðssðwÞÞ. Select w to minimize the cost

minw2DLðssðwÞÞ: (8)

Problem 1 is essentially a non-linear optimization prob-
lem. It is challenging to address it because both the objective
LðssðwÞÞ and its gradient rLðssðwÞÞ are computationally
expensive to evaluate: The exact computational complexi-
ties are Oð2MÞ for the large state space of x. To overcome the
challenge, we develop a MAB framework to estimate (or
online learn) w) from simulation samples.

Problem 2 (. Mixture Importance Sampling Learning (MIS
Learning) Problem) Given M causes, N interested events
and the number of rounds (or data samples) T2Nþ. At round
t ¼ 1; . . . ; T :

' Select an arm (or event) It2½N& based on an algorithm
A and the sample history fðIs; xðsÞÞgt,1s¼1;

' Draw a simulation sample of profile xðtÞ from QItðxÞ;
' Update the proportions of selecting arms (or events)

which denoted bywðtÞ ¼ ðwðtÞ
1 ; . . . ; wðtÞ

N Þ, wherewðtÞ ¼
1
t

P
s2½t& eIs ;

Objective: Design an MAB algorithm A to achieve a low
and sublinear regret, where the regret is defined as

RT , LðssðwðT ÞÞÞ ,minw2DLðssðwÞÞ: (9)

In Problem 2, each arm (or event) indexed by n corres-
ponds to a customized pure distributionQnðxÞ, and a general
cost function LðssðwðT ÞÞÞ is considered. We next consider two
important instances of theMIS-Learning Problem.

Fig. 1. Examples of different levels of !-similarities: an infinite ! happens
when events have different supports and it implies that even the optimal
mixture distribution Qðx;w)Þ would not work for all events, e.g.,
fEn1 ; En4g; a large ! implies a slow convergence to Qðx;w)Þ, e.g.,
fEn1 ; En3g; a small ! implies a fast convergence to Qðx;w)Þ, e.g.,
fEn1 ; En2g.
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2.3 Two Instances of the MIS Learning Problem
Given Qðx;wÞ to simulate x, let ‘nðwÞ measure the simula-
tion cost to achieve the desired estimation accuracy for mn,
i.e., the confidence interval (CI) is bounded by a threshold
dn. Also, let ‘maxðwÞ measure the simulation cost to achieve
desired estimation accuracies for all fmng

N
n¼1. We have

‘nðwÞ , s2nðwÞ
d2n

and ‘maxðwÞ , maxn2½N &‘nðwÞ: (10)

Next, we consider various accuracy requirements fdngNn¼1,
i.e., homogeneous and heterogenous, and study the impact
on the cost measure LðssðwÞÞ. Then, we introduce the corre-
sponding MIS-Learning problems.

MIS-Learning toMinimize the Sum of Variances.We start with
the simplest case with homogeneous accuracy requirements
(i.e., fdngNn¼1 are equal) and consider bounding

P
n2½N&‘nðwÞ in

order to bound ‘maxðwÞ. Then

minw2D
P

n2½N&‘nðwÞ()minw2D
P

n2½N&s
2
nðwÞ

()minw2D
P

n2½N&s
2
nðwÞþm2

n:
(11)

And the total loss (i.e., cost measure) can be defined in
terms of the sum of one-run variances as follows:1

LðssðwÞÞ ¼
P

n2½N& s
2
nðwÞþm2

n , LSumVarðwÞ: (12)

We name the MIS-Learning with cost measure in Eq. (12) as
minimizing the sum of variances (SumVar) MIS-Learning.

MIS-Learning to Minimize the Simulation Cost.We consider
the case where fEngNn¼1 have heterogenous accuracy require-
ments. Specifically, we assume each En has a predefined
occurrence probability threshold on, e.g., En represents the
undelivery of a specific flow and we want to accurately state
whether the undelivery probability mn-on or not. Then the CI
width should not exceed dn ¼ jmn , onj and

minw2D‘maxðwÞ()minw2Dmaxn2½N&
s2nðwÞ

ðmn,onÞ2
: (13)

The total loss can be defined in terms of the simulation cost
to achieve all desired estimation accuracies as

LðssðwÞÞ ¼ maxn2½N&
s2nðwÞ

ðmn,onÞ2
, LSimCosðwÞ: (14)

We then name the MIS-Learning with cost measure in
Eq. (14) as minimizing the simulation cost (SimCos) MIS-
Learning.

3 LEARNING TO MINIMIZE SUM OF VARIANCES

We first present our SumVar algorithm design for learning
the optimal mixture w) that minimizes the sum of variances
in an online manner. Then we prove a regret upper bound
for the SumVar algorithm and reveal the impact of !-simi-
larity on the convergence speed to learn w).

3.1 The Design of SumVar Algorithm
The SumVar algorithm’s main idea is that at each round of
learning: (1) First estimate the gradient rLSumVarðwÞ from
historical data samples; (2) Then select the arm (or event) based on
the estimated gradient.

Gradient Estimation.Wefirst consider the estimation of gra-
dient rLSumVarðwðt,1ÞÞ utilizing historical data samples, at
each learning round t. We can deriverLSumVarðwÞ as follows:

rLSumVarðwÞ ¼ r
"P

n2½N & Ex+Qðx;wÞ

%
P2ðxÞ1En ðxÞ
Q2ðx;wÞ

&'

¼,
P

n2½N&
P

x2V

%
P2ðxÞ1En ðxÞ
Q2ðx;wÞ

&
ðQ1ðxÞ; . . . ; QNðxÞÞ

¼ Ex+Qðx;wÞ
#
ð,Z1ðxÞ; . . . ;, ZNðxÞÞ

$
;

(15)

where ZnðxÞ ,
P2ðxÞ

P
i2½N &1EiðxÞ

Q3ðx;wðt,1ÞÞ
QnðxÞ; 8n2½N&: If historical data

samples fxðsÞgt,1
s¼1 were IID samples of x+Q

(
x;wðt,1Þ), then

the gradientrLSumVarðwðt,1ÞÞ can be estimated by gðtÞ, where

gðtÞn ¼ ,1
t,1

P
s2½t,1& ZnðxðsÞÞ; 8n2½N &: (16)

Nevertheless, the challenge is that fxðsÞgt,1s¼1 are generated
from xðsÞ+QIsðxÞ. To address this challenge, the following
theorem proves that Eq. (16) is asymptotically accurate in
estimating the gradientrLSumVarðwðt,1ÞÞ.

Algorithm 1. SumVar MIS-Learning

Input:N , w ¼ ð 1N ; . . . ; 1
NÞ, c

ðtÞ
n ; 8n2½N&; t ¼ 1; . . . ; T

for all t-N do
Draw xðtÞ according to QtðxÞ, and record history It, QnðxðtÞÞ
and 1EnðxðtÞÞ; n2½N & for updating wðtÞ and gradient
estimation.

for all t>N do
Estimate the gradientrLSumVar

(
wðt,1Þ) using gðtÞ in Eq. (16).

Compute the lower confidence bound (LCB) gðtÞ, where gðtÞ
n

¼ gðtÞn ,cðtÞn .
Select It2 argminn2½N &g

ðtÞ
n

and draw xðtÞ from QItðxÞ.
Record history It, QnðxðtÞÞ and 1EnðxðtÞÞ; n2½N &.
Update wðtÞ wðt,1Þ þ 1

t ðeIt , wðt,1ÞÞ.

Theorem 1. Consider the MIS-Learning framework, where at
round t; t2½T & take the Itth distribution QItðxÞ to generate xðtÞ.
Then, limt!1 kgðtÞ,rLSumVarðwðt,1ÞÞk ¼ 0.

Remark. Such asymptotic property owns much to the
role of mixture parameter wðtÞ, i.e., the observed proportions
of selecting the distribution QItðxÞ till round t. Hence, after
sufficient t rounds of MIS-Learning, all samples fxðsÞgts¼1 can
be approximately considered as simulated byQðx;wðtÞÞ.

Arm Selection. Now we outline how the SumVar algo-
rithm in Algorithm 1 selects arm at each learning round.
From [14], we notice that finding the minimizer of lower
bound confidence minn2½N&g

ðtÞ
n

is equivalent to making a step
of size 1

tþ1 in the direction of corner of simplex D that

minz2Dz>gðtÞ, which is precisely the Frank-Wolfe algorithm
[15]. Hence, we apply the LCB Frank-Wolfe algorithm to
select the arm based on the estimated gradient in Eq. (16).

1. As the analytic expressions of LSumVarðwÞ and of its gradient are fre-

quently used in this work, and considering s2
nðwÞ¼ Ex+Q

#
1En ðxÞ

P2ðxÞ
Q2ðx;wÞ

$
,m2

n,

we defineLSumVarðwÞ as illustrated in Eq. (12) for the ease of presentation.
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Note that in Algorithm 1, one can select cðtÞn to control the
exploration and exploitation tradeoffs.2Selecting the cðtÞn is
closely related to the regret of Algorithm 1. We thus defer
the selection in the next subsection, where we analyze the
regret upper bound.

3.2 Main Result on the Regret of SumVar Algorithm
We start by establishing two building blocks for the
regret analysis of Algorithm 1: (1) The strong convexity and
smoothness properties ofLSumVarðwÞ, and (2) The concentration
property of gðtÞ in estimating rLSumVarðwðt,1ÞÞ. Then, we apply
these two building blocks to derive the regret upper bound
of Algorithm 1.

Strong Convexity and Smoothness of LSumVarðwÞ. Let us first
formally define the strong convexity and smoothness.

Definition 2 (Strong convexity and smoothness). Let X
be a convex set in the vector space and f : X!R be a function.
Also let I represent the identity matrix. f is called a-strongly
convex if and only if 8x2X;r2fðxÞ.aI, or equivalently

8x; y2X; fðyÞ(fðxÞ þr>fðxÞðy, xÞ þ a
2 ky, xk22:

(17)

Similarly, f is b-smooth if and only if 8x2X;r2fðxÞ/bI, or
equivalently

8x; y2X; fðyÞ-fðxÞ þr>fðxÞðy, xÞ þ b
2 ky, xk22: (18)

The following theorem gives the strong convexity and
smoothness of LSumVarðwÞ.

Theorem 2. If fEngNn¼1 has a !-similarity, the LSumVarðwÞ given
by Eq. (12) is a-strongly convex and b-smooth with

a ¼ 2
N!2

ð
P

n2½N& mnÞ
2 and b ¼ 2!3

P
n2½N& mn: (19)

Remark. Theorem 2 quantifies the impact of !-similarities on
LSumVarðwÞ. In particular, the strong convexity of LSumVarðwÞ van-
ishes and LSumVarðwÞ becomes nonsmooth when !!1, i.e., the
event occurrences are not similar. This implies that the !-simi-
larity is essential for learning the optimal mixture w) as well.
Besides, in case that ! ¼1, one can divide fEnðxÞgNn¼1 into
multiple sub-groups such that each sub-group has a finite !.

Concentration Property of gðtÞ. The preciseness and efficiency
of the gradient estimator gðtÞdirectly affect Algorithm 1’s per-
formance in minimizing the objective. We aim to characterize
how well gðtÞn concentrates around rLSumVarðwðtÞÞ

**
n
. Such con-

centration is characterized by a balance between the confi-
dence probability denoted by zðtÞ2½0; 1& and the deviation
denoted by "ðtÞn . One challenge is that in the estimator gðtÞn in
Eq. (16), the historical data samples fxðsÞgt,1

s¼1 are not IID. The
following theorem resolves this challenge by quantifying the
tradeoff between zðtÞ and "ðtÞn .

Theorem 3. Assume x+Q
(
x;wðt,1Þ) for both E and V. Suppose

zðtÞ and "ðtÞ satisfy

"ðtÞn ¼ 1
3t ln

1
zðtÞ

Zmax
n þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
9t2

ðln 1
zðtÞ

Zmax
n Þ2 þ 2

t ln
1
zðtÞ

VZnðxÞ
q

;

where Zmax
n , maxx2VjZnðxÞ , E½ZnðyÞ&j. Then, it holds that

P
#
gðtÞn ,rLSumVarðwðtÞÞ

**
n
("ðtÞn

$
-zðtÞ; (20)

P
#
gðtÞn ,rLSumVarðwðtÞÞ

**
n
-, "ðtÞn

$
-zðtÞ: (21)

Theorem 3 serves as a building block for one to vary zðtÞ

and "ðtÞ, to attain different confidence and variation trade-
offs. This confidence and variation tradeoff is essential to
select the parameter cðtÞn of Algorithm 1 and analyze its
regret later. We need to point out that, Zmax

n ¼ Oð!3Þ and
VZnðxÞ ¼ Oð!5Þ, i.e, the CI width of gðtÞ is proportional to !.
This reveals the impact of !-similarity on the concentration
of gradient estimation.

Regret Upper Bound.With the above two building blocks,
we now select the parameter cðtÞn for Algorithm 1 and
show the regret upper bound. We defer the detailed proof
to Section 5.

Theorem 4 (Regret upper bound of SumVar algorithm).

Suppose fEngNn¼1 has a “!-similarity”. For MIS-Learning with
cost measure LSumVarðwÞ in Eq. (12), after T steps of the
SumVar algorithmwith the choice of cðtÞn ¼"ðtÞn and

zðtÞ ¼ T,2
0 ; if t-T0;

t,2; if t>T0;

"

the following holds: when lnð1=zðtÞÞ
t (

9
P

i2½N &mi

4N!

Ex+Q½RT &-C1
1
T þ C2

lnT
T ; (22)

otherwise

Ex+Q½RT &-C3
1
T þ C4

erf
ffiffiffiffiffiffiffiffiffiffi
lnT=2
p
T þ C5

lnT
T þ C6

ðlnT Þ2
T ; (23)

where, C1 ¼ O
+

N2ðlnT0Þ2!6
ah2

þ
N3=2!2

P
i2½N & mi

T0
þ N lnT0b!

3

ah2

,
,

C3 ¼ O
+N3=2!2

P
i2½N& mi

T0
þ NðlnT0Þ2b!2

ah2

,
, C2 ¼ C5 ¼ OðbÞ;

C4 ¼ O
+ ffiffiffiffiffiffi

N!5
p

b

ah2

,
; C6 ¼ O

+
N!5

ah2

,
:

Remark. Theorem 4 shows that the regret upper bound
is proportional to the !-similarity. It also reveals that a
small ! implies a fast convergence to the optimal mixture.

4 LEARNING TO MINIMIZE SIMULATION COST

We first present our SimCos algorithm design for learning
the optimal mixture w) that minimizes the simulation cost
in an online manner. Then we prove a regret upper bound
for the SimCos algorithm and reveal the impact of !-similar-
ity on the convergence speed to learn w).

2. In Algorithm 1, the derivation of cn relies on Zn and its
moments, which are costly to compute exactly. In the implementation,
we take the empirical estimation of Zn and its moments. This will not
affect our regret upper bound conclusion as the derivation utilizes the
upper bounds of Zn and its moments.
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4.1 The Design of SimCos Algorithm
The SimCos algorithm’s main idea is that at each round of
learning: (1) First develop a linear approximation framework to
locate the search direction; (2) Then design an estimator to esti-
mate the search direction from simulation samples; (3) Finally,
use the estimated search direction to select the arm.

Search Direction. Different from the SumVar MIS-Learn-
ing, where the object is smooth and the gradient implies the
search direction of the mixture. In this case, locating the
search direction faces the challenge of non-smooth objective
LSimCosðwÞ, which takes the pointwise maximum of func-
tions ‘nðwÞ. Another constraint is that Problem 2 implies a
step size of 1=t in updating wðtÞ, i.e.,

wðtþ1Þ ¼ twðtÞþz
tþ1 ; (24)

where z2D. Namely, to determine the search direction, we
first need to determine z. Note that LSimCosðwÞ is a pointwise
maximum function and the linearization of a pointwise
maximum function behaves similarly to the linearization of a
smooth function [16]. Thus, to measure the potential of z in
decreasing LSimCosðwðtÞÞ, we take a linearization of LSimCos

ðwÞ atw ¼ wðtÞ

LSimCosðwðtÞ; zÞ ¼ maxn2½N&‘nðwðtÞÞ þr‘nðwðtÞÞ>ðwðtþ1Þ , wðtÞÞ

¼ maxn2½N&‘nðwðtÞÞ þr‘nðwðtÞÞ> z,wðtÞ
tþ1 ;

(25)

and bound its approximation error in the following lemma:

Lemma 1.
**LSimCosðwðtÞ; zÞ , LSimCosðwðtþ1ÞÞ

** ¼ O

-
!3

ðtþ1Þ2

.
.

Lemma 1 states that the approximation error of linear
approximation decreases at a rate of 1=t2. This implies that
the linear approximation is asymptotically accurate in
approximating the LSimCosðwðtþ1ÞÞ. Hence, given wðtÞ, we
consider the minimizer of LSimCosðwðtÞ; zÞ as the search direc-
tion. Furthermore, the minimum of LSimCosðwðtÞ; zÞ can be
attained by the standard direction with steepest decrease, i.e.,

minz2DLSimCosðwðtÞ; zÞ ¼ minz2ULSimCosðwðtÞ; zÞ; (26)

where U , fe1; . . . ; eNg represents the standard basis. This
implies that we can reduce the search space from D to U,
and simplify estimations of the search direction as we pro-
ceed to show. We take such steepest decrease direction as
the search direction, and denote it by

e)t ¼ argminz2ULSimCosðwðtÞ; zÞ: (27)

Search Direction Estimation. We consider the following
equivalent form of the search direction

e)t ¼ argminz2ULSimCosðwðtÞ; zÞ , LSimCosðwðtÞÞ: (28)

Such form of search direction is useful to estimate the search
direction, for the value of LSimCosðwðtÞ;zÞ , LSimCosðwðtÞÞ
shrinks in t. As we will show later, this property enables us
to derive better concentration results for the search direction
estimation. As the search direction is in the set U , we only
need to estimate fLSimCosðwðtÞ; enÞgNn¼1 and LSimCosðwðtÞÞ so to
locate e)t . Essentially, we need to estimate ‘nðwðtÞÞ and

r‘nðwðtÞÞ from the data samples fxðsÞgt,1s¼1. We have similar
challenges as in Section 3.1, i.e., data samples are not IID.
We then address these challenges with a similar method:
We estimate LSimCosðwðtÞ; enÞ , LSimCosðwðtÞÞ as gðtÞn where gðtÞn
is derived as gðtÞn , _gðtÞn , €gðtÞ and

_gðtÞn ¼ maxi2½N&
tþ1
t

bAiðwðt,1ÞÞ , 1
t
bBiðwðt,1Þ;nÞ , ðbmðt,1Þ

i Þ2

ðbmðt,1Þ
i ,oiÞ2

;

€gðtÞ ¼ maxi2½N& bAiðwðt,1ÞÞ , ðbmðt,1Þ
i Þ2

ðbmðt,1Þ
i ,oiÞ2

;

bBi

(
wðtÞ;n

)
¼ 1

ðbmðt,1Þ
i ,oiÞ2

1
t

P
s2½t&

P2ðxðsÞÞ1Ei ðx
ðsÞÞ

Q2ðxðsÞ;wðtÞÞ
QnðxðsÞÞ

QðxðsÞ;wðtÞÞ
;

bAi

(
wðtÞ) ¼ 1

ðbmðt,1Þ
i ,oiÞ2

0 1t
P

s2½t&
P2ðxðsÞÞ1Ei ðx

ðsÞÞ
Q2ðxðsÞ;wðtÞÞ

:

(29)

In the following theorem, we prove that the search direc-
tion can be estimated asymptotically accurate.

Theorem 5. Consider the MIS-Learning framework, where at
round t; t2½T & take distribution QItðxÞ to generate xðtÞ. Then

limt!1k _gðtÞn ,LSimCosðwðtÞ; enÞk ¼ 0; (30)

limt!1 k€gðtÞ,LSimCosðwðtÞÞk ¼ 0: (31)

Remark. Similar as Theorem 1, such asymptotic property
owns much to the mixture parameter wðtÞ.

Arm Selection.Now we outline how the SumVar algorithm
in Algorithm 2 selects arm at each learning round. Based on
gðtÞn ; n2½N &, we estimate the steepest search direction using the
LCB framework and we outline the arm selection in Algo-
rithm 2. Selecting the parameter cðtÞn is closely related to the
regret of Algorithm 2.3We thus delay the selection in the next
section, wherewe provide the detailed proofs of the regret.

Algorithm 2. SimCos MIS-Learning

Input:N , w ¼ ð 1N ; . . . ; 1
NÞ

for all t-N do
Draw xðtÞ according to the QtðxÞ and record history It,
QnðxðtÞÞ and 1EnðxðtÞÞ; n2½N & for updating wðtÞ and gradient
estimation.

for all t>N do
Estimate mðt,1Þ

n ; n2½N & by bmðt,1Þ
n ¼ 1

t,1

P
s2½t,1&

P ðxðsÞÞ1Enðx
ðsÞÞ

QðxðsÞ;wðsÞÞ
:

For all arms n2½N&, compute gðtÞn , i.e., the estimated
linear approximation of decreasing progress achieved by
taking different arms at round t according to Eq. (29).
Compute the LCB gðtÞ

n
, where gðtÞ

n
¼ gðtÞn ,cðtÞn .

Select arm It2 argminn2½N &g
ðtÞ
n
.

Record history It, QnðxðtÞÞ and 1EnðxðtÞÞ; n2½N &.
Update wðtÞ wðt,1Þ þ 1

t ðeIt,wðt,1ÞÞ.

3. The derivation of cn in Algorithm 2 relies on Ai, Bi, and their
moments, which is discussed in the next subsection. In the implementa-
tion, we take empirical estimations of these values. This will not affect
our regret conclusion as its derivation utilizes the upper bounds of Ai,
Bi, and their moments.
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4.2 Main Result on the Regret of SimCos Algorithm
To first decompose the regret, denote the optimal mixture as
w), the optimal search direction as e)t , and the estimated
search direction (i.e., the action direction) as eIt . Then we
decompose the regret as follows:

LSimCosðwðtþ1ÞÞ , LSimCosðw)Þ

- LSimCos

-
twðtÞþeIt

tþ1

.
, LSimCos

-
twðtÞþe)t

tþ1

.
(R1)

þ LSimCos

-
twðtÞþe)t

tþ1

.
,LSimCos

-
twðtÞþw)

tþ1

.
(R2)

þ LSimCos

(
twðtÞþw)

tþ1

)
,LSimCosðw)Þ: (R3)

This decomposition has three parts. Part R1 is the estimation
error, and is essentially governed by the concentration of gðtÞn
in estimating LSimCosðwðtÞ; enÞ ,LSimCosðwðtÞÞ. Part R2þR3 is
the approximation error, and is essentially governed by the
convexity and smoothness of the objective LSimCosðwÞ. Next,
similar as the SumVar case, we first establish two building
blocks: (1) The strong convexity and smoothness properties of
LSimCosðwÞ and its components; (2) The concentration property of
gðtÞ in estimating LSimCosðwðtÞ; zÞ , LSimCosðwðtÞÞ. Then we
apply these two blocks to bound the regret of Algorithm 2.

Convexity and Smoothness of LSimCosðwÞ and its Components.
As an immediate consequence of Theorem 2, we can derive
the strong convexity and smoothness of ‘nðwÞ; n2½N &, i.e.,
the components of LSimCosðwÞ:

Corollary 1. If fEngNn¼1 has a !-similarity, then ‘nðwÞ; n2½N & in
Eq. (10) is an-strongly convex and bn-smooth, where

an ¼ 2m2
n

!2ðmn,onÞ2
and bn ¼ 2!3mn

ðmn,onÞ2
: (32)

Such convexity and smoothness of ‘nðwÞ; n2½N & guaran-
tee the convexity of LSimCosðwÞ:

Corollary 2. If fEngNn¼1 has a !-similarity, then LSimCosðwÞ in
Eq. (14) is a0-strongly convex, where

a0 , minn2½N&an ¼ minn2½N&
2m2

n

!2ðmn,onÞ2
: (33)

Remark. Corollary 1 and 2 quantify the impact of !-simi-
larity on the strong convexity and smoothness of LSimCosðwÞ
and its components. Also note that the tight approximation
mentioned in Lemma 1 is guaranteed by the strong convex-
ity and smoothness of ‘nðwÞ; n2½N&.

Concentration Property of gðtÞn . The preciseness and efficiency
of the linear approximation decreasing progress estimator gðtÞn
directly affect Algorithm 2’s performance in minimizing the
objective. In the following theorem, we characterize how well
gðtÞn concentrates around theLSimCosðwðtÞ; enÞ , LSimCosðwðtÞÞ.

Theorem 6. Assume x+Qðx;wðt,1ÞÞ for both E and V. For any
random variable XðxÞ define eXðxÞ , XðxÞ,EXðxÞ and ’XðxÞð Þ,
2 lnð8=zðtÞÞ

3t maxeXðxÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð8=zðtÞÞ

t VeXðxÞ
q

: Suppose zðtÞ and "ðtÞ satisfy:

zðtÞ ¼ T,2
0 ; "ðtÞn ¼ C1

tþ1 ; if t-T0;

zðtÞ ¼ t,2; "ðtÞn ¼ maxk2½N&
1

tþ1

(
aðtÞk þ bðtÞk;n

)
; if t>T0;

(

where Aiðx;wðtÞÞ ¼ 1
ðmi,oiÞ2

P2ðxÞ1Ei ðxÞ
Q2ðx;wðtÞÞ

, Biðx;wðtÞ;nÞ ¼ 1
ðmi,oiÞ2

P2ðxÞ1EiðxÞQnðxÞ
Q3ðx;wðtÞÞ

, aðtÞi ¼ ’ðAiðx;wðtÞÞÞ; bðtÞi;n ¼’ðBiðx;wðtÞ;nÞÞ,

C1 ¼maxk2½N &
2!2mk

ðmk,okÞ2
þmaxk2½N&

2!3

ðmk,okÞ2
:

Then, it holds that

P
#
gðtÞn ,

(
LSimCosðwðtÞ; enÞ , LSimCosðwðtÞÞ

)
-"ðtÞn

$
-zðtÞ;

P
#
gðtÞn ,

(
LSimCosðwðtÞ; enÞ , LSimCosðwðtÞÞ

)
(, "ðtÞn

$
-zðtÞ:

Remark. We need to point out that aðtÞi þ bðtÞi;n ¼ O- ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!3 lnð8=zðtÞÞ

t

q .
and C1 ¼ Oð!3Þ. Therefore, Theorem 6 reveals

the impact of !-similarity on the concentration of estimation.

Regret Upper Bound. With the regret decomposition and
above two building blocks, we now select the parameter of
Algorithm 2 and prove its regret upper bound. We leave the
detailed proof in the later discussion.

Theorem 7 (Regret upper bound of SimCos algorithm).

Suppose fEngNn¼1 has a “!-similarity”. For MIS-Learning prob-
lem with cost measure LSimCos in Eq. (14), after T steps of
the SimCos algorithm, with the choice of cðtÞn ¼ "ðtÞn and

zðtÞ ¼ T,2
0 ; if t-T0;

t,2; if t>T0;

"

the following holds:

E½RT &-Oð!3Þ 1
T þOðb0 þ !3Þ lnTT

þOð!3Þ ðlnT Þ
2

T þOð!5=2Þ
ffiffiffiffiffiffi
lnT
T

q
:

(34)

Remark. Theorem 7 shows that the regret upper bound is
proportional to the !-similarity. It also reveals that a small !
implies a fast convergence to the optimal mixture.

5 REGRET ANALYSIS OF MIS-LEARNING
ALGORITHMS

In this section, we present a detailed analysis and proof
for regret upper bounds of the SumVar and SimCos algo-
rithms. Due to the page limit, we leave proofs of all claims
in the appendix, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TMC.2021.3074920.

5.1 Convexity and Smoothness Analysis
We start with proving Theorem 2, which states the convex-
ity and smoothness of LSumVar. Then, we apply a similar
method to analyze the convexity and smoothness of LSimCos.
Proof of Theorem 2. For simplicity, we let x + Q represent x +
Qðx;wÞ and x + P represent x + P ðxÞ in the proof. Then
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s2
nðwÞ ¼ Vx+Q

%
1EnðxÞ

P ðxÞ
Qðx;wÞ

&
¼ Ex+Q

%
1EnðxÞ

P 2ðxÞ
Q2ðx;wÞ

&
, m2

n

¼
P

x2V1EnðxÞ
P 2ðxÞ
Qðx;wÞ

, m2
n:

(35)

Denote QðxÞ ¼ ðQ1ðxÞ; . . . ; QNðxÞÞ, the gradient of s2
n

becomes

rs2
n ¼ , E

x+Q
1EnðxÞ

P 2ðxÞ
Q3ðx;wÞ

QðxÞ

¼ ,
X

x2V
1EnðxÞ

P 2ðxÞ
Q2ðx;wÞQðxÞ: (36)

The gradient of rð
P

n2½N&s
2
nÞ, which is also the Hessian

matrix ofLSumVarðwÞ in Eq. (12), can be derived as

HðwÞ ¼ 2
P

x2V
P 2ðxÞ

P
n2½N& 1EnðxÞ

Q3ðx;wÞ
QðxÞQðxÞ>: (37)

(1) For the convexity, we have the following:

QðxÞQðxÞ>.0) HðwÞ.0: (38)

(2) For the a-strongly convexity, we can derive

HðwÞ.aI

, 8z2D; z>HðwÞz(az>z ¼ a; (39)

, 8z2D;
P

x2V
P 2ðxÞ

P
n2½N& 1EnðxÞ

Q3ðx;wÞ Q2ðx;zÞ(a

2
; (40)

, 8z2D; Ex+P

P ðxÞ
P

n2½N& 1EnðxÞ
Qðx;wÞ

nQðx;zÞ
Qðx;wÞ

o2
(a

2
:

(41)

By the definition of !-similarity, we have 1
!-

Qðx;zÞ
Qðx;wÞ -!.

Then

E
x+P

P ðxÞ
P

n2½N & 1EnðxÞ
Qðx;wÞ

(
Qðx; zÞ
Qðx;wÞ

)2

( 1

!2
E

x+P

P ðxÞ
P

n2½N&1EnðxÞ
Qðx;wÞ

:

Using the Cauchy-Schwarz inequality, we have

P
x2D

P 2ðxÞ
P

n2½N &1EnðxÞ
Qðx;wÞ

P
x2D

#
Qðx;wÞ

P
n2½N&1EnðxÞ

$

(
#P

x2D
(
P ðxÞ

P
n2½N&1EnðxÞ

)$2 ¼
(
Ex+P

P
n2½N&1EnðxÞ

)2

¼
(P

n2½N&mn

)2
:

(42)

Note that
P

x2D
#
Qðx;wÞ

P
n2½N &1EnðxÞ

$
-N

P
x2DQðx;wÞ¼N .

Combining with Eq. (42), we have the following:

E
x+P

P ðxÞ
P

n2½N &1EnðxÞ
Qðx;wÞ

¼
P

x2D
P 2ðxÞ

P
n2½N&1EnðxÞ

Qðx;wÞ
(
ð
P

n2½N& mnÞ
2

N
:

(43)

Hence, we can take a as

a ¼ 2

N!2
ð
P

n2½N&mnÞ
2: (44)

(3) About the b-smoothness, it suffice to show

HðwÞ / bI

, 8z2D; z>HðwÞz-bz>z ¼ b; (45)

, 8z2D;
P

x2V
P 2ðxÞ

P
n2½N&1EnðxÞ

Q3ðx;wÞ Q2ðx;zÞ- b

2
; (46)

, 8z2D; Ex+P

P ðxÞ
P

n2½N&1EnðxÞ
Qðx;wÞ

nQðx;zÞ
Qðx;wÞ

o2
- b

2
: (47)

By the definition of !-similarity, we have

E
x+P

P ðxÞ
P

n2½N&1EnðxÞ
Qðx;wÞ

(
Qðx;zÞ
Qðx;wÞ

)2

-!2 E
x+P

P ðxÞ
P

n2½N&1EnðxÞ
Qðx;wÞ

t-!2
X

n2½N&
E
x+P

P ðxÞ1EnðxÞ
Qðx;wÞ

:

(48)

As QnðxÞ is En’s “customized” IS distribution, it simulates
En’s occurrences more often than the natural distribution
P ðxÞ does, i.e., QnðxÞ1EnðxÞ(P ðxÞ1EnðxÞ.

4Hence, if 1En
ðxÞ ¼ 1, we have

Qðx;wÞ(wnQnðxÞ þ ð1,wnÞ
1

!
QnðxÞ(

1

!
P ðxÞ: (49)

Therefore, P ðxÞ
Qðx;wÞ1EnðxÞ-!1EnðxÞ, and we have

Ex+P
P ðxÞ1EnðxÞ
Qðx;wÞ

-!Ex+P1EnðxÞ ¼ !mn; (50)

Ex+P

P ðxÞ
P

n2½N&1EnðxÞ
Qðx;wÞ

"
Qðx;zÞ
Qðx;wÞ

'2

-!3
P

n2½N &mn-
b

2
:

(51)

We can take b as

b ¼ 2!3
P

n2½N& mn: (52)

This completes the proof of Theorem 2. tu

Corollary 1 states the convexity and smoothness of ‘nðwÞ,
n2 ½N &, i.e., components of LSimCosðwÞ. It can be considered
as a special case of Theorem 2 with N ¼ 1, i.e., fEngNn¼1

4. En’s optimal IS distribution is Q)
nðxÞ¼P ðxÞ1En ðxÞ=mn, where mn is

very small. Compare to P ðxÞ, Q)
nðxÞ shifts probabilities from

unimportant profiles x (i.e., 1EnðxÞ¼0) to important ones (i.e.,
1En ðxÞ¼1). Thus, QnðxÞ>P ðxÞ if 1EnðxÞ¼1. This can be easily satisfied if
QnðxÞ is customized for En and so well approximates Q)

nðxÞ. For the
design of QnðxÞ, please refer to [9].
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contains a single event. The proof follows the same way as
Theorem 2.

Corollary 2 reveals the convexity and smoothness of
LSimCos. It can be proved using the strong convexity of ‘nðwÞ
in Corollary 1 and the pointwise maximum property of
LSimCosðwÞ.

5.2 Regret Analysis for SumVar Algorithm
We provide the complete analysis for the regret upper
bound of SumVar algorithm and state the derivation of
Theorem 4.

Let It denote the index of arm selected by A at
round t. Recall that eIs represents the estimated search
direction (i.e., the action direction) at round s, and wðtÞ ¼
1
t

P
s2½t&eIs denotes the empirical distribution of arm selec-

tions. We can derive the following recurrence:

wðtþ1Þ¼
twðtÞ þ eItþ1

tþ 1
¼wðtÞ þ

eItþ1 , wðtÞ

tþ 1
: (53)

Let w) be the optimal mixture

w) ¼ argminw2DLSumVarðwÞ; (54)

and define e)tþ1 as the following minimizer:

e)tþ1 ¼ argminz2Dz
>rLSumVarðwðtÞÞ; (55)

which is also the steepest descent direction of LSumVarðwðtÞÞ
with respect to the standard basis. Note that e)tþ1 is our desired
search direction, and we estimate it with eItþ1 based on his-
torical observations. For convenience, denote

"ðtþ1Þ ¼ rLSumVarðwðtÞÞ>ðeItþ1 , e)tþ1Þ: (56)

The regret analysis of the SumVar algorithm in Theorem 4
can be divided into the following five steps.

Step 1: By the convexity and smoothness of LSumVarðwÞ,
we first partition the regret RT and show that

RT ¼ 1

T

%P
s2½T &

b

s
þ
P

s2½T &"
ðsÞ
&
-b

lnT

T
þ 1

T

P
s2½T &"

ðsÞ:

(57)

We first claim the following recurrence:

Claim 1. ðtþ 1ÞRtþ1-tRt þ b
ðtþ1Þ þ "ðtþ1Þ:

Claim 1 implies the following:

ðtþ 1ÞRtþ1-
P

s2½tþ1&
b

s
þ
P

s2½tþ1&"
ðsÞ: (58)

Then step 1 is finished by setting tþ 1 ¼ T .

Step 2: To bound RT , we consider utilizing the concentra-
tion property of gðtÞ to bound

P
s2½T &"

ðsÞ.

We start by looking at cðtÞn , i.e., the confidence bound of
estimating rLSumVarðwðtÞÞ

**
n

with gðtÞn , which affects the

accuracy of estimating e)t with eIt when n ¼ It. The next
claim reveals the relationship between cðtÞIt and "ðtþ1Þ:

Claim 2. Assume cðtÞn satisfies

P
#
gðtÞn ,rLSumVarðwðtÞÞ

**
n
(cðtÞn

$
-zðtÞ; (59)

P
#
gðtÞn ,rLSumVarðwðtÞÞ

**
n
-, cðtÞn

$
-zðtÞ: (60)

Then with a probability at least 1, 2zðtÞ, "ðtþ1Þ-2cðtÞItþ1
.

Next, we derive the expression of cðtÞn . Theorem 3 implies
that Eqs. (59) and (60) are satisfied if cðtÞn ¼ "ðtÞn , where "ðtÞn is
defined in Theorem 3.
Proof of Theorem 3. This can be proved using the Bernstein
Inequality [17].

Recall that gðtÞn ¼ ,1
t,1

P
s2½t,1&ZnðxðsÞÞ and rLSumVarðwðtÞÞ

**
n
¼

,EZnðxÞ. Then by P ðxÞ1EnðxÞ-QnðxÞ1EnðxÞ and the defini-
tion of !-similarity, we have:

P ðxÞ1EnðxÞ
Qðx;wðt,1ÞÞ

- QnðxÞ1EnðxÞ
wðt,1Þ

n QnðxÞ þ
P

i6¼n w
ðt,1Þ
i QiðxÞ

- QnðxÞ1EnðxÞ
wðt,1Þ

n QnðxÞ þ ð1,wðt,1Þ
n Þ 1!QnðxÞ

-!1EnðxÞ:

(61)

Therefore, we obtain an upper bound of ZnðxÞ as follows:

ZnðxÞ ¼
P

i2½N&
P 2ðxÞ1EiðxÞQnðxÞ

Q3ðx;wðt,1ÞÞ

-
P

i2½N&
Q2

nðxÞ1EiðxÞQnðxÞ
Q3ðx;wðt,1ÞÞ

-!3
P

i2½N&1EiðxÞ-N!3:

(62)

Similarly, we can also bound EZnðxÞ and EZ2
nðxÞ

EZnðxÞ ¼
P

i2½N &
P

x2V
P 2ðxÞ1EiðxÞQnðxÞ

Q2ðx;wðt,1ÞÞ

-
P

i2½N&
P

x2V
P ðxÞQiðxÞ1EiðxÞQnðxÞ

Q2ðx;wðt,1ÞÞ
-!2

P
i2½N&mi;

(63)

EZ2
nðxÞ ¼

P
x2V

P 4ðxÞð
P

i2½N & 1EiðxÞÞ
2Q2

nðxÞ
Q5ðx;wðt,1ÞÞ

-
P

i;j2½N&
P

x2V
P ðxÞQ2

i ðxÞQjðxÞ1EiðxÞ1EjðxÞQ2
nðxÞ

Q5ðx;wðt,1ÞÞ
-!5

P
i;j2½N&

P
x2V1EiðxÞ1EjðxÞP ðxÞ-N!5

P
i2½N &mi:

(64)

By centering ZnðxÞ, we have

V½ZnðxÞ , EZnðyÞ&-N!5
P

i2½N&mi; (65)

jZnðxÞ , EZnðyÞj-N!3: (66)

Hence, Zmax
n -N!3. For presentation convenience, denote

f ¼ , tð"ðtÞn Þ2

2Zmax
n "ðtÞn =3þ 2VZn

:
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Then by the Bernstein inequality, we

P

%
1

t

P
s2½t&ZnðxðsÞÞ , EZnðyÞ("ðtÞn

&
-ef

P

%
1

t

P
s2½t&ZnðxðsÞÞ , EZnðyÞ- , "ðtÞn

&
-ef:

We derive "n and complete the proof by solving
f ¼ ln zðtÞ. tu

Finally, we bound cðtÞn by the following claim:

Claim 3. With the choice of cðtÞn ¼ "ðtÞn , we have

cðtÞn -
4
3N!3 lnð1=zðtÞÞ

t ; if lnð1=zðtÞÞ
t (

9
P

m2½N &mm

4N! ;

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N!5

P
m2½N& mm

lnð1=zðtÞÞ
t

q
; otherwise :

8
<

:

where "ðtÞn is defined in Theorem 3.

Remark. Combine Claim 2, 3 and Theorem 3, we see that
with the choice of cðtÞn in Theorem 3, the regret RT converges
at a rate of O

(
1
T

P
tc

ðtÞ
It

)
and the bound of cðtÞIt is given by

Claim 3.

Step 3: Next, we show that RT can converge at a faster
rate of O

(
1
T

P
t

(
cðtÞIt

)2)
instead of O

(
1
T

P
tc

ðtÞ
It

)
.

Denote h as the distance from w) to @D, i.e., the
boundary of D. We change the recurrence in Claim 1 as
follows:

Claim 4. Denote cðxÞ ¼ x2,
ffiffiffiffiffiffiffiffiffiffi
2ah2

p
x. Then

ðtþ1ÞRtþ1-tRtþ
ð"ðtþ1ÞÞ2

2ah2
þ b

tþ1
þ
%
c

- ffiffiffiffiffiffi
Rt

p .
,c

-
"ðtþ1Þ
ffiffiffiffiffiffiffiffiffiffi
2ah2

p
.&

:

Let cðtÞ , maxn2½N&c
ðtÞ
n . Claim 3 can be applied to derive an

upper bound for cðtÞn and cðtÞ. We next utilize cðtÞ and Claim 4
to bound RT .

Claim 5. Assume we select zðtÞ properly such that

1

t

P
s2½t&ðc

ðtÞÞ2(ðcðtþ1ÞÞ2:

Then with a probability at least 1,N
P

t z
ðtÞ it holds that:

TRT-
ah2

2
þ p2b2

3ah2
þ b lnT þ 8b

ah2
P

t2½T &
cðtÞ

t
þ 8

ah2
P

t2½T &ðc
ðtÞÞ2:

Step 4: Now we discuss how to select zðtÞ to guarantee
that 1

t

P
s2½t&ðcðtÞÞ

2(ðcðtþ1ÞÞ2, and bound
P

tðcðtÞÞ
2 and

P
t
cðtÞ
t .

From the previous discussion, Claim 3 gives the upper
bound of cðtÞ. Observe that 1t

P
s2½t&ðcðtÞÞ

2(ðcðtþ1ÞÞ2 is achieved
if cðtÞ decreases in t. And we need the lower bound probabil-

ity 1,N
P

tz
ðtÞ to be large enough. We select zðtÞ and bound

P
tðcðtÞÞ

2 and
P

t
cðtÞ
t by the following:

Claim 6.With the choice of zðtÞ ¼ T,2
0 ; if t-T0;

t,2; if t>T0:

"

If cðtÞ ¼ 4
3N!3 lnð1=zðtÞÞ

t , we have

P
t2½T &ðcðtÞÞ

2- 64N2!6

9

# p2ðlnT0Þ2
6 þ 2

$
;

P
t2½T &

cðtÞ
t - 8N!3

3

# p2 lnT0
6 þ 1

$
:

8
<

:

If cðtÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N!5

P
m mm

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=zðtÞÞ

t

q
, we have

P
t2½T &ðcðtÞÞ

2-4N!5
P

mmm½ðlnT0Þ2 þ ðlnT Þ2&;
P

t2½T &
cðtÞ
t -

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8N!5

P
m mm

p /
ð2þ

ffiffiffi
2
p

Þ
ffiffiffiffiffiffiffiffiffiffi
lnT0
p

þ
ffiffiffiffiffiffi
2p
p

erfð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lnT=2

p
Þ
0
:

8
><

>:

Step 5: Now we show the formal regret upper bound of
the SumVar algorithm proposed in Theorem 4.

Proof of Theorem 4.Note that

krLSumVar½w&k1 ¼ maxn2½N &;x2DjEZnðxÞj-!2
P

i2½N &mi:

(67)

With a probability at mostN
P

tz
ðtÞ- 2N

T0
, we have

RT ¼ LSumVarðwÞ , LSumVarðw)Þ
-rLSumVarðwÞ>ðw, w)Þ-krLSumVarðwÞk2kw, w)k2
-

ffiffiffiffiffi
N
p
krLSumVarðwÞk1-

ffiffiffiffiffi
N
p

!2
P

i2½N&mi:

(68)

Also, with a probability at least 1,N
P

tz
ðtÞ, we have the

bound of RT in Claim 5. By plugging bounds of
P

tðcðtÞÞ
2

and
P

t
cðtÞ
t into Claim 5, we complete the proof. tu

5.3 Regret Analysis for SimCos Algorithm
We provide the complete analysis for the regret upper
bound of the SimCos algorithm, which learns the optimal
mixture w)

w) ¼ argmin
w2D

LSimCosðwÞ ¼ argmin
w2D

argmax
i2½N&

‘iðwÞ: (69)

When updating wðtþ1Þ by wðtþ1Þ ¼ twðtÞþz
tþ1 , the SimCos algo-

rithm first locates the search direction as z ¼ e)t , then esti-
mates e)t by eIt . Next, we will show the reasonability in locating
the search direction e)tand the regret bound of eIt in learningw

).
(1) Reasonability in Locating the Search Direction.
To locate the search direction z to update wðtþ1Þ, we con-

sider e)t¼ argminz2DLSimCosðwðtÞ;zÞ. The reason is that Lemma 1
implies that z’s potential in minimizing LSimCosðwðtÞ;zÞ
approximately measures z’s potential in decreasing LSim

CosðwðtÞÞ, and the approximation error decrease at a rate of 1
t2
.

We first give the proof of Lemma 1:
Proof of Lemma 1. Specifically, we can show that

LSimCosðwðtÞ;zÞ , LSimCosðwðtþ1ÞÞ2
%
, b0

2
;,a0

2

&
0
11z, wðtÞ

tþ 1

112
2
;

where a0 ¼ minn2½N&an, b
0 ¼ maxn2½N&bn. As LSimCosðwÞ is

the pointwise maxima of an-strong convex and bn

smooth components ‘nðwÞ; n2½N &, its linearization LSimCos

ðwðtÞ;zÞ
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has the above properties. More details can be found
in [16]. tu

Let U , fe1; . . . ; eNg represent the standard basis. We
claim that the search space of e)t can be reduced from D to
U , i.e.,:

Claim 7. minz2DLSimCosðwðtÞ;zÞ ¼ minz2ULSimCosðwðtÞ;zÞ.

We reorganize e)t and thus get the desired search direc-
tion in Eq. (28), i.e., e)t ¼ argminz2ULSimCosðwðtÞ;zÞ , LSimCos

ðwðtÞÞ.
(2) Regret Bound in Learning the Optimal Mixture.
To estimate the desired search direction e)t , the SimCos

algorithm estimates LSimCosðwðtÞ; enÞ ,LSimCosðwðtÞÞ by gðtÞn
and so estimates e)t by eIt , It ¼ argminn2½N &g

ðtÞ
n . The regret

analysis of the SimCos algorithm can be divided into six
steps.

Step 1:We first decompose the regret as

LSimCosðwðtþ1ÞÞ , LSimCosðw)Þ-R1þR2þR3; (70)

where part R1, R2 and R3 are given in Section 4.2.

R1 is the estimation error and R2þR3 is the approximation
error. We will bound each part of the regret in later
discussion.

Step 2:Derive an upper bound for R1

R1-2cðtÞIt þ b0

2

11 eIt , wðtÞ

tþ 1

112
2
, a0

2

11 e)t , wðtÞ

tþ 1

112
2
: (71)

By the definition of LSimCosðwðtÞ;zÞ and Lemma1, we have

R1-LSimCosðwðtÞ; eItÞ , LSimCosðwðtÞ; e)tÞ

þ b0

2

11 eIt , wðtÞ

tþ 1

112
2
, a0

2

11 e)t , wðtÞ

tþ 1

112
2
:

(72)

Hence, to bound R1, we focus on bounding LSimCosðwðtÞ;
eItÞ , LSimCosðwðtÞ; e)tÞ. We first look at cðtÞn , i.e., the confi-
dence bound for estimating LSimCosðwðtÞ; enÞ , LSimCosðwðtÞÞ
by gðtÞn , which affects the accuracy of estimating e)t by eIt
when n ¼ It. The relationship between LSimCosðwðtÞ;eItÞ,
LSimCosðwðtÞ;e)tÞ and cðtÞIt can be revealed by the next claim:

Claim 8. Assume cðtÞn satisfies

P
#
gðtÞn ,

(
LSimCosðwðtÞ;eItÞ , LSimCosðwðtÞ;e)tÞ

)
(cðtÞn

$
-zðtÞ;

P
#
gðtÞn ,

(
LSimCosðwðtÞ;eItÞ , LSimCosðwðtÞ;e)tÞ

)
-, cðtÞn

$
-zðtÞ:

Then with a probability at least 1,2zðtÞ

LSimCosðwðtÞ;eItÞ , LSimCosðwðtÞ;e)tÞ-2cðtÞItþ1
:

Combining Eq.(72) and Claim 8, we finish bounding R1.

Step 3: Derive an upper bound for R2

R2 - , a0

2

11w
) , wðtÞ

tþ 1

112
2
þ b0

2

11 e)t , wðtÞ

tþ 1

112
2
: (73)

By the optimality of e)t , we derive that LSimCos

(
wðtÞ;

e)t
)
-LSimCos

(
wðtÞ;w)). Combining with Lemma 1, we have

LSimCos

-
twðtÞ þ e)t

tþ 1

.
-LSimCosðwðtÞ;e)tÞ þ

b0

2

11 e)t, wðtÞ

tþ 1

112
2

-LSimCosðwðtÞ;w)Þ þ b0

2

11 e)t, wðtÞ

tþ 1

112
2
:

LSimCosðwðtÞ;w)Þ-LSimCos

-
twðtÞ þ w)

t þ 1

.
,

a0

2

11w
) , wðtÞ

t þ 1

112
2
:

Hence, we finish bounding R2

Step 4: Derive an upper bound for R3

R3- t

t þ 1

#
LSimCosðwðtÞÞ , LSimCosðw)Þ

$
þ b0,a0

2

11w
) , wðtÞ

tþ 1

112
2
:

(74)

Let i ¼ argmaxn2½N& ‘n
(
twðtÞþw)

tþ1

)
. By the ai-strongly con-

vexity and bi-smoothness of ‘iðwÞ

LSimCos

-
twðtÞ þ w)

tþ1

.
¼ ‘i

-
twðtÞ þ w)

tþ 1

.

-‘iðwðtÞÞ þ r‘iðwðtÞÞ> w
), wðtÞ

t þ 1
þ bi

2

11w
),wðtÞ

t þ 1

112
2

-‘iðwðtÞÞ þ ‘iðw)Þ,‘iðwðtÞÞ
t þ1

þ bi,ai

2

11w
) , wðtÞ

t þ 1

112
2

- t

t þ 1
LSimCosðwðtÞÞ þ 1

t
LSimCosðw)Þ þ b0 , a0

2

11w
) , wðtÞ

t þ 1

112
2
:

Hence, we finish bounding R3.

Step 5: Combining the upper bound of each part, we have

RT-
2

T

P
t2½T,1&c

ðtÞ
It

þ 3ðb0 , a0Þ lnðT=2Þ
T

: (75)

Now, combining Eqs. (71), (73) and (74), we have

Rtþ1-
t

tþ 1
Rt þ 2cðtÞIt þ b0

2

11 eIt , wðtÞ

tþ 1

112
2
þ b0 , a0

2

11 e)t , wðtÞ

tþ 1

112
2

þ 2b0 , a0

2

11w
) , wðtÞ

tþ 1

112
2
- t

tþ 1
Rt þ 2cðtÞIt þ 3ðb0 , a0Þ

ðtþ 1Þ2
:

(76)

TRT-2
P

t2½T,1&

%
cðtÞIt þ 3ðb0 , a0Þ

tþ 1

&

-2
P

t2½T,1&c
ðtÞ
It

þ 3ðb0 , a0Þ lnT
2
:

(77)

Hence, we complete step 5.
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Step 6: We consider bounding cðtÞn , which measures
the accuracy in estimating LSimCosðwðtÞ; enÞ , LSimCosðwðtÞÞ
by gðtÞn .

In this step, assume x + Qðx;wðtÞÞ for all E and V if
unspecified. To finish this step, we introduce the following
components:

Aiðx;wðtÞÞ ,
1

ðmi,oiÞ2
P 2ðxÞ1EiðxÞ
Q2ðx;wðtÞÞ

; AiðwðtÞÞ , EAiðx;wðtÞÞ;

Biðx;wðtÞ;nÞ , Aiðx;wðtÞÞ QnðxÞ
Qðx;wðtÞÞ

; BiðwðtÞ;nÞ , EBiðx;wðtÞ;nÞ:

By definitions of ‘iðwðtÞÞ andr‘iðwðtÞÞ>
(
en,wðtÞ
tþ1

)
, we have

‘iðwðtÞÞ ¼ AiðwðtÞÞ , m2
i

ðmi , oiÞ2
; (78)

r‘iðwðtÞÞ>
-
en,wðtÞ

t þ 1

.
¼ AiðwðtÞÞ , BiðwðtÞ;nÞ

t þ 1
: (79)

Meanwhile, we have the following unbiased estimators:

bAiðwðtÞÞ ¼ 1

ðmi,oiÞ2
1

t

P
s2½t&AiðxðsÞ;wðtÞÞ; (80)

bBiðwðtÞ;nÞ ¼ 1

ðmi,oiÞ2
1

t

P
s2½t&BiðxðsÞ;wðtÞ;nÞ; (81)

b‘iðwðtÞÞ ¼ bAiðwðtÞÞ , m2
i

ðmi,oiÞ2
; (82)

br‘iðwðtÞÞ>
-
en,wðtÞ

t þ 1

.
¼

bAiðwðtÞÞ , bBiðwðtÞ;nÞ
t þ 1

: (83)

We first look at concentrations of bAiðwðtÞÞ and bBiðwðtÞ;nÞ, i.e.,
the key components of gðtÞn in Eq. (29), in the next claims:

Claim 9. With the choice of aðtÞi ¼ ’ðAiðx;wðtÞÞÞ, it holds that

P
#
AiðwðtÞÞ , bAiðwðtÞÞ(aðtÞi

$
- zðtÞ

8
;

P
#
AiðwðtÞÞ , bAiðwðtÞÞ- , aðtÞi

$
- zðtÞ

8
;

aðtÞi - 2!2

3ðmi , oiÞ2
lnð8=zðtÞÞ

t
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2!3mi

p

ðmi , oiÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð8=zðtÞÞ

t

q
:

Claim 10.With the choice of bðtÞi;n ¼ ’
(
Biðx;wðtÞ;nÞ

)
, then

P
#
BiðwðtÞ;nÞ , bBiðwðtÞ;nÞ(bðtÞi;n

$
- zðtÞ

8
;

P
#
BiðwðtÞ;nÞ , bBiðwðtÞ;nÞ- , bðtÞi;n

$
- zðtÞ

8
;

bðtÞi;n-
2!3

3ðmi , oiÞ2
lnð8=zðtÞÞ

t
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2!5mi

p

ðmi , oiÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð8=zðtÞÞ

t

q
:

Let the active sets of LSimCosðwðtÞ;enÞ and LSimCosðwðtÞÞ be

IðwðtÞ;nÞ ¼
"
k
**‘kðwðtÞÞ þ r‘kðwðtÞÞ> en,wðtÞ

t þ 1
¼ LSimCosðwðtÞ;enÞ;k2½N&

'
;

IðwðtÞÞ ¼
/
k
**‘kðwðtÞÞ ¼ LSimCosðwðtÞÞ; k2½N&

0
:

Also, define the complement set by

Ic
(
wðtÞ;n

)
¼ ½N&nI

(
wðtÞ;n

)
and Ic

(
wðtÞ) ¼ ½N &nI

(
wðtÞ):

To complete analyzing concentration properties of cðtÞn
in Theorem 6, we first propose the following statement:

Claim 11. Let i ¼ argmaxkb‘kðwðtÞÞ þ br‘kðwðtÞÞ>ðen,wðtÞ
tþ1 Þ and

j ¼ argmaxkb‘kðwðtÞÞ. When t is large enough such that:

t(maxi 6¼j

ð!,1
!Þ
#
AjðwðtÞÞþa

ðtÞ
j

$
þ ð1,1

!Þ

%
m2
i

ðmi,oiÞ2
,

m2
j

ðmj,ojÞ2

&

%
AiðwðtÞÞ , a

ðtÞ
i ,

m2
i

ðmi,oiÞ2

&
, bigg½AjðwðtÞÞ þ a

ðtÞ
j , tfracm2

j ðmj , ojÞ2
$

, 2 þ 1

!
;

(84)

we have i ¼ j with a probability at least 1, zðtÞ

4 .

Next, we give the proof of Theorem 6:

Proof of Theorem 6. Let i02IðwðtÞ;nÞ, j02IðwðtÞÞ. Also denote

i ¼ argmaxkb‘kðwðtÞÞ þ br‘kðwðtÞÞ>ðen,wðtÞ
tþ1 Þ, j ¼ argmaxkb‘kðwðtÞÞ.

Case 1: "ðtÞn ¼ C1
tþ1 . By the optimality of i0 and i0, we

have:

LSimCosðwðtÞ;enÞ , LSimCosðwðtÞÞ

¼ maxi0‘i0ðwðtÞÞ þ r‘i0ðwðtÞÞ>
-
en , wðtÞ

t þ 1

.
, maxj0‘j0ðwðtÞÞ

2
%
Aj0ðwðtÞÞ,Bj0ðwðtÞ;nÞ

tþ1
;
Ai0ðwðtÞÞ , Bi0ðwðtÞ;nÞ

tþ1

&
;

(85)

bLSimCosðwðtÞ;enÞ , bLSimCosðwðtÞÞ

¼ maxib‘iðwðtÞÞ þ br‘iðwðtÞÞ>
-
en , wðtÞ

t þ1

.
, maxjb‘jðwðtÞÞ

2
% bAjðwðtÞÞ , B̂jðwðtÞ;nÞ

t þ 1
;
bAiðwðtÞÞ , B̂iðwðtÞ;nÞ

t þ 1

&
:

(86)
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For 8k, we have

**AkðwðtÞÞ , BkðwðtÞ;nÞ
** ¼

**r‘kðwðtÞÞ>ðen , wðtÞÞ
**

- 1

ðmk , okÞ2
!2mk

11en , wðtÞ11
1
- 2!2mk

ðmk , okÞ2
;

(87)

** bAkðwðtÞÞ , bBkðwðtÞ;nÞ
** ¼

** br‘kðwðtÞÞ>ðen , wðtÞÞ
**

- 1

ðmk , okÞ2
!3
11en , wðtÞ11

1
- 2!3

ðmk , okÞ2
:

(88)

Combining Eqs. (85), (86), (87) and (88), we have

**/LSimCosðwðtÞ;enÞ , LSimCosðwðtÞÞ
0
, gðtÞn

**

- 1

tþ 1

%
maxk2½N &

2!2mk

ðmk , okÞ2
þ maxk2½N &

2!3

ðmk , okÞ2

&
:

(89)

Hence, "ðtÞn - C1
tþ1 always holds. The "ðtÞn ¼ C1

tþ1 case is
proved.

Case 2: "ðtÞn ¼ maxk2½N&
1

tþ1 ða
ðtÞ
k þ bðtÞk;nÞ.

Next, we analyze the case that "ðtÞn has a faster
convergence rate. Combining Claim 9,10 and Eqs. (78)
and(79), we show estimations of AkðwðtÞÞ; BkðwðtÞ;nÞ;
‘kðwðtÞÞ andr‘kðwðtÞÞ>ðen,wðtÞ

tþ1 Þ are accurate enough for us
to distinguish IðwðtÞ;nÞ from IcðwðtÞ;nÞ, and IðwðtÞÞ from
IcðwðtÞÞ with a high probability, given a large enough t.
Hence, i2IðwðtÞ;nÞ with a probability at least 1, zðtÞ

2 , if t is
large enough to satisfy

2ðt þ 2ÞaðtÞi
t þ 1

þ
2bðtÞi;n
t þ 1

-LSimCosðwðtÞ;enÞ

, maxk2IcðwðtÞ;nÞ

%
t þ 2

t þ 1
AkðwðtÞÞ , BkðwðtÞ;nÞ ,

m2
k

ðmk , okÞ2

&
:

(90)

And, j2IðwðtÞÞ with a probability at least 1, zðtÞ

4 , if t
satisfies

2aðtÞj -LSimCosðwðtÞÞ

,maxk2IcðwðtÞÞ

%
AkðwðtÞÞ, m2

k

ðmk , okÞ2

&
: (91)

To summarize, if t satisfies Claim 11, Eqs.(90) and (91),
then with a probability at least 1, zðtÞ that

/
LSimCosðwðtÞ;enÞ , LSimCosðwðtÞÞ

0

,
/ bLSimCosðwðtÞ;enÞ , bLSimCosðwðtÞÞ

0

¼
/
‘i0ðwðtÞÞ þ r‘i0ðwðtÞÞ> en,wðtÞ

t þ 1
, ‘j0ðwðtÞÞ

0

,
/
‘̂iðwðtÞÞ þ r̂‘iðwðtÞÞ> en , wðtÞ

t þ 1
, ‘̂jðwðtÞÞ

0

¼ðaÞ
/
‘iðwðtÞÞ þ r‘iðwðtÞÞ> en,wðtÞ

tþ 1
, ‘jðwðtÞÞ

0

,
/
‘̂iðwðtÞÞ þ r̂‘iðwðtÞÞ> en , wðtÞ

tþ 1
, ‘̂jðwðtÞÞ

0

¼ðbÞ
/
‘iðwðtÞÞ þ r‘iðwðtÞÞ> en , wðtÞ

tþ 1
, ‘iðwðtÞÞ

0

,
/
‘̂iðwðtÞÞ þ r̂‘iðwðtÞÞ> en , wðtÞ

t þ 1
, ‘̂iðwðtÞÞ

0

¼ðcÞAiðwðtÞÞ , BiðwðtÞ;nÞ
t þ 1

,
bAiðwðtÞÞ , bBiðwðtÞ;nÞ

t þ 1
-
aðtÞi þ bðtÞi;n
t þ 1

;

(92)

which is equivalent to

tLSimCosðwðtÞ;enÞ , LSimCosðwðtÞÞ , gðtÞn -
aðtÞi þ bðtÞi;n
tþ 1

: (93)

Assume t(T0 is large enough to satisfy the above condi-
tions. Then, ðaÞ is achieved for i2IðwðtÞ;nÞ, j2IðwðtÞÞ with
probabilities at least 1 , zðtÞ=2 and 1 , zðtÞ=4; ðbÞ is achieved
for i ¼ j with a probability at least 1, zðtÞ=4; and ðcÞ can
be shown by plugging AiðwðtÞÞ, BiðwðtÞ;nÞ, bAkðwðtÞÞ, and
bBkðwðtÞ;nÞ. We analyze the selection of T0 in the proof of
Theorem 7.

Similarly, with a probability at least 1, zðtÞ, it holds
that

LSimCosðwðtÞ;enÞ , LSimCosðwðtÞÞ , gðtÞn

¼AiðwðtÞÞ , BiðwðtÞ;nÞ
tþ 1

,
bAiðwðtÞÞ , bBiðwðtÞ;nÞ

t þ1
( ,

a
ðtÞ
i þ b

ðtÞ
i;n

tþ 1
:

(94)

Namely, "ðtÞn -maxi2½N&
1

tþ1 ða
ðtÞ
i þ bðtÞi;nÞ when t is large

enough to satisfy Claim 11, Eqs. (90) and (91). tu

Theorem 6 provides upper bounds of cðtÞn under
different conditions, depending on C1, a

ðtÞ
i and bðtÞi;n. And we

bound C1 in Theorem 6, and bound aðtÞi and bðtÞi;n in Claim 9
and 10.

Step 7: Finally, we give formal regret bounds of the Sim-
Cos algorithm and prove Theorem 7.

For convenience, assume that:

r ¼ minwðtÞ;hLSimCosðwðtÞ;ehÞ

, maxk2IcðwðtÞ;hÞ‘kðw
ðtÞ;ehÞ þ r‘kðwðtÞÞ> eh , wðtÞ

tþ 1
;

(95)

g ¼ minwðtÞLSimCosðwðtÞÞ , maxk2IcðwðtÞÞ‘kðw
ðtÞÞ: (96)
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Proof of Theorem 7. Specifically, we show that

ERT-2

%
C1T0 , C2ðln

ffiffiffi
8
p

T0Þ2 , 2C3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T0 ln 8T 2

0

q &
0 1T

þ 3ðb0 , a0Þ0 lnTT þ 2C2
ðln

ffiffi
8
p

T Þ2
T þ 4C3

ffiffiffiffiffiffiffiffiffiffi
ln 8T2

T

q
;

(97)

where C1 ¼ maxk2½N&
2!2mk

ðmk,okÞ2
þ maxk2½N&

2!3

ðmk,okÞ2
;

(98)

C2 ¼ maxk2½N&
2!2ð1þ!Þ
3ðmk,okÞ2

; (99)

C3 ¼ maxk2½N &

ffiffiffiffiffiffiffiffiffi
2!3mi

p
ð1þ!Þ

ðmi,oiÞ2
; (100)

C4 ¼ maxi;j2½N &
ð2!þ1Þð!2,1Þmj

gðmj,ojÞ2
þ

ð1,1
!Þð1þ

2
!Þm

2
i

gðmi,oiÞ2
; (101)

C5 ¼ min

"
rðC4þ1Þð!þ1Þ
2ðC4þ!þ2Þ ; g

2þ!

'
; (102)

T0 ¼ max

(
C4;

-
C3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
3
þ4C3C5

p

2C5

.4

; 150

)
: (103)

Let T0,1 be the last time before T such that Eqs. (84),
(90) and (91) are not all satisfied. Then

E
P

t2½T &c
ðtÞ
It

-
ðaÞ
C1

-
T0 , 1 þ 2

T0

.
þ

PT
t¼T0

maxk2½N &a
ðtÞ
k þ bðtÞk;It

-
ðbÞ
C1T0 þ C2

PT
t¼T0

lnð8=zðtÞÞ
t

þ C3
PT

t¼T0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð8=zðtÞÞ

t

q
;

-
ðcÞ
C1T0 þ C2ðln

ffiffiffi
8
p

tÞ2
****
T

T0

þ 2C3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t ln 8t2
p ****

T

T0

;

¼
%
C1T0 , C2ðln

ffiffiffi
8
p

T0Þ2 , 2C3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T0 ln 8T 2

0

q &

þ C2ðln
ffiffiffi
8
p

T Þ2 þ 2C3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T ln 8T 2
p

:

(104)

Notice that ðaÞ is achieved by Theorem 6 and
P

tz
ðtÞ- 2

T0
;

ðbÞ is achieved by plugging upper bounds of aðtÞk and bðtÞk;It
in Claim 9 and 10; and ðcÞ is achieved for

Pb
t¼a

lnð8=zðtÞÞ
t

<

-
ln

ffiffiffi
8
p

t

.2**b
a
; (105)

Pb
t¼a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð8=zðtÞÞ

t

q
< 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t ln 8t2
p

, 4
ffiffi
t
p

Dþ

-
1

2

ffiffiffiffiffiffiffiffiffiffiffi
ln 8t2
p .**b

a

< 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t ln 8t2
p **b

a
;

(105)

where Dþð0Þ is the Dawson’s integral. Combine Eqs. (77)
and (104), we have Eq. (97). Next, we bound T0. By the

upper bounds of aðtÞk ; bðtÞk;h given by Claim 9 and 10, and

Eqs. (99) and (100), we have 8k2½N & that

2ðtþ 2ÞaðtÞk
tþ1

þ
2bðtÞk;h
tþ1

- 2ðtþ !þ2Þ
ðtþ 1Þð! þ 1Þ

-
C2

lnð8=zðtÞÞ
t

þ C3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð8=zðtÞÞ

t

q .
:

Hence, Eq. (90) is satisfied if

2ðtþ ! þ 2Þ
ðtþ 1Þð! þ 1Þ

C2
lnð8=zðtÞÞ

t
þ C3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð8=zðtÞÞ

t

s0

@

1

A-r:

(107)

Similarly, Eq. (91) is satisfied if

2

-
C2

lnð8=zðtÞÞ
t

þ C3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð8=zðtÞÞ

t

q .
-g: (108)

With Eq. (96), in the right hand side of Eq. (84), we
have

%
AiðwðtÞÞ , m2

i

ðmi,oiÞ2

&
,

%
AjðwðtÞÞ ,

m2
j

ðmj , ojÞ2

&

¼ LSimCosðwðtÞÞ , ‘jðwðtÞÞ(g:

(109)

Notice that AjðwðtÞÞ- !mj

ðmj,ojÞ2
. By relaxing Eq. (108) to

ð2þ !Þ
(
C2

lnð8=zðtÞÞ
t

þ C3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð8=zðtÞÞ

t

q )
-g; (110)

we have 8k, ð2þ !ÞaðtÞk -g. Then the right hand side
of Eq. (84) is upper bounded by

1

g , aðtÞi ,aðtÞj

"
ð!2,1Þmj , ð1, 1

!Þm
2
j

ðmj , ojÞ2
þ

ð1, 1
!Þm

2
i

ðmi , oiÞ2
þ
-
! , 1

!

.
aðtÞj

#

, 2þ 1

!
-

ð2!þ1Þð!2,1Þmj

gðmj,ojÞ2
þ

ð1,1
!Þð1þ

2
!Þm

2
i

gðmi,oiÞ2

-maxi;j2½N&
ð2!þ1Þð!2,1Þmj

gðmj,ojÞ2
þ

ð1,1
!Þð1þ

2
!Þm

2
i

gðmi,oiÞ2
, C4:

(111)

Hence, it is sufficient to say Eq. (84) is achieved if t(C4.
As 8t(150, ln 8t

2

t - 1ffiffi
t
p . By solving C2t

,1
2 þ C3t

,1
4 ¼ C5

t ¼
C3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

3þ4C3C5

q

2C5

0

@

1

A

4

; (112)

which guarantees that both Eqs. (107) and (108) can be
satisfied. Hence, T0 is upper bounded by Eq. (103). tu

6 APPLICATIONS

In this section, we demonstrate the versatility of MIS-Learn-
ing framework by applying it to evaluate the risks for a set
of rare threats in two applications. In the first application,
we consider the Internet backbone networks. We evaluate
the impact of net- work link failures on the occurrences of
interested events En, which are specified as the non-satisfac-
tion of bandwidth demands for traffic flows n. In the second
application, we consider smart grids. We study the impact
of network component failures on the cascading failures En of
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transmission lines n and n2½N &. Numerical results show that
comparedwith the uniformmixture IS, our SumVar and Sim-
Cos algorithms reduce the associated cost measures by 37.8
and 61.6 percent in the backbone network application, and by
56.4 and 68.8 percent in the smart grid application.

6.1 Application to Backbone Network
Problem Description. We consider the Abilene backbone
network [18], [19]. As depicted in Fig. 2a, the network con-
tains 12 nodes and 30 links. Each link fails with a
probability of 0.01 and x denotes the failure occurrence pro-
file. The topology and traffic matrices are collected from
[20]. There are 132 competing flows, and their bandwidth
demands are extracted from [9]. The flow routing follows
the shortest path policy. The capacity allocation follows the
max-min fairness policy, which is also adopted by Google’s
B4 backbone network [21]. We want to evaluate the risks of
link failures (indicated by x) and study their impact on the
occurrence probabilities of flow demand unsatisfactions(indi-
cated by En), utilizing our MIS-Learning framework.

For each interested event En with occurrence probability
mn, we take the customized pure IS distribution in [9] as the
efficient IS distribution QnðxÞ of En. To accurately estimate
fmng for a set of events fEng, authors in [9] consider the MIS
solution with a uniform mixture w ¼ ð 1N ; . . . ; 1

NÞ. In the fol-
lowing, we apply our MIS-Learning framework to learn a
more efficient mixture w) which minimizes the cost measure
LðssðwÞÞ.

We first derive !-similarities between any two interested
events En1 and En2 , n1; n22½N &. The cumulative probability
distribution (CDF) of the pairwise !-similarity is provided in
Fig. 2b. By setting upper thresholds of the pairwise
!-similarity, we can partition fEngNn¼1 into different subsets,
on which we apply our MIS-Learning method to find an
efficient w to estimate occurrence probabilities of events
simultaneously. We set the upper bounds of the pairwise
!-similarity as !-100, !-200, !-300 and !2½1000; 5000&, and
obtain corresponding event subsets fEngN

0
n¼1 with set sizes of

N 0 ¼ 16, N 0 ¼ 19,N 0 ¼ 30 and N 0 ¼ 5.
Minimizing the Sum of Variances.We start with the SumVar

MIS-Learning with LðssðwÞÞ , LSumVarðwÞ. For each event sub-
set fEngN

0
n¼1 with the corresponding !-similarity threshold, we

run the SumVar MIS-learning for 80,000 rounds. Fig. 3 plots
the cost measure LSumVarðwÞ in each round. We then compare
the result with the uniform mixture proposed in [9]. Figs. 3a,
3b and 3c illustrate the reduction of LSumVarðwÞ achieved by
the SumVar MIS-Learning with a small !-similarity. Fig. 3d
illustrates the performance of the SumVar MIS-Learning
with a large !-similarity. The SumVar MIS-Learning with
Algorithm 1 reduces the cost measure by 25.1, 23.6, 26.4 and
37.8 percent when !-100, !-200, !-300 and !2½1000; 5000&.

Minimizing the Simulation Cost. We then consider the Sim-
Cos MIS-Learning with LðssðwÞÞ , LSimCosðwÞ. For each event
subset fEngN

0
n¼1 with the corresponding !-similarity threshold,

we run the SimCosMIS-Learning for 80,000 round. Fig. 3 plots
LSimCosðwÞ in each round. Figs. 3e, 3f and 3g show the reduc-
tion of LSimCosðwÞ achieved by the SimCos MIS-Learning
with a small !-similarity, while Fig. 3h show the reduction
with a large !-similarity. The SimCos MIS-Learning reduces
the cost measure by 35.7, 55.1, 39.9 and 61.6 percent when
!-100, !-200, !-300 and !2½1000; 5000&.

Impact of !-Similarity on the Convergence Rate. We study
the convergence rate of cost measures in Fig. 4, and compare
convergence rates under large ! (i.e., !2½1000; 5000) and
small ! (i.e., !-300). For the SumVar MIS-Learning with
Algorithm 1, Theorem 4 implies that the regret LSumVarðwÞ,
LSumVarðw)Þ first decreases at a fast rate in Eq. (22) and then
at a slow rate in Eq. (23). Theorem 4 also reveals that a

Fig. 3. The reduction of cost measure LSumVarðxÞ (or LSimCosðxÞ) achieved by MIS-learning, compared with the uniform mixture. (a)-(d) show the Sum-
Var case and (e)-(h) show the SimCos case; (a)-(c), (e)-(g) show the small ! case, and (d), (f) show the large ! case.

Fig. 2. The backbone network topology and !-similarity information.
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smaller ! implies a longer fast rate period. As shown in
Fig. 4, with a small !, LSumVarðwÞ decreases first at a fast rate
and then at a slow rate; with a large !, the fast rate
period vanishes. For SimCos MIS-Learning with Algo-
rithm 2, Theorem 7 states that the regret decreases first at a
fast rate of Oð1=T Þ and then at a slow rate of Qð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnT=T

p
Þ in

Eq. (97). As shown in Fig. 4, with a small !, LSimCosðwÞ
decreases first at a fast rate and then at a slow rate; with a
large !, the short fast rate period vanishes.

6.2 Application to Smart Grid
Problem Description. We consider a realistic smart grid, i.e.,
the IEEE 118-bus test system containing 118 buses, 177
transmission lines and 9 generators [22]. It can be simplified
as a network with 118 nodes and 186 links [23], as illustrated
in Fig. 5a. Each link fails with a probability uniformly
selected from 0:010½95%; 105%&, and the occurrences of initial
link failures are indicated by x.

Assume the power flows on each link follow the nonlin-
ear ACmodel [23]. When an initial set of links fail, the smart
grid can be divided into one or more connected compo-
nents, each of which can operate autonomously. Compo-
nents with no supply or no demand become dead, and the
supply and demand within alive components are reba-
lanced. This rebalance changes the power flows on each
link and result in the outages of more links, i.e., cascading
failures [23]. Assume the cascade process follows the shed-
ding and curtailing balancing rule [23], [24], and determin-
istic link outage rule [23]. We aim to evaluate the
risks of link initial failures (indicated by x), and study their
impact on the occurrence probabilities of link cascading
failures (indicated by En), utilizing our MIS-Learning
framework.

Similar with the backbone network scenario, for each En
with occurrence probability mn, we take the customized pure
IS distribution in [9] as QnðxÞ of En. We derive !-similarities

for any En1 and En2 , n1; n22½N&, and plot the CDF of
such pairwise !-similarity in Fig. 5b. We set the upper
bound of ! as !-100 and obtain an event subset fEngN

0
n¼1

with N 0 ¼ 30. We apply our MIS-Learning framework to
learn an efficient mixture w) minimizing the cost measure
LðssðwÞÞ of fEngN

0
n¼1. The cost measure reduction achieved by

w) is compared with the reduction achieved by the uniform
mixture w ¼ ð 1

N 0 ; . . . ;
1
N 0Þ in [9].

Minimizing the Sum of Variances.We start with the SumVar
MIS-Learning with LðssðwÞÞ , LSumVarðwÞ. We run the SumVar
MIS-Learning for 80,000 rounds. Fig. 6a plots the cost
measure LSumVarðwÞ in each round. One can observe that
the SumVar MIS-Learning with Algorithm 1 reduces the cost
measure by 56.4 percent comparedwith the uniformmixture.

Minimizing the Simulation Cost. We consider the SimCos
MIS-Learning with LðssðwÞÞ , LSimCosðwÞ. We run the
SumVar MIS-Learning for 80,000 round. Fig. 6b plots the
cost measure LSimCosðwÞ in each round. One can observe
that the SimCos MIS-Learning with Algorithm 2 reduces
the cost measure by 68.8 percent compared with the uni-
form mixture.

7 RELATED WORK

7.1 MIS-Learning versus IS and MIS
Comprehensive reviews on the rare event simulation
are given in [25], [26]. These works are mainly IS based and
focus on single rare event estimation [27]. Given many rare
events to estimate, as each QnðxÞ is merely customized for En
and may not work efficiently for other events, IS needs to
“sequentially” estimate the occurrence of each En with its cor-
responding pure importance distribution QnðxÞ.

To efficiently estimate multiple rare events, various
works [9], [28], [29] consider using the MIS to cooperate
multiple QnðxÞ. However, most MIS based works take a uni-
form mixture [9] or heuristic mixture strategies without theoreti-
cal guarantees [30]. Authors in [28], [29] provide examples on
the impact of mixture on the estimation efficiency and intui-
tive guidelines for selecting a proper mixture. Some works
[31], [32] consider computing the optimal mixture via stan-
dard convex optimization methods. However, they require
that at each iteration, the variances (i.e., their cost measure)
should either be computed analytically [32] or be estimated
accurately from sufficient samples [31], which is unrealizable
or computational expensive for the curse of dimensionality.

Our work aims to efficiently learn the optimal mixture
working for estimations of many rare events, with a zero
cost on extra samples. We reveal that not all rare events can be
efficiently estimated at the same time, and we introduce theFig. 5. The smart grid topology and !-similarity information.

Fig. 6. The reduction of cost measure LSumVarðxÞ (or LSimCosðxÞ)
achieved by MIS-Learning, in smart grid cascading failure simulation.

Fig. 4. The impact of !-similarity on the convergence rate.
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!-similarity to partition events into subsets with smaller !
values, which can be efficiently estimated via MIS at the
same time.

Note that the IS distribution design can also jointly con-
sider multiple rare events fEngNn¼1. However, both the objec-
tive for designing such an IS distribution and the methods to
optimize this objective need a careful design. And this is
quite different from designing IS for a single rare event,
where we only need to consider minimizing the variance for
estimating En. As the basic idea of IS is to use a distribution
QðxÞ rather than the original distribution P ðxÞ to generate x
samples. The mixture distributionQðx;wÞ ¼

P
n2½N&wnQnðxÞ

obtained using our method can be considered as an IS distri-
butionQðxÞ designed for fEngNn¼1.

7.2 MIS-Learning versus Stochastic Optimization
The MIS-Learning can be viewed as the stochastic optimization
(SO) problem over the simplex: to minimize the objective func-
tion LðssðwÞÞ, we choose at each round an action It, which
affects the variablew and provides observations onLðssðwÞÞ.

In the common case where objectives are smooth, i.e.,
LðssðwÞÞ , LSumVarðwÞ, iterative gradient-based methods, such
as the gradient descent (GD) and stochastic gradient descent
(SGD) [33], are popular optimization tools. Yet in our set-
ting, neither the gradient rLSumVarðwÞ nor its components can be
computed exactly and so estimations are required. To accu-
rately estimate rLSumVarðwðtÞÞ and meanwhile guarantee a
good convergence speed, SGD needs to generate sufficient
simulation samples from Qðx;wðtÞÞ at each learning round t,
making the learning cost unaffordable.

When objectives are non-smooth, i.e., a pointwisemaximum
function LðssðwÞÞ , LSimCosðwÞ with smooth components, gra-
dient mapping based methods [16] guarantee an exponential
regret convergence. Yet in our setting, it faces the same prob-
lem of expensive gradient (or its components) estimation. A more
challenging point is the constrained wðtÞ updating: the updating
of wðtÞ has a fixed step size of 1=t and constrained moving
directions, i.e.,wðtÞ ¼ wðt,1Þ þ 1

t ðeIt , wðt,1ÞÞ.
Our method solves these challenges and reduce the

gradient (or its components) estimation cost by generating
only one sample x from one of fQnðxÞgNn¼1 at each round.
Hence, it has a “zero cost on extra samples”. Besides, with SO,
estimations of rare events fEngNn¼1 are performed only after
deriving a proper w. In other words, samples generated
while optimizing w cannot be used for estimating fEngNn¼1.
As a contrast, our method estimates fEngNn¼1 and learns the
optimal mixture w) at the same time. Thus, it also has a “zero
learning cost”.

7.3 MIS-Learning versus MAB Optimization
The MIS-Learning is also similar to the MAB optimization
[34], [35], where at each round t, we pick an action eIt and
observe information on the loss function L. The major
difference is that these works consider a cumulative regret
1
T

P
t2½T &LðeItÞ butwe focus on the global lossLð1T

P
t2½T &eItÞ.

Problems related to the MAB optimization with the
global loss have been studied in [14], [36], [37], [38], where
they consider minimizing a known loss LðwðtÞ>V Þ with an
unknown matrixV. This differs from our setting where L is
unknown and cannot be computed analytically. [36], [38]

consider a stochastic setting and achieve a convergence rate
of Oð

ffiffiffiffiffiffiffiffiffi
1=T

p
Þ. The work in [37] considers an adversarial set-

ting, but there are cases that their regrets cannot converge to
zero. Our SumVar case is similar to [14], which considers
the global loss Lð1T

P
t2½T &eItÞ and focuses on the strongly-con-

vex and smooth loss function L. They consider LðwÞ ,P
n2½N & s

2
n=wn with the unknown but fixed s2

n; n2½N&. Yet, in
our setting, s2

n; n2½N & also depend on w.

8 CONCLUSION

This paper aims at providing efficient risk evaluation on
many network rare threats. We develop an MAB OL frame-
work to address the high simulation cost limitation of IS in
estimating occurrence probabilities for a set of rare threats.
Our framework consists of a mixture importance sampling
optimization problem (MISO) and two OL algorithms.
MISO aims to select the optimal mixture w) attaining vari-
ous tradeoffs, which are quantified by two cost measures.
We first show the objective function of MISO is computa-
tionally expensive to evaluate. Then we extend MISO to an
OL setting to efficiently optimize the objective function
without incurring any extra learning cost. Our SumVar and
SimCos algorithms learn to minimize the sum of variances
and simulation cost with regrets of ðlnT Þ2=T and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnT=T

p

respectively, where T is the number of samples. We dem-
onstrate our method on various realistic applications, and
our method reduces the cost measure value by as high as
61.6 percent in the backbone network scenario, and by 68.8
percent in the smart grid scenario.
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