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Mathematical Modeling and Analysis of Product Rating
with Partial Information

HONG XIE and JOHN C. S. LUI, The Chinese University of Hong Kong

Many Web services like Amazon, Epinions, and TripAdvisor provide historical product ratings so that users
can evaluate the quality of products. Product ratings are important because they affect how well a product
will be adopted by the market. The challenge is that we only have partial information on these ratings:
each user assigns ratings to only a small subset of products. Under this partial information setting, we
explore a number of fundamental questions. What is the minimum number of ratings a product needs so
that one can make a reliable evaluation of its quality? How may users’ misbehavior, such as cheating in
product rating, affect the evaluation result? To answer these questions, we present a probabilistic model to
capture various important factors (e.g., rating aggregation rules, rating behavior) that may influence the
product quality assessment under the partial information setting. We derive the minimum number of ratings
needed to produce a reliable indicator on the quality of a product. We extend our model to accommodate
users’ misbehavior in product rating. We derive the maximum fraction of misbehaving users that a rating
aggregation rule can tolerate and the minimum number of ratings needed to compensate. We carry out
experiments using both synthetic and real-world data (from Amazon and TripAdvisor). We not only validate
our model but also show that the “average rating rule” produces more reliable and robust product quality
assessments than the “majority rating rule” and the “median rating rule” in aggregating product ratings.
Last, we perform experiments on two movie rating datasets (from Flixster and Netflix) to demonstrate how
to apply our framework to improve the applications of recommender systems.
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1. INTRODUCTION
In many Web services, users can contribute their opinions or ideas in the form of
ratings or reviews. For example, we see ratings or reviews in content-sharing Web
sites (e.g., Flickr and YouTube), online recommendation systems (e.g., Amazon and
MovieLens), product review Web sites (e.g., TripAdvisor and Epinions), and online
e-commerce systems (e.g., eBay). With these ratings and product reviews, one can
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perform information search or make purchase decisions by taking advantage of the
opinions of other users (also known as wisdom of the crowd). In addition, the service
provider can infer users’ preferences from these ratings to make better recommenda-
tions. Such Web-based online rating systems operate as follows. There are a number
of items (e.g., products, pictures, videos). Each user provides ratings or reviews to a
subset of items. The ratings of an item are available to the public.

Online rating systems are classified into two typical categories according to their
application domains. The first category interprets ratings as public quality assessments
on products [Lauw et al. 2008, 2012; Traupman and Wilensky 2006], where users act
as reviewers and assess the quality of products in the form of ratings. For example,
users assign ratings to reflect the quality of products or the reputation level of sellers
in eBay. Other typical examples include Epinions, TripAdvisor, and Wikipedia. The
main interest is in identifying the intrinsic quality of products from their historical
ratings. The intrinsic quality of products can help a service provider make better
promotions of products to increase the sales. In addition, users will be more likely
to purchase a product that fulfills their expectation with the benefit of the intrinsic
quality in comparing products, leading to more users being encouraged to participate
(i.e., assign ratings or purchase products). The second category of online rating systems
interprets ratings as users’ preference information. For example, users express ratings
to show their preferences or tastes in movies on IMDB. More examples include Flixster,
Netflix, and RateBeer. Such systems are called recommendation systems [Adomavicius
and Tuzhilin 2005; Resnick and Varian 1997], where personalized quality of a product
is of essential importance instead of the intrinsic quality. The main objective of such
systems is to make personalized recommendations [Herlocker et al. 2004; Resnick et al.
1994; Resnick and Varian 1997].

This article focuses on the first category of online rating systems—that is, ratings are
interpreted as product quality assessments. Identifying the intrinsic quality of products
is critical to the revenue of such online rating systems. However, we only have partial
information on the product rating: each user only expresses ratings to a small subset
of products. This partial information makes it challenging to assess the quality of
products reliably. Hence, it is important to understand the accuracy and effectiveness
of such online rating systems in assessing product quality. In particular, we seek to
explore a number of fundamental questions: What is the minimum number of ratings a
product needs to have a reliable reflection on its quality? How may users’ misbehavior
or inherent biases in rating affect the accuracy? The answers to these questions provide
important building blocks to improve the applications of online rating systems. First,
a service provider can design some efficient incentive mechanisms to incentivize users
to contribute ratings to those products that have insufficient number of ratings (i.e.,
smaller than the minimum number of ratings) to improve the accuracy of product
quality assessment. Second, a service provider can put more weights on those products
that have a sufficient number of ratings (i.e., larger than the minimum number of
ratings) to make more reliable product promotions. Third, a service provider can gain
important insights in designing or deploying misbehavior detection algorithms. For
example, if a very small fraction of misbehaving users can distort the product quality
assessment, then a service provider needs to design (or deploy) a detection algorithm
with a very high true positive value. However, if a small fraction of misbehaving users
can be tolerated by compensating a small number of ratings, then a service provider
may relax the restriction on the true positive value to attain better design trade-
offs. Fourth, users can put more attention on those products that have a sufficient
number of ratings to increase the possibility that they purchase a product fulfilling
their expectation. Little attention has been paid to these fundamental questions. This
work fills this void. Our contributions are as follows:
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—We propose a probabilistic model to capture various important elements (e.g., rating
aggregation rules, rating behavior) of an online rating system. Our model is general
enough to represent both honest and misbehaving users in product rating.

—We derive the minimum number of ratings needed to produce a reliable product
quality assessment under the honest rating and the misbehavior setting. We derive
maximum fraction of misbehaving users that a rating aggregation rule can tolerate.

—We propose an inference algorithm to infer parameters of our model from partial
information, say available ratings, to address the applicability of our framework.

—We perform experiments using both synthetic data and real-world data (from Amazon
and TripAdvisor) to validate our model and examine various factors that may affect
the accuracy of product quality assessment. We show that the average score rule is
more robust and reliable than the majority rule and the median rule in evaluating
product quality. We find that around 100 ratings are sufficient to reflect the true
quality of an item on TripAdvisor (or Amazon).

—We perform experiments on two movie rating datasets (from Flixster and Netflix) to
demonstrate how to apply our framework to recommender systems.

The rest of the article is organized as follows. In Section 2, we present the system
model. In Section 3, we derive the minimum number of ratings needed under honest or
misbehaving settings. In Section 4, we present an inference algorithm to infer model
parameters. In Section 5, we present experimental results using synthetic data. In
Section 6, we present experimental results using real-world datasets. In Section 7, we
demonstrate how to apply our framework recommender systems. Related work is given
in Section 8, and Section 9 concludes and discusses future directions.

2. SYSTEM MODEL
We consider an online rating system composed of a finite set of N products denoted by
P1, . . . , PN and M users denoted by U1, . . . ,UM. Each user only expresses ratings to a
subset of products on an m-level cardinal metric {1, . . . , m}. For example, a three-level
cardinal metric can be {1 = “poor,” 2 = “good,” 3 = “excellent”}. A larger rating implies
higher quality. Users independently express ratings to products. Product Pi has ni ≤ M
ratings. Let ni,k denote the number of ratings for Pi that are of rating level k. Let
ri ={ri,1, . . . , ri,M} denote a set of M ratings for Pi, where ri, j ∈ {1, . . . , m} if U j rates Pi;
otherwise, ri, j = 0. We emphasize that ri, j = 0 implies a missing rating. We treat the
available ratings as partial information. One most important application of product
rating is in assessing the quality of products. This work aims to explore how various
factors can influence the assessment accuracy.

2.1. Rating Aggregation Rules
The quality of a product is assessed by performing a rating aggregation on its historical
ratings. We consider the following three commonly used rating aggregating rules.

—Majority rule (MR): MR assesses the quality of a product via the majority of its
historical ratings. Let ℓ̂i denote the evaluated label of Pi produced by performing
the majority rule on its historical ratings. Formally, we have ℓ̂i = arg maxk{ni,k}.
Let ℓi ∈ {1, . . . , m} represent the label that reflects the true quality of Pi under the
majority rule. We emphasize that users do not have any prior knowledge on ℓi. How
many ratings do we need to have a strong guarantee that ℓ̂i reveals the true label ℓi?

—Median rule (MDR): MDR assesses the quality of a product via the median of its
historical ratings. Let l̂i denote the median rating of Pi produced by performing the
median rule on its historical ratings. Formally, we have l̂i = arg mink{|{ri, j |1 ≤ ri, j ≤
k}|/ni >

1
2 }. Let li ∈{1, . . . , m} represent the median rating that reflects the true quality
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of Pi under the median rule. Users do not have any prior knowledge on li. How many
ratings do we need to have a strong guarantee that l̂i reveals li?

—Average score rule (ASR): ASR assesses the quality of a product the average of its
historical ratings. Let γ̂i =

∑
j ri, j/ni denote the average rating of Pi produced by

performing the average score rule on its historical ratings. Let γi ∈ [1, m] denote the
average rating that reflects the true quality of Pi under the average score rule. Users
do not have any prior knowledge on γi. How many ratings do we need so that γ̂i
accurately reflects γi?

Remark. First, thevariables ℓi, li, γi are treated as latent variables. Second, in prac-
tice, ℓi, li, γi may not be the same, because they represent three different ways in
defining the true quality of products—that is, by opinions from the majority, by opin-
ions that stand in the median, or by averaging the whole opinions.

2.2. Model for Rating Behavior
A user needs to assess the quality of a product to express a rating. We consider two of
the most important factors that affect this assessment: a user’s (1) intrinsic quality of
products and (2) expertise level (or knowledge level).

We describe the rating behavior via a random variable that one can vary its mean or
variance to reflect the preceding factors. A large mean implies a product having a high
intrinsic quality, and a small variance implies that a user has a high expertise level
in assessing the quality of a product. More concretely, we describe the rating behavior
that results in ri, j using the following probability mass function (pmf) of ri, j :

Pr[ri, j = k] = ρi j,k, k = 1, . . . , m, (1)

where ρi j,k ≥ 0 and
∑m

k=1 ρi j,k=1. We emphasize that different users may have different
rating distributions over the same product. The collective rating behavior of the whole
user population over product Pi reflects the public opinion on Pi. To model it, let
(θ1, . . . , θm) denote one instance of the probability distribution for a rating, where 0 ≤
θi ≤ 1 and

∑m
i=1 θi =1. We express the space over all possible probability distributions

for a rating as S = {(θ1, . . . , θm)|
∑m

i=1 θi = 1, θi ≥ 0,∀i}. We assume that there is an
underlying distribution, say D(Pi), over the space S that defines the collective rating
behavior to product Pi. In this study, D(Pi) is a Dirichlet distribution Dirichlet(αi) with
density function

p(θ1, . . . , θm) = %(
∑m

k=1 αi,k)∏m
k=1 %(αi,k)

m∏

k=1

θ
αi,k−1
k , (2)

where αi = (αi,1, . . . , αi,m),
∑m

k=1 αi,k=1, and αi,k > 0,∀k. Note that we require
∑m

k=1 αi,k=
1 mainly for the purpose of simplifying notations. It does not lose any generality,
because one will see later that our results canincorporate the case

∑m
k=1 αi,k ≠ 1 by

substituting αi,1, . . . , αi,m with αi,1∑m
k=1 αi,k

, . . . ,
αi,m∑m
k=1 αi,k

, respectively.

Remark. We treat each observed rating as a random sample produced by the
generative process that generates a user by drawing a multinomial distribution
ρi j = (ρi j,1, . . . , ρi j,m) from Dir(αi) and generates a rating from this multinomial dis-
tribution. We have two reasons for choosing the Dirichlet distribution. First, Dir(αi)
contains mparameters, and by varying them we can model any collective rating behav-
ior of the whole user population to Pi. Second, Dir(αi) is a quite natural and reasonable
distribution over the space S [Bishop 2006].
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2.3. Model for Misbehavior
Users’ misbehavior in ratings widely exist in many Web services, such as TripAdvisor,
Amazon, and eBay. Misbehaving users in online rating systems have been reported
extensively over the past decade. For example, it has been reported [ABC7 News 2012]
that some users are paid to post five-star Google feedbacks. In addition, users of Amazon
are paid to promote (five-star rating) or pan (one-star rating) a product [The New
York Times 2004]. More reports on misbehaving users can be found in other sources
[BBC News 2013; TheWallStreetJournal 2009]. Furthermore, some companies, such
as PayPerPost [2015], provide professional fake review (rating)-writing services. Their
services include promoting or badmouthing a product, or even assigning random ratings
to attack an online rating system. Jindal and Liu [2007] published a dataset from
Amazon, and they detected reviews (or ratings) assigned by misbehaving users. Their
results indicate the existence of misbehavior in real data. To explore their impact, we
consider the following typical cases of misbehavior:

—Random misbehavior: A random misbehavior implies that a user assigns a random
rating to a product. Random misbehavior may arise in the following scenarios. A
product rating Web site may launch some rating robots or hire some users to attack a
competitor’s Web site by assigning random ratings to distort this competitor’s system.
On the other hand, many product rating Web sites deploy incentive mechanisms
that reward users’ rating in the form of income share (e.g., Epinion), badges (e.g.,
TripAdvisor), and so forth. In such systems, it may happen that some users are
impatient or do not want to spend a long time to evaluate the quality of an item,
resulting in assignment of random ratings to earn the rewards. To illustrate, suppose
that ri, j is assigned by a random misbehaving user. Formally, we have

Pr[ri, j = k|ρi j] = 1
m

, ∀k = 1, . . . , m,

where ρi j = (ρi j,1, . . . , ρi j,m) is the true pmf of ri, j . Let fr ∈ [0, 1] denote the fraction of
random misbehaving users.

—Biased misbehavior. A biased misbehavior implies that a user is biased toward one
particular rating. For example, a user may be hired by a company to assign the
lowest rating to a competitor’s product or assign the highest rating to his employer’s
product. To illustrate, consider a biased misbehaving user U j expressing a rating ri, j
to Pi. Let ℓ′

j ∈ {1, . . . , m} denote the rating toward which U j is biased. Formally, we
can model the rating under biased misbehavior as

Pr[ri, j = k|ρi j] =
{

1, if k = ℓ′
j,

0, otherwise,

where ρi j = (ρi j,1, . . . , ρi j,m) is the true pmf of ri, j . Let fb ∈ [0, 1] represent the fraction
of biased misbehaving users.

2.4. Model for Inherent User Biases
We use a probabilistic model to capture inherent user biases in rating. In many real-
world scenarios, users’ ratings may not accurately reflect their experiences on products,
but rather they might be biased due to inherent user biases—that is, some critical
users may express lower ratings, and some lenient users may express higher ratings.
Based on inherent user biases, we categorize users into three types: critical means
assigning lower ratings, lenient means assigning higher ratings, and neutral means
assigning ratings accurately reflects users’ experiences. Recall that in Section 2.2,
we model the collective rating behavior of neutral user via the Dirichlet distribution
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Dir(αi). We extend it to model the collective rating behavior of critical users via the
Dirichlet Dir(α′

i). One can vary the value of α′
i to reflect the critical degree. For example,

α′
i ≈ (1, 0, . . . , 0) implies that critical users are most likely to assign the lowest rating of

1. Similarly, we model the collective rating behavior of lenient users via the Dirichlet
distribution Dir(α∗

i ). One can vary the value of α∗
i to reflect the degree of leniency.

For example, α∗
i ≈ (0, . . . , 0, 1) implies that lenient users are most likely to assign the

highest rating of m.

3. THEORETICAL ANALYSIS
We derive the minimum number of ratings a given product needs so that its aggregate
rating is statistically accurate to reflect its true quality under the honest rating and
the misbehavior setting. We also derive the maximum fraction of misbehaving user
that a rating aggregation rule can tolerate.

3.1. Majority Rule
We derive tight lower bounds on the number of ratings needed so that ℓ̂i reveals the
true label ℓi with high probability (i.e., Pr[ℓ̂i = ℓi] ≈ 1). We also quantify the impact of
misbehavior and inherent user biases on these lower bounds.

Analysis for honest rating. Let us begin our exploration by a simple case that all users
rate products honestly and are neutral. In our analysis, we assume that the model
parameters αi,∀i are given. In Section 4, we will show how to infer these parameters
from historical ratings. For the ease of presentation, let r+

i ={r+
i,1, . . . , r+

i,ni
} denote a set

of all positive (or observed) ratings of Pi. We state the pmf of r+
i, j in the following lemma.

LEMMA 3.1. The pmf of the rating r+
i, j can be expressed as Pr[r+

i, j = k] = αi,k, for all
k = 1, . . . , m, where i =1, . . . , N and j =1, . . . , ni.

PROOF. Please refer to the Appendix for the derivation.

Remark. Collectively, Pi receives a rating k with probability αi,k. It implies that
ℓi =arg maxk{αi,k} and ℓ̂i converges to the true label ℓi as the number of ratings ni goes
to infinity. We next derive a practical lower bound on the number of ratings needed to
guarantee ℓ̂i =ℓi with high probability.

Definition 3.2. Let α̃i ! max{αi,k|k ̸= ℓi} denote the second largest value among
αi,1, . . . , αi,m.

Definition 3.3. Let n′
i denote the minimum number of ratings needed to guarantee

that the aggregate rating of Pi reflects its true quality with high confidence.

THEOREM 3.4 (HONEST RATING). Suppose that users rate honestly and are neutral. If

ni ≥n′
i = (2(αi,ℓi +α̃i)(αi,ℓi −α̃i)−2 − 2 + 4(αi,ℓi −α̃i)−1/3) ln(m− 1)δ−1, (3)

then Pr[ℓ̂i =ℓi]≥1−δ.

PROOF. Please refer to the Appendix for the derivation.

Remark. To increase the confidence 1 − δ in revealing the true label, we need to
increase the minimum number of ratings n′

i in a logarithmic rate. Observe that n′
i is

proportional to 1/(αi,ℓi − α̃i)2. This implies that the smoother the model parameter αi
curve, the larger the minimum number of ratings.

Table I presents some numerical examples on the minimum number of ratings. It
depicts the level of rating metric m, the model parameter αi, the success probability
1−δ, and the minimum number of ratings n′

i. An increase in 1−δ from 0.7 to 0.9 results
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Table I. Minimum Number of Ratings (MR, Honest Rating)

m αi = (αi,1, αi,2, αi,3, αi,4,αi,5) 1 − δ n′
i

5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.7 57
5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.8 66
5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.9 81

Table II. Minimum Number of Ratings to Tolerate Random Misbehavior (MR)

m αi = (αi,1, αi,2, αi,3,αi,4, αi,5) 1 − δ fr f r n′
i

5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.8 0 1 66
5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.8 0.05 1 71
5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.8 0.1 1 78

in an increase in the minimum number of ratings from 57 to 81. We next show that the
bound derived in Theorem 3.4 is tight.

THEOREM 3.5 (TIGHTNESS OF BOUND). Suppose that all users rate honestly and are
neutral. Assume that α̃i ≥ 100αi,ℓi /101. There exists a positive constant η such that for
any δ ≤ η, if ni = O((αi,ℓi + α̃i)(αi,ℓi − α̃i)−2 ln δ−1) ratings, then Pr[ℓ̂i ̸= ℓi] ≥ )(δ).

PROOF. Please refer to the Appendix for the derivation.

Remark. It implies that the lower bound derived in Theorem 3.4 is asymptotically
tight, because it is asymptotically equal to 2(αi,ℓi + α̃i)(αi,ℓi − α̃i)−2 ln δ−1.

Analysis of rating under misbehavior. We now explore the impact of misbehavior in
ratings. We first explore the impact of random misbehavior. We quantify its impact on
the minimum number of ratings in the following theorem.

Definition 3.6. Let f r denote the maximum fraction of random misbehaving users
that a rating aggregation rule can tolerate.

THEOREM 3.7 (RANDOM MISBEHAVIOR). Suppose that the fraction of random misbehaving
users satisfies fr < f r =1 and other users rate honestly and are neutral. If ni satisfies ni ≥
n′

i = ((4 fr/m+2(1− fr)(αi,ℓi +α̃i))(1− fr)−2(αi,ℓi −α̃i)−2+ 4
3 (1− fr)−1(αi,ℓi −α̃i)−1−2) ln m−1

δ
,

then Pr[ℓ̂i = ℓi] ≥ 1 − δ.

PROOF. Please refer to the Appendix for the derivation.

Remark. If the fraction of random misbehaving users is less than 1, the majority rule
can always tolerate it by compensating a large enough number of ratings. This implies
that random misbehavior does not distort the product quality assessment.

Table II presents some numerical results on the minimum number of ratings. It
depicts m, αi, 1−δ, n′

i, the fraction of random misbehaving users fr, and f r, respectively.
An increase in fr from 0 to 0.1 results in an increase in n′

i from 66 to 78.

Discussion. In our analysis, fr is set to be a pregiven value; however, in practice, we
may not have any a priori knowledge on fr. We will see later that the fraction of biased
misbehaving users is set to be a pregiven value as well. We state their reasonability as
follows. We investigate whether a rating aggregation rule can tolerate a small fraction
of misbehaving users and how many ratings we need to compensate to tolerate this
misbehavior. The answers to these questions may give us important insights on detect
or defend misbehavior. For example, if a very small fraction of misbehaving users can
distort the product quality assessment, then a service provider needs to design (or
deploy) a detection algorithm with a very high true positive value. However, if a small
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Table III. Minimum Number of Ratings to Tolerate Biased Misbehavior (MR)

m αi = (αi,1,αi,2, αi,3, αi,4, αi,5) 1−δ ℓ′ f b fb n′
i

5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.8 5 0.211 0 66
5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.8 5 0.211 0.05 112
5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.8 5 0.211 0.1 237

fraction of misbehaving users can be tolerated by compensating a small number of
ratings, then a service provider may relax the restriction on the true positive value to
attain better design trade-offs. Furthermore, we derive analytical expressions for the
maximum fraction of misbehaving users that a rating aggregation rule can tolerate.
As illustrated in Section 6.4, we apply this result to analyze real-world data. Through
the analysis result, we obtain important insights on the fraction of misbehaving users
that a rating aggregation rule can tolerate in practice.

We now explore the impact of biased misbehavior. In the following analysis, we
assume that all biased misbehaving users bias toward the same rating ℓ′ (i.e., ℓ′

j =
ℓ′,∀ j).

Definition 3.8. Let f b denote the maximum fraction of biased misbehaving users
that a rating aggregation rule can tolerate.

THEOREM 3.9 (BIASED MISBEHAVIOR). Suppose that biased misbehaving users bias
against the ground-truth label—that is, ℓ′ ̸= ℓi . Assume that the fraction of biased
misbehaving users satisfies

fb < f b = (αi,ℓi − αi,ℓ′)/(1 + αi,ℓi − αi,ℓ′), (4)

and other users rate honestly and are neutral. If ni satisfies ni ≥ n′
i = (2(αi,ℓi +

max{ fb/(1− fb)+αi,ℓ′ , α̃i})(1− fb)−1(αi,ℓi −max{ fb/(1− fb)+αi,ℓ′, α̃i})−2 + 4
3 (1− fb)−1(αi,ℓi −

max{ fb/(1 − fb) + αi,ℓ′ , α̃i})−1 − 2) ln m−1
δ

, then Pr[ℓ̂i = ℓi] ≥ 1 − δ. If fb does not satisfy
Inequality (4), then it is impossible to extract the true label with high probability no
matter how many ratings we have.

PROOF. Please refer to the Appendix for the derivation.

Remark. The upper bound derived in Inequality (4) is proportional to αi,ℓi − αi,ℓ′ . It
implies that the smoother the model parameter αi curve, the smaller the fraction of
biased misbehaving users that the majority rule can tolerate.

Table III presents some numerical examples on f b and the minimum number of
ratings needed to tolerate biased misbehavior. One can observe that the majority rule
can tolerate a fraction of at most 0.211 biased misbehaving users. An increase in
the fraction of biased misbehaving users from 0 to 0.1 results in an increase in the
minimum number of ratings from 66 to 237—a significant increase. Tolerating biased
misbehavior requires more ratings than random misbehavior (please refer to Table II).

Analysis of rating under inherent user biases. Now we explore the impact of inherent
user biases. One can observe that the preceding analysis of misbehavior can easily be
extended to quantify the impact of inherent user biases. We omit the analysis results
here to avoid redundancies and save some spaces.

3.2. Median Rule
We now analyze the median rule. We follow the same analysis flow as the majority
rule.

Analysis for honest rating. We assume that all users rate products honestly and are
neutral. Applying Lemma 3.1, we have li =arg mink{

∑k
κ=1 αi,κ > 1

2 }, and l̂i converges to
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Table IV. Minimum Number of Ratings (MDR, Honest Rating)

m αi = (αi,1, αi,2,αi,3, αi,4, αi,5) 1 − δ n′
i

5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.7 38
5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.8 47
5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.9 60

li as the number of ratings ni goes to infinity. We next derive a practical lower bound
on the number of ratings needed to guarantee l̂i =li with high probability.

Definition 3.10. Let Fi(k) ! Pr[r+
i, j ≤ k] =

∑k
k′=1 αi,k′ , where k = 1, . . . , m, denote the

probability that product Pi receives a rating smaller or equal to k.

THEOREM 3.11 (HONEST RATING). Suppose that all users rate honestly and are neutral.
If ni satisfies ni ≥ n′

i = (3(αi,li −|2Fi(li)−αi,li −1|)−2−3+2(αi,li −|2Fi(li)−αi,li −1|)−1) 2
3 ln 2

δ
,

then Pr[̂li = li] ≥ 1 − δ.

PROOF. Please refer to the Appendix for the derivation.

Remark. To increase the confidence 1 − δ in revealing the true label li, we need
to increase the minimum number of ratings n′

i in a logarithmic rate. The minimum
number of ratings is proportional to (αi,li − |2Fi(li) −αi,li − 1|)−2 = (min{Fi(li) − 0.5, 0.5 −
Fi(li − 1)})−2. This implies that the smoother the model parameter αi curve, the larger
the minimum number of ratings n′

i. The smoothness of the model parameter αi curve
is the key factor in influencing n′

i.
Table IV presents some numerical results on the minimum number of ratings. An

increase in the success probability (1−δ) from 0.7 to 0.9 results in an increase in the
minimum number of ratings n′

i from 38 to 60. We next show this bound is tight.

THEOREM 3.12 (TIGHTNESS OF BOUND). Suppose that all users rate honestly and are
neutral. There exists three positive constants η1, η2 >0.5 and η3 <0.5 such that for any δ∈
[0, η1], Fi(li)∈ [0.5, η2], and Fi(li−1)∈ [η3, 0.5]. If ni = O((αi,li −|2Fi(li)−αi,li −1|)−2 ln δ−1),
then Pr[̂li ̸= li] ≥ )(δ).

PROOF. Please refer to the Appendix for the derivation.

Remark. It states that the lower bound derived in Theorem 3.11 is asymptotically
tight because it is asymptotically equal to 2(αi,li − |2Fi(li) − αi,li − 1|)−2 ln δ−1.

Analysis of rating under misbehavior. We first explore the impact of random misbe-
havior on the minimum number of ratings. The following theorem derives the maximum
fraction of random misbehavior that the median rule can tolerate and the minimum
number of ratings needed to compensate in tolerating a given fraction of random mis-
behaving users.

THEOREM 3.13 (RANDOM MISBEHAVIOR). Suppose that the fraction of random misbehav-
ing users satisfies

fr ≤ f r = min

{(
Fi(li) − 0.5
Fi(li) − li/m

)Ii1

,

(
0.5 − Fi(li − 1)

(li − 1)/m− Fi(li − 1)

)Ii2
}

, (5)

and other users rate honestly and are neutral, where Ii1 = 1 if li < mFi(li), otherwise
Ii1 = 0, and Ii2 = 1 if li > mFi(li −1)+1, otherwise Ii2 = 0. If ni satisfies ni ≥ n′

i =
(3( fr/m+ (1 − fr)αi,li − |(2li − 1) fr/m+ (1 − fr)(2Fi(li) − αi,li ) − 1|)−2 − 3 + 2( fr/m+ (1 −
fr)αi,li − |(2li −1) fr/m+(1− fr)(2Fi(li) − αi,li )−1|)−1) 2

3 ln 2
δ
, then Pr[̂li = li] ≥ 1 − δ. If fr
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Table V. Minimum Number of Ratings to Tolerate Random Misbehavior (MDR)

m αi = (αi,1,αi,2, αi,3, αi,4,αi,5) 1 − δ f r fr n′
i

5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.8 0.625 0 47
5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.8 0.625 0.05 55
5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.8 0.625 0.1 66

Table VI. Minimum Number of Ratings to Tolerate Biased Misbehavior (MDR)

m αi = (αi,1, αi,2, αi,3,αi,4, αi,5) 1−δ ℓ′ f b fb n′
i

5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.8 1 0.25 0 47
5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.8 1 0.25 0.05 72
5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.8 1 0.25 0.1 126

does not satisfy Inequality (5), then it is impossible to extract the true label li with high
probability no matter how many ratings we have.

PROOF. This proof is similar to that of Theorem 3.7.

Remark. The upper bound derived in Inequality (5) is proportional to min{Fi(li) −
0.5, 0.5 − Fi(li − 1)}. It implies that the smoother the model parameter αi curve, the
smaller the fraction of random misbehaving users that the median rule can tolerate.

Table V presents some numerical results on f r and n′
i. When αi =

(2/30, 3/30, 5/30, 14/30, 6/30), the median rule can tolerate a maximum fraction of
f r = 0.625 random misbehaving users. An increase in fr from 0 to 0.1 results in an
increase in n′

i from 47 to 66—a slight increase.
We next derive the maximum fraction of biased misbehavior that the median rule

can tolerate and the minimum number of ratings needed to compensate in tolerating
a given fraction of biased misbehaving users.

THEOREM 3.14 (BIASED MISBEHAVIOR). Suppose that biased misbehaving users bias
against the ground-truth label—that is, ℓ′ ̸= li. Assume that the fraction of biased
misbehaving users satisfies

fb ≤ f b =
{ 1 − 1/(2Fi(li)), ℓ′ > li

1 − 1/(2 − 2Fi(li − 1)), ℓ′ < li
, (6)

and other users rate honestly and are neutral. If ni satisfies ni ≥ n′
i = (3((1 − fb)αi,li −

|2 fbI{ℓ′<li} + (1− fb)(2Fi(li)−αi,li )−1|)−2 −3+2((1− fb)αi,li − |2 fbI{ℓ′<li} + (1− fb)(2Fi(li)−
αi,li ) − 1|)−1) 2

3 ln 2
δ
, then Pr[̂li = li] ≥ 1 − δ. If fb does not satisfy Inequality (6), then it is

impossible to extract the true label li with high probability no matter how many ratings
we have.

PROOF. This proof is similar to that of Theorem 3.7.

Remark. The upper bound derived in Inequality (6) is proportional to min{Fi(li) −
0.5, 0.5 − Fi(li − 1)}. It implies that the smoother the model parameter αi curve, the
smaller the fraction of biased misbehaving users that the median rule can tolerate.

Table VI presents some numerical examples on f b and n′
i. When ℓ′ = 1 and αi =

(2/30, 3/30, 5/30, 14/30, 6/30), the median rule can tolerate a maximum fraction of
f b = 0.25 biased misbehaving users. An increase in fb from 0 to 0.1 results in an
increase in n′

i from 47 to 126—a significant increase.
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Table VII. Minimum Number of Ratings (ASR, Honest Rating)

m αi = (αi,1,αi,2, αi,3, αi,4, αi,5) 1 − δ Er n′
i

5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.7 0.5 32
5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.8 0.5 39
5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.9 0.5 50

3.3. Average Score Rule
We now analyze the average score rule following the same flow with majority rule.

Analysis for honest rating. We assume that all users rate products honestly and
are neutral. Applying Lemma 3.1, we have γi =

∑
k kαi,k, and γ̂i converges to γi as the

number of ratings ni goes to infinity. We next derive a practical lower bound on the
number of ratings needed so that γ̂i accurately reflects γi with high probability.

Definition 3.15. Let Er denote the maximum acceptable estimation error between γ̂i
and γi. In other words, we accept γ̂i only when |γ̂i − γi| ≤ Er.

THEOREM 3.16 (HONEST RATING). Suppose that all users rate honestly and are neutral.
If the number of ratings ni satisfies ni ≥ n′

i = 2((
∑

k k2αi,k − γ 2
i )E−2

r + m
3Er

) ln 2
δ
, then

Pr[|γ̂i − γi| ≤ Er] ≥ 1 − δ.

PROOF. Please refer to the Appendix for the derivation.

Remark. With a large enough number of ratings, γ̂i can reflect γi with an arbitrarily
small error. The minimum number of ratings n′

i is approximately equal to 2(
∑

k k2αi,k −
γ 2

i )E−2
r ln 2δ−1. It implies that the estimation error Er and the smoothness of the model

parameter αi curve are key factors that influence the minimum number of ratings.
Table VII presents some numerical results on the minimum number of ratings n′

i. It
depicts m, αi, 1 − δ, n′

i and Er, respectively. An increase in the success probability 1 − δ
from 0.7 to 0.9 results in an increase in the minimum number of ratings n′

i from 32 to
50. It is interesting to observe that using the average score rule, we need 39 ratings
(1 − δ = 0.8), whereas one needs 66 ratings using the majority rule (please refer to
Table I) and needs 47 ratings using the median rule (please refer to Table IV). Namely,
the average score rule requires fewer ratings than the majority rule and the median
rule. We next show that the bound derived in Theorem 3.16 is tight.

THEOREM 3.17 (TIGHTNESS OF BOUND). Suppose that all users rate honestly and are
neutral. Assume that

∑
k k2αi,k−γ 2

i ≥ m2/100. There exist two positive constants η1, η2

such that for any Er ∈ [0, η1] and any δ∈ [0, η2], if ni = O((
∑

k k2αi,k − γ 2
i )E−2

r ln δ−1), then
Pr[|γ̂i − γi| ≥ Er] ≥ )(δ).

PROOF. Please refer to the Appendix for the derivation.

Remark. It implies that the lower bound derived in Theorem 3.16 is asymptotically
tight because it is asymptotically equal to 2(

∑
k k2αi,k − γ 2

i )E−2
r ln 2δ−1.

Analysis of rating under misbehavior. We first explore the impact of random misbe-
havior on the minimum number of ratings. The following theorem derives the maximum
fraction of random misbehavior that the average score rule can tolerate and the mini-
mum number of ratings needed to compensate in tolerating a given fraction of random
misbehaving users.

THEOREM 3.18 (RANDOM MISBEHAVIOR). Suppose that the fraction of random misbehav-
ing users satisfies

fr < f r = Er/|γi − (m+ 1)/2|, (7)
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Table VIII. Minimum Number of Ratings to Tolerate Random Misbehavior (ASR)

m αi = (αi,1, αi,2, αi,3,αi,4, αi,5) 1−δ Er fr f r n′
i

5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.8 0.5 0 0.789 39
5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.8 0.5 0.05 0.789 44
5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.8 0.5 0.1 0.789 51

Table IX. Minimum Number of Ratings to Tolerate Biased Misbehavior (ASR)

m αi = (αi,1,αi,2, αi,3, αi,4,αi,5) 1 − δ Er ℓ′ f b fb n′
i

5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.8 0.5 5 0.366 0 39
5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.8 0.5 5 0.366 0.05 49
5 (2/30, 3/30, 5/30, 14/30, 6/30) 0.8 0.5 5 0.366 0.1 66

and other users rate honestly and are neutral. If ni satisfies ni ≥ n′
i = (

∑
k(k − m+1

2 fr −
(1 − fr)γi)2( fr/m+(1− fr)αi,k)(Er − |γi − m+1

2 | fr)−2 + 1
3 m/(Er − |γi − m+1

2 | fr))2 ln 2
δ
, then

Pr[|γ̂i − γi| ≤ Er] ≥ 1 − δ. If fr does not satisfy Inequality (7), then it is impossible to
accurately reflect γi with high probability no matter how many ratings we have.

PROOF. This proof is similar to that of Theorem 3.7.

Remark. An increase in the maximum acceptable estimation error Er leads to an
increase in the maximum fraction of random misbehaving users that the average score
rule can tolerate. As γi gets close to (m+ 1)/2, the fraction f r becomes large. This is
because the random misbehavior shifts the mean of ratings toward (m+ 1)/2.

Table VIII presents some numerical results on f r and n′
i. When αi =

(2/30, 3/30, 5/30, 14/30, 6/30), the average rule can tolerate a maximum fraction of
f r = 0.789 random misbehaving users. An increase in fr from 0 to 0.1 results in an
increase in n′

i from 39 to 51—a slight increase.
We next derive the maximum fraction of biased misbehavior that the average score

rule can tolerate and the minimum number of ratings needed to compensate in toler-
ating a given fraction of biased misbehaving users.

THEOREM 3.19 (BIASED MISBEHAVIOR). Suppose that biased misbehaving users bias
toward ℓ′. Assume that the fraction of biased misbehaving users fb satisfies

fb < f b = Er/|γi − ℓ′|, (8)

and other users rate honestly and are neutral. If ni satisfies ni ≥ n′
i = ( 1

3 m/(Er − |γi −
ℓ′| fb) +

∑
k(k − ℓ′ fb − (1 − fb)γi)2( fbI{k=ℓ′} + (1 − fb)αi,k)(Er − |γi − ℓ′| fb)−2)2 ln 2

δ
, then

Pr[|γ̂i − γi| ≤ Er] ≥ 1 − δ. If fb does not satisfy Inequality (8), then it is impossible to
accurately reflect γi with high probability no matter how many ratings we have.

PROOF. This proof is similar to that of Theorem 3.7.

Remark. An increase in the maximum acceptable estimation error Er leads to an
increase in the maximum fraction of biased misbehaving users (i.e., f b) that the average
score rule can tolerate. As the true quality γi gets close to ℓ′, the fraction f b becomes
large. This is because the biased misbehavior shifts the mean of ratings toward ℓ′.

Table IX presents some numerical examples on f b and n′
i. When αi =

(2/30, 3/30, 5/30, 14/30, 6/30), the average rule can tolerate a maximum fraction of
f b = 0.366 biased misbehaving users. An increase in fb from 0 to 0.1 results in an
increase in n′

i from 39 to 66—a slight increase.
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3.4. Extensions to More Than One Type of Misbehavior
Our analysis thus far allows at most one type of misbehaving users. For completeness,
we generalize our analysis to incorporate additional types.

We first explore a competition among biased misbehaving users—that is, a company
may hire some users to promote its products (promoters), whereas its competitors
may hire some users to bad-mouth its products (bad-mouthers). Promoters assign the
highest rating m, and fm denotes the fraction of them. Bad-mouthers assign the lowest
rating of 1, and f1 denotes the fraction of them. Which of them will win out? What is
the condition to guarantee that one of them wins with a high probability? The following
theorem answers these questions.

THEOREM 3.20. Suppose that a fraction of fm users bias toward m, a fraction of f1
users bias toward 1, and other users rate honestly and are neutral. Suppose that the
majority rule is adopted to aggregate ratings. These promoters (bias toward m) can win
out with high probability only if fm and f1 satisfy fm > max{(αi,1 − αi,m + (1 − αi,1 +
αi,m) f1)/(1 + αi,1 − αi,m), (αi,ℓi − αi,m + αi,m f1)/(1 − αi,m)}.

PROOF. This proof is similar to that of Theorem 3.9.

Remark. Theorem 3.20 states a condition that promoters can win with a high proba-
bility. When we increase the fraction of bad-mouthers, we need to increase the fraction
of promoters so that they can win out with a high probability. It is easy to extend the
preceding results to the median rule and the average score rule. For the sake of brevity,
we omit them in our article.

We now explore the case that both random misbehaving users and biased misbehav-
ing users exist in the system. We seek to explore whether these two types of misbehavior
can jointly contribute to rating—that is, reveal the true quality. We assume that bi-
ased misbehaving users bias toward ℓ′ and bias against the ground truth—that is,
ℓ′ ̸= ℓi, ℓ

′ ̸= li, and ℓ′ ̸= γi. In the following theorem, we derive necessary conditions
that fr, fb must satisfy so that random misbehavior and biased misbehavior jointly
contribute in revealing the true quality.

THEOREM 3.21. Consider a fraction of fr random misbehaving users, a fraction of fb
biased misbehaving users, and other users rate honestly and neutral. For the majority
rule, it is impossible that the majority rating of the ratings assigned by misbehaving
users converges to ℓi . For the median rule, if (li/m− 1/2) fr > (1/2 − I{ℓ′<li}) fb > ((li −
1)/m− 1/2) fr, then the median of the ratings assigned by misbehaving users converges
to li. For the average score rule, if fr/ fb = (γi −ℓ′)/((m+1)/2−γi), the mean of the ratings
assigned by misbehaving users converges to γi .

PROOF. Please refer to the Appendix for the derivation.

Remark. It implies that random misbehavior and biased misbehavior may jointly
contribute to the ratings by properly mixing them. It suggests a possible approach to
employ some random misbehaving users against biased misbehaving users.

Discussion. There are many interesting cases to further explore. For example, some
misbehaving users assign random ratings, some promote products, and others bad-
mouth products. Due to space limitation, it is impossible for us to explore all of them
in detail. We believe that our framework is general enough to the key ideas, and it can
be easily extended to explore other cases of misbehavior.

4. INFERRING MODEL PARAMETERS
In this section, we present a maximum likelihood algorithm to infer αi from historical
ratings of Pi. With this inference algorithm, we can apply our framework to analyze
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real data and improve the applications of online rating systems in Web services (e.g.,
eBay, TripAdvisor).

Recall that r+
i = {r+

i,1, . . . , r+
i,ni

} represents a set of all observed ratings of product Pi.
We seek to infer αi from r+

i . Applying Lemma 3.1, we express the likelihood of the
parameter αi given a set of observed ratings r+

i as

L(αi) = Pr[r+
i |αi] =

ni∏

j=1

Pr[r+
i, j |αi] =

m∏

k=1

(αi,k)ni,k.

The remaining issue is to derive the maximum likelihood estimation for the parameter
αi, which is denoted by α̂i, via maximizing L(αi). This is equivalent to maximizing the
log likelihood function:

L(αi) = logL(αi) =
m∑

k=1

ni,k log αi,k =
m−1∑

k=1

ni,k log αi,k + ni,m log

(

1 −
m−1∑

k=1

αi,k

)

.

By maximizing L(αi), we obtain the maximum likelihood estimation of αi as follows:

α̂i,k = ni,k

ni
, for k = 1, . . . , m.

Based on this result, we outline the inference algorithm in Algorithm 1.

ALGORITHM 1: Algorithm for inferring αi

Input: A set of ratings of product Pi: r+
i = {r+

i,1, . . . , r+
i,ni

}
Output: α̂i
ni,k = |{r+

i, j |r+
i, j ∈ r+

i , r+
i, j = k}|, k = 1, . . . , m ;

for k = 1 to m do
α̂i,k = ni,k/ni

end

Remark. The running time of this algorithm is +(|r+
i |) = +(ni), or the running time

is linear to the number of ratings for Pi.

5. EXPERIMENTS ON SYNTHETIC DATA
We carry out experiments on a synthetic dataset to examine various factors that influ-
ence the accuracy of product quality assessment. We synthesize a rating dataset that
captures important elements of real-world online rating systems. We show that the
average score rule requires fewer ratings to reveal the true quality than the majority
rule and the median rule under the honest rating and the misbehavior setting.

5.1. Synthetic Dataset
We synthesize a rating dataset that captures important elements of real-world on-
line rating systems and elicits key factors that influence the efficiency and effective-
ness of product quality assessment. We first consider the case in which all users rate
honestly and are neutral. To be consistent with real-world online rating systems, we
consider a five-level cardinal rating metric, say m = 5. The smoothness of the model
parameter αi curve is one key factor that influences the minimum number ratings
as shown in Section 3. We seek to synthesize αi by varying its smoothness from
low representing that the ratings of Pi have a strong concentration to high repre-
senting that the ratings of Pi have a large variation. We formally synthesize αi by
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Fig. 1. Impact of model parameter αi with success probability 1 − δ (honest rating).

αi = (1, 2β , 3β , 5β , 4β )/
∑5

k=1 kβ , where β ∈ [0,∞) controls smoothness of the model pa-
rameter αi curve. The smaller the value of β, the smoother the curve of αi. For example,
β = 0 implies αi

β = 0
====== ( 1

5 , 1
5 , 1

5 , 1
5 , 1

5 ) and β going to infinity implies αi
β → 0
====== (0, 0, 0, 1, 0).

In practice, αi rarely attains these two extremal points, but rather its curve is more
likely to attain a medium level of smoothness. To capture this characteristic, we vary β
from 1 (αi ≈ (0.07, 0.13, 0.2, 0.33, 0.27)) to 5 (αi ≈ (0.0007, 0.0073, 0.055, 0.706, 0.231))
in our experiments. We now incorporate misbehavior in rating. Suppose that there is
a fraction of fr random misbehavior, and other users rate honestly and are neutral.
We generate a rating by αi with probability 1 − fr, and with probability fr we draw a
rating randomly from {1, . . . , m}. This idea can be easily extended to incorporate biased
misbehavior or inherent user biases.

5.2. Honest Rating
We explore the impact of the model parameter αi, the success probability 1− δ, and the
maximum acceptable error Er on the minimum number of ratings when all users rate
honestly and are neutral.

We first explore the impact of 1 − δ and αi on the minimum number of ratings. We
vary 1 − δ from 0.7 to 0.9 and vary β from 1 to 5. For the average score rule, we set
a maximum acceptable error Er = 0.5. We set this maximum acceptable error mainly
for the purpose of fair comparison among the majority rule, the median rule, and the
average score rule. When the majority rule (or the median rule) is applied to aggregate
product ratings, the possible outcome is one of 1, 2, . . . , m. The possible outcome can
be any value in [1, m] if the average score rule is applied. To fairly compare these
three rules, we need to set 2Er to be 1 for the average score rule (i.e., Er = 0.5).
Furthermore, Er = 0.5 makes sense in most practical applications. Let n′ denote the
minimum number of ratings. The numerical results of n′ corresponding to the majority
rule, the median rule, and the average score rule are shown in Figure 1, where the
horizontal axis represents the value of β (i.e., the smoothness of αi). An increase in β
results in a decrease in the minimum number of ratings. In other words, the smoother
the curve of αi, the larger the minimum number of ratings. Considering the majority
rule, an increase in β from 1 to 2 leads to a decrease in the minimum number of ratings
from around 1,000 to 200—a significant decrease. A further increase in β from 2 to
5 results in a slight decrease in the minimum number of ratings because the curve
for the minimum number of ratings is flat. This implies that the minimum number
of ratings is sensitive to the smoothness of αi when it is high but is invariant of it
when it is low. This statement also holds for the median rule. For the average score
rule, decreasing the smoothness of αi only decreases the minimum number of ratings
slightly no matter whether the smoothnessis high or low. An increase in the success
probability 1−δ results in a slight increase in the minimum number of ratings because
the curves corresponding to 1 − δ = 0.7, 0.8 and 0.9 nearly overlap.
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Fig. 2. Impact of maximum acceptable error Er
(honest rating).

Fig. 3. Comparing the minimum number of ratings
under the honest rating.

We now explore the impact of Er on the minimum number of ratings. We vary Er from
0.1 to 1 and fix 1− δ = 0.8. We set the default success probability as 1− δ = 0.8. We use
this default success probability because it makes sense for many practical applications.
Furthermore, the minimum number of ratings increases in a logarithmic rate to the
success probability, and this default success probability is mainly used for comparison
studies, such as comparing the efficiency of rating aggregation rules. We choose three
representatives of αi corresponding to β = 1, 3, and 5 (representing high, medium,
and low levels of smoothness, respectively). The numerical results of n′ are shown in
Figure 2. An increase in the maximum acceptable error Er results in a decrease in the
minimum number of ratings. When Er ≤ 0.2, decreasing Er can decrease the minimum
number of ratings remarkably. When Er ≥ 0.2, decreasing Er decreases the minimum
number of ratings slightly. The smoothness has a small impact on the minimum number
of ratings, as these three curves nearly overlap together.

We compare the minimum number of ratings that each rating aggregation rule re-
quires. Figure 3 presents the minimum number of ratings required by the majority rule,
the median rule, and the average score rule, respectively. To achieve the same success
probability, the average score rule requires the smallest number of ratings.When β
is smaller than 1.5 (i.e., a high smoothness of αi), the average score rule requires
remarkably fewer ratings than the majority rule and the median rule.

Lessons learned. Assume that all users rate honestly and are neutral. To increase
the success probability, we need to increase the minimum number of ratings slightly. A
small increase in the smoothness of αi leads to a significant increase in the minimum
number of ratings for the majority rule and the median rule and a slight increase on
the minimum number of ratings for the average score rule. The average score rule
requires fewer ratings than the majority rule and the median rule.

5.3. Impact of Misbehavior
We explore the maximum fraction of misbehaving users that each rating aggregation
rule can tolerate and the minimum number of ratings needed to compensate. We com-
pare the robustness of the majority rule, the median rule, and the average score rule
against misbehavior as well.

We first explore the maximum fraction of misbehaving users that each rating aggre-
gation rule can tolerate. We set the success probability as 1−δ = 0.8 and the maximum
acceptable error as Er = 0.5. Figure 4 shows the maximum fraction of random misbe-
having users f r and the maximum fraction of random misbehaving users f b that can
be tolerated, where the horizontal axis represents β (or the smoothness of αi). For the
majority rule and the median rule, an increase in β results in an increase in f r and
f b. Namely, the lower the smoothness of αi, the larger the fraction of misbehavior that
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Fig. 4. The maximum fraction of misbehaving users that we can tolerate.

Fig. 5. Impact of random and biased misbehavior.

can be tolerated. The average score rule shows a contrary trend—that is, the lower the
smoothness of αi, the smaller the fraction of misbehavior that can be tolerated. The
average score rule can tolerate at least a fraction of 0.4 random misbehaving users
and around a fraction of 0.2 biased misbehaving users. When β = 0.5, the median
rule can tolerate less than a fraction of 0.02 misbehaving (random or biased) users.
This implies that when the smoothness of αi is high, the median rule is extremely
vulnerable to misbehavior. The majority rule can always tolerate random misbehavior
because f r = 1. When β = 0.5, the majority rule can only tolerate around a fraction of
0.1 biased misbehaving users.

We now explore the minimum number of ratings needed to compensate to tolerate
misbehavior. We use the same experimental settings as earlier. For the ease of presen-
tation, we choose one representative αi to study—that is, αi = ( 1

15 , 2
15 , 3

15 , 5
15 , 4

15 ). The
curve for this parameter is smoother than the rating distribution for most products
in practice. Hence, this parameter gives an upper bound on the minimum number
of ratings needed to compensate. We vary the fraction of misbehaving users (random
misbehavior or biased misbehavior) from 0 to 0.2 (the majority rule) and 0 to 0.15
(the median rule and the average score rule). We choose thissetting mainly because
the maximum fraction of misbehaviors that can be tolerated across different rating
aggregation rules is different. Let n′ denote the minimum number of ratings needed to
compensate. Figure 5 presents the numerical results of n′, where the horizontal axis
represents the fraction of misbehaving users. An increase in the fraction of random
misbehaving users results in a slight increase in the minimum number of ratings,
because the curves for the minimum number of ratings are flat. When the fraction of
biased misbehaving users is below 0.1, an increase in the fraction of biased misbehav-
ing users results in a slight increase in the minimum number of ratings. When that
fraction is above 0.1, a small increase in the fraction of biased misbehaving users can
remarkably increase the minimum number of ratings. The majority rule, the median
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Fig. 6. Comparing the minimum number of ratings under misbehavior.

Table X. Statistics for Three Rating Datasets

TripAdvisor Amazon

Number of Items 11,540 32,888
Total Number of Ratings 3,114,876 5,066,070

Maximum/Minimum on Number of Ratings 9930/1 24,195/1
Mean/Median on Number of Ratings 270/179 154/47

Rating Metric: {1, . . . , m} 1, . . . , 5 1, . . . , 5

rule, and the average score rule require more ratings to tolerate biased misbehavior
than random misbehavior.

We compare the minimum number of ratings that each rating aggregation rule
requires in tolerating misbehavior. We vary the fraction of misbehaving (random or
biased) users from 0.001 to 0.1. Figure 6 shows the minimum number of ratings needed
to compensate in tolerating random and biased misbehavior, where the horizontal axis
represents the fraction of misbehaving users. The average score rule is shown to be
more robust against misbehavior (random misbehavior or biased misbehavior), because
to tolerate the same fraction of misbehaving users, it requires fewer ratings than the
majority rule and the median rule.

Lessons learned. A certain fraction of random misbehavior or biased misbehavior
can be tolerated by compensating a number of ratings. An increase the smoothness
of αi results in a significant increase in the maximum fraction of misbehaving users
that the majority rule and the median rule can tolerate and results in a slight in
decrease in the maximum fraction of misbehaving users that the average score rule
can tolerate. Tolerating biased misbehavior requires a lot more ratings than tolerating
random misbehavior. The average score rule has more robustness than the majority
rule and the median rule, as it requires fewer ratings than the majority rule and the
median rule under the honest rating and the misbehavior setting.

6. EXPERIMENTS ON REAL DATA
We present experimental results on two large datasets from TripAdvisor and Amazon.
We validate our model and apply the minimum number of ratings to explore the reli-
ability of rating aggregation rules, the reliability of ratings, and the rating sufficiency
for TripAdvisor and Amazon. Last, we explore the maximum fraction of misbehaving
(random or biased) users that an item can tolerate and the minimum number needed
to compensate.

6.1. Datasets
We crawled ratings from TripAdvisor and Amazon, which are shown in Table X.
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Table XI. Number of Selected Items for Model Validation

TripAdvisor Amazon

Number of Selected Items 2,368 2,396
Total Number of Ratings 2,030,716 2,857,823

TripAdvisor. TripAdvisor is a popular travel Web site that assists customers in
booking hotels, restaurants, and so forth and sharing opinions (or experiences) in the
form of ratings (or reviews) of the businesses. We crawled historical ratings of 11,540
hotels.

Amazon. Amazon is a popular E-commerce system that assists customers in product
adoption and sharing opinions (or knowledge) on products in the form of ratings (or
reviews). We crawled the historical ratings of 32,888 products.

6.2. Model Validation
We validate our model by showing that if an item meets the requirement on the min-
imum number of ratings, the assessment of its quality is indeed reliable; otherwise,
this assessment is unreliable.

We select a subset of items from our datasets to valid our model. More precisely,
we select items that have at least 400 ratings. We justify this selecting criterion as
follows. We seek to apply Algorithm 1 to estimate the parameter αi accurately for each
selected item. The larger the number of ratings for an item, the higher the estimation
accuracy. However, a high selection criterion, such as selecting those with thousands of
ratings, results in only a small number of items being selected. Examining our datasets,
we set a selecting criterion of 400 to attain a good trade-off between the estimating
accuracy and the sufficiency of our validation datasets. Table XI shows the number
of selected items and the corresponding total number of ratings. In total, we select
2, 368 (TripAdvisor)+2, 396 (Amazon) = 4, 764 items out. For the ease of presentation,
we denote these 4,764 items by P ′

1, . . . , P ′
4,764 and use r′

i to denote a set of all historical
ratings of P ′

i .
We now extract the minimum number of ratings and the true quality of each selected

item. We apply Algorithm 1 on the historical ratings of P ′
i , i ∈ {1, . . . , 4, 764}, to esti-

mate αi. We denote this estimation by α̂i. We treat α̂i as the true value of αi and we
extract the true quality of P ′

i from it as follows: ℓi = arg maxk{̂αi,k}(majority rule), li =
arg min{k|

∑k
j=1 α̂i, j > 1

2 }(median rule), γi =
∑

k k̂αi,k(average score rule). We apply the
bounds derived in Theorems 3.4, 3.11, and 3.16 to α̂i to extract minimum number of
ratings that P ′

i needs—that is, n′
i = 2((

∑
k k2α̂i,k − (

∑
k k̂αi,k)2)/E2

r + m
3Er

) ln 2
δ

(average
score rule)—setting the success probability to 1 − δ = 0.8 and Er = 0.5.

We now present the design of our model validation algorithm. We seek to quantify
the reliability of a product quality assessment when the number of ratings of a product
exceeds and is smaller than the minimum number of ratings, respectively. Ratings in
our datasets are associated with time stamps. Consider a rating time stamp of P ′

i . We
say that it meets the minimum requirement if the number of ratings of P ′

i (up to this
time stamp) exceeds the minimum number of ratings; otherwise, we say that it does not
meet the minimum requirement. For each rating time stamp of P ′

i , we apply a rating
aggregation rule to aggregate the historical ratings of P ′

i (up to this time stamp). If
this aggregate rating reveals the true quality, we say that this time stamp is reliable;
otherwise, we say that it is unreliable. Let Ni

test and N
i
test denote the number of rating

time stamps of P ′
i that meet and do not meet the minimum requirement, respectively.

Let Ni
reliable and N

i
reliable denote the number of reliable time stamps of P ′

i that meet and
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Table XII. Fraction of Reliable Evaluations When Items Meet (or Do Not Meet) the Requirement
on Minimum Number of Ratings

Aggregation Rule Ntest Nreliable freliable ftest Ntest Nreliable f reliable

TripAdvisor (Ntotal = 2, 030, 716)
Average score 1,957,727 1,918,157 97.98% 94.41% 72,989 48,620 66.61%

Majority 1,307,524 1,299,767 99.41% 64.39% 723,192 560,181 77.46%
Median 1,502,809 1,456,133 96.89% 74.00% 527,907 364,815 69.11%

Amazon (Ntotal = 2, 857, 823)
Average score 2,763,490 2,693,606 97.47% 96.70% 94,333 63,075 66.91%

Majority 2,601,660 2,574,363 98.95% 91.04% 256,163 192,826 75.27%
Median 2,212,826 2,128,099 96.17% 77.43% 644,997 431,596 66.92%

do not the minimum requirement, respectively. Denote freliable =
∑

i Ni
reliable/

∑
i Ni

test,
which quantifies the reliability of a product quality assessment when the number of
ratings exceeds the minimum number of ratings. Denote f reliable =

∑
i N

i
reliable/

∑
i N

i
test,

which quantifies the reliability of a product quality assessment when the number of
ratings is smaller than the minimum number of ratings. We compute these statistics
in Algorithm 2, where we fix the rating aggregation rule to be the average score rule
for brevity.

ALGORITHM 2: Algorithm for model validation
Input: A set of products {P ′

i1
, . . . , P ′

in}, average score rule, δ, Er

Output: Ntest, Nreliable, freliable, Ntest, Nreliable, f reliable

Ntest ← 0, Nreliable ← 0, Ntest ← 0, Nreliable ← 0 ;
for κ ∈ {i1, . . . , in} do

Nκ
test ← 0, Nκ

reliable ← 0 ;
α̂κ ←perform Algorithm 1 on r′

κ ; /* estimate model parameter for item P ′
κ */

γκ =
∑

j jα̂κ, j ; /* true quality */

n′
κ ← 2((

∑
k k2α̂i,k − (

∑
k k̂αi,k)2)/E2

r + m
3Er

) ln 2
δ
; /* compute the minimum number of

ratings,via substituting ακwith α̂κin the bound derive in Theorem 3.16. */
sort the ratings of r′

κbased on time stamps; /* r′
κ,1 denotes the earliest rating */

for j = 1 to |r′
κ | do /* rating reliability test */

If j ≥ n′
κ , update Nκ

test ← Nκ
test + 1; otherwise, N

κ

test ← N
κ

test + 1 ;
γ̂κ ← the average rating of {r′

κ,1, . . . , r′
κ, j}; /* evaluate quality */

if |γ̂κ − γκ | < Er then /* the evaluated quality equals to true quality */
If j ≥ n′

κ , update Nκ
reliable ← Nκ

reliable + 1, otherwise N
κ

reliable ← N
κ

reliable + 1 ;
end

end
end
Nreliable ←

∑
κ∈{i1,...,in} Nκ

reliable, Ntest ←
∑

κ∈{i1,...,in} Nκ
test, freliable = Nreliable/Ntest ;

Nreliable ←
∑

κ∈{i1,...,in} N
κ

reliable, Ntest ←
∑

κ∈{i1,...,in} N
κ

test, f reliable = Nreliable/Ntest;

We apply Algorithm 2 on the rating datasets described in Table XI. Table XII presents
the experimental results of freliable and f reliable, where Ntotal denotes the total number of
rating time stamps used in our experiments and ftest = Ntest/Ntotal denotes the fraction
of rating time stamps that meets the minimum requirement. Consider the average
score rule and TripAdvisor; we have freliable = 97.98% and f reliable = 66.61%. Changing
the average score rule to the majority rule (or the median rule) varies freliable and f reliable
slightly. It implies that if a hotel on TripAdvisor meets the requirement on the minimum
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Table XIII. Overall Statistics of Minimum Number of Ratings across Items

Median on n′ Mean on n′ Minimum on n′ Maximum on n′

TripAdvisor
Majority Rule 161 15,204 6 9,089,015
Median Rule 84 7,625 4 2,490,080

Average Score Rule 32 32 18 58
Amazon

Majority Rule 35 3,476 5 4,511,992
Median Rule 97 15,982 4 5,585,767

Average Score Rule 40 41 18 80

number of ratings, then the assessment of its quality is indeed reliable; otherwise, this
assessment is unreliable. This statement also holds for items on Amazon. Hence, our
model is correct and captures important elements of real-world online rating systems.
Consider TripAdvisor and the average score rule; we have ftest = 94.41%—that is,
94.41% of the rating time stamps meet the requirement on the minimum number
of ratings. Changing the dataset to Amazon results in ftest = 96.70%. Namely, the
minimum number of ratings is practical and applicable. The average score rule is more
robust than the majority rule and the median rule, as it has more rating time stamps
that satisfy the minimum requirement. Take TripAdvisor as an example; the number
of rating time stamps that meet the minimum requirement for the average score rule
is around 1.5 times (0.9441 / 0.9439 ≈ 1.5) thenumber for the majority rule and 1.3
times (0.9441 / 0.7400 ≈ 1.3) the number for the median rule. We explore why this is
the case in the next section.

6.3. Applications of Minimum Number of Ratings
We apply the minimum number of ratings to explore the reliability of rating aggregation
rules, the reliability of ratings, and the rating sufficiency for TripAdvisor and Amazon,
respectively.

Reliability of rating aggregation rules. We explore the minimum number of ratings
across items and show that the average score is more reliable (i.e., requires fewer
ratings) than the majority rule and the median rule. We consider the items described
in Table XI and the same settings as in Section 6.2. We first explore overall statistics
of the minimum number of ratings across items (i.e., mean, median, maximum, and
minimum, which are shown in Table XIII), where n′ denotes the minimum number of
ratings that an item needs. Consider a maximum of n′; the average score rule requires
58 (TripAdvisor) and 80 (Amazon) ratings, and the majority rule and the median rule
require millions of ratings, respectively. Namely, in the worst case, the average score
rule requires extremely fewer ratings than the majority rule and the median rule. This
statement also holds in the average case—that is, comparing these three rules using
the mean of n′. Examining the minimum of n′, these three rules require fewer than
60 ratings. The median of n′ is around 100. In other words, 100 ratings are sufficient
for half of the items. Consider the median of n′; the average score rule requires fewer
ratings than the majority rule and the median rule, except for the Amazon dataset,
where the average score requires fewer ratings than the median rule but 5 more ratings
than the majority rule. We now explore the complementary cumulative distribution
function of minimum number of ratings across items. Let Pr[n′ ≥ n] denote the fraction
of items that require a minimum number of ratings larger or equal to n. Figure 7
shows the numerical results of Pr[n′ ≥ n]. The complementary cumulative distribution
function curve corresponding to average score rule lies under the curve corresponding
to the majority rule and the median rule. This implies that the average score rule
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Fig. 7. Distribution of minimum number of ratings across items.

Fig. 8. Comparing reliability
of rating on TripAdvisor and
Amazon.

Table XIV. Fraction of Items Satisfying the Requirement of Minimum Number of Ratings

Minimum Number of ratings Number of Iems Ns fs
TripAdvisor 32 11,540 9,033 78.28%

Amazon 40 32,888 17,914 54.47%

requires fewer ratings than the majority rule and the median rule. In summary, the
average score rule is more reliable than the majority rule and the median rule.

Rating reliability. We explore the following question: Between TripAdvisor and Ama-
zon, whose ratings are more reliable? We answer this question by examining the com-
plementary cumulative distribution function of minimum number of ratings across
items. Here we fix the rating aggregation rule to be the average score rule. Again,
Pr[n′ ≥ n] denotes the fraction of items that require a minimum number of ratings
larger or equal to n. Figure 8 presents the numerical results of Pr[n′ ≥ n]. The com-
plementary cumulative distribution function curve corresponding to TripAdvisor lie
in the bottom. This implies that TripAdvisor requires fewer ratings than Amazon. In
other words, the ratings on TripAdvisor are more reliable than those on Amazon.

Rating sufficiency. We examinethe following question: What is the fraction of items
on TripAdvisor (or Amazon) that have a sufficient number of ratings? Assume that the
items described in Table X are representative samples from TripAdvisor and Amazon.
We fix the rating aggregation rule to be the average score rule. From Table XIII, we
obtain that the medians of the minimum number of ratings across items are 32 (TripAd-
visor) and 40 (Amazon). We use them as the condition for testing rating sufficiency—for
example, we say that a product on Amazon has a sufficient number of ratings if it has
no fewer than 40 ratings. We perform this test on all items described in Table X. Let
fs denote the fraction of items that have a sufficient number of ratings. The numerical
results fs are shown in Table XIV, where Ns denotes the number of items that have
a sufficient number of ratings. Only 78.28% hotels on TripAdvisor and 54.47% prod-
ucts on Amazon have a sufficient number of ratings. TripAdvisor has a higher rating
sufficiency than Amazon.

Lessons learned and tips. The average score rule requires fewer ratings than the
majority rule and the median rule. Assuming that we apply the average score rule
to aggregate ratings, around 70 ratings can guarantee a reliable assessment on the
quality of an item. Ratings on TripAdvisor are more reliable than those on Amazon.
TripAdvisor has a higher rating sufficiency than Amazon.

6.4. Analysis of Rating under Misbehavior
We explore the maximum fraction of misbehaving (random or biased) users that an
item can tolerate and the minimum number needed to compensate.
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Table XV. Maximum Fraction of Random Misbehaving Users f r That We Can Tolerate

Mean on f r Median on f r Max on f r Min on f r

TripAdvisor 0.5145 0.4409 1 0.2599
Amazon 0.4727 0.3914 1 0.2565

Table XVI. Minimum Number of Ratings to Tolerate Random Misbehavior

Mean on n′ Median on n′ Max on n′ Min on n′

TripAdvisor 55 55 74 35
Amazon 69 69 100 46

Table XVII. Maximum Fraction of Biased Misbehaving Users f b That We Can Tolerate

Mean on f b Median on f b Max on f b Min on f b

TripAdvisor 0.1655 0.1595 0.5619 0.1247
Amazon 0.1636 0.1526 1 0.1266

Random misbehavior. We inject some ratings by random misbehaving users into
the rating dataset described in Table XI. We explore the maximum fraction of random
misbehaving users that a rating aggregation rule can tolerate first. We pick the average
score rule to study for brevity. Recall that f r denotes the maximum fraction of random
misbehaving users that the average score rule can tolerate. Table XV presents the
mean, median, maximum, and minimum of f r across items. Consider TripAdvisor; the
minimum and maximum of f r are 0.2599 and 1, respectively. In other words, items on
TripAdvisor can tolerate a fraction of at least 0.25 and at most 1 random misbehaving
users. This statement also holds for Amazon. Most items on TripAdvisor (or Amazon)
can tolerate a fraction of 0.4 random misbehaving users, as the mean and the median
of f r are around 0.4. We now inject a fraction of 0.1 random misbehaving ratings into
the dataset described in Table XI and explore the minimum number of ratings needed
to tolerate them, denoted by n′. Table XVI shows the mean, median, maximum, and
minimum of n′ across items. Items on TripAdvisor can tolerate the random misbehavior
by compensating at most 74 ratings, as the maximum of n′ is 74. Similarly, items on
Amazon require compensating at most 100 ratings.

Biased misbehavior. We inject some ratings by biased misbehaving users (bias to-
ward 1) into the rating dataset described in Table XI. We explore the maximum fraction
of biased misbehaving users that a rating aggregation rule can tolerate first (i.e., f b).
Again, we pick the average score rule to study. Table XVII shows the mean, median,
maximum, and minimum of f b across items. Hotels on TripAdvisor can tolerate a frac-
tion of at least 0.1274 and at most 0.5619 biased misbehaving users, respectively. Most
hotels on TripAdvisor can tolerate a fraction of around 0.16 biased misbehaving users,
as the mean and median of f b are around 0.16. We now inject a fraction of 0.1 biased
misbehaving ratings into the rating dataset described in Table XI and explore the
minimum number of ratings needed to tolerate them denoted by n′. Table XVIII shows
the mean, median, maximum, and minimum of n′ across items. Hotels on TripAdvisor
require compensating at most 666 ratings, as the maximum of n′ is 666. Similarly,
products on Amazon require compensating at most 697 ratings. Most items on TripAd-
visor (Amazon) require compensating around 268 (370) ratings, as the corresponding
medians of n′ is 268 (370).

Lessons learned. Suppose that we adopt the average score ruleto aggregate ratings.
Most items on TripAdvisor (or Amazon) can tolerate a fraction of around 0.4/0.15 ran-
dom/biased misbehaving users, and they require compensating around 70/300 ratings
to tolerate a fraction of 0.1 rrandom/biased misbehaving users.
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Table XVIII. Minimum Number of Ratings to Tolerate Biased Misbehavior

Mean on n′ Median on n′ Max on n′ Min on n′

TripAdvisor 285 268 666 53
Amazon 370 370 697 43

Table XIX. Statistics for Two Movie Rating Datasets

Netflix Flixster

Number of Movies 17,770 48,794
Number of Users 480,189 147,612

Total Number of Ratings 100,480,507 8,196,077
Mean Number of Ratings per Movie 5,655 168
Mean Number of Ratings per User 209 56

Rating Metric: {1, . . . , m} 1, . . . , 5 1, 1.5, . . . , 5

7. APPLICATIONS TO RECOMMENDATION SYSTEMS
We perform experiments on two movie rating datasets from Netflix and Flixster to
demonstrate how to apply our framework to recommendation systems.

7.1. Dataset
Table XIX shows the overall statistics of our dataset from Netflix and Flixster. Netflix
is a popular Web site that provides on-demand Internet streaming media. It makes
personalized video recommendations based on ratings and reviews by users. We use
the version of Netflix movie rating dataset provided by the Netflix prize competition
[Netflix 2009]. Flixster is a popular Web site that allows users to discover new movies
and learn about movies. It maintains a personalized movie recommendation system
based on ratings (or reviews) by its users and the social relationship between users.We
use the movie rating dataset released by Jamali and Ester [2010].

7.2. Applications to Personalized Recommendation Systems
We apply our framework to examine the minimum number of ratings that a user needs
to express to reflect his bias or leniency accurately.

Personalized recommendation systems (also known as recommender systems)
[Adomavicius and Tuzhilin 2005; Resnick and Varian 1997] recommend items to a
user taking into account the preference of that user. Such recommendation tasks rely
on rating prediction—that is, predicting a user’s potential ratings to items. The average
of the historical ratings by a user (average rating of a user) acts as a normalizing factor
[Adomavicius and Tuzhilin 2005] in most rating prediction algorithms, because it re-
flects the inherent bias or leniency of a user. Furthermore, due to different rating habits
of users, many recommendation algorithms employ rating normalization [Jin and Si
2004] techniques, which convert different users rating to a normalized scale applying
the average rating of a user. Hence, it is important to estimate the average rating of a
user accurately. However, we only have partial information on these ratings—that is,
each user only expresses ratings to a small subset of products, which makes it difficult
to accurately estimate the average rating of a user.

We now apply our framework to determine the minimum number of ratings that a
user needs to express to guarantee an accurate estimation on his average rating. To
apply our framework, we only need to interchange the role between the users and the
products. Similar to Section 6, we select the users who express at least 400 ratings to
study. In our dataset, 74,509 users from Netflix and 5,306 users from Flixster satisfy
this selection criterion. We then compute the minimum of ratings for each selected
user using the same method as that described in Section 6. Let n′ denote the minimum
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Table XX. Statistics of the Minimum Number of Ratings That a User Needs to Express

Mean on n′ Median on n′ Minimum on n′ Maximum on n′

Netflix 32 32 16 87
Flixster 84 79 28 305

number of ratings that a user needs to express. Table XX shows the mean, median,
maximum, and minimum of n′ across users. Netflix users need to express at most 87
ratings, as the maximum of n′ is 87. Most of them need to express 32 ratings, as the
mean and the median of n′ are both 32. Flixster users need to express at most 305
ratings, and most of them need to express 80 ratings.

Lessons learned and implications. To reflect a user’s bias or leniency accurately via
the average rating, a Netflix user needs to express around 30 ratings and a Flixster
user needs to express around 80 ratings.

7.3. Applications to Group Recommendation Systems
We apply our framework to examine rating sufficiency conditions for group recommen-
dation systems.

Group recommendation systems [Boratto and Carta 2011] were introduced to deal
with the contexts that users operate in groups. Such recommendation tasks rely on
eliciting collective preferences of the user group. However, we only have partial prefer-
ence information (i.e., each user only expresses ratings to a subset of products), which
makes it difficult to make an accurate recommendation. Generally, group recommen-
dation algorithms are heuristics, and their accuracy relies heavily on whether items
receive sufficient ratings. More concretely, when items have sufficient ratings, some
very simple recommendation algorithms can make accurate recommendations, but if
not, even the most sophisticated recommendation algorithm can make poor recommen-
dations. Hence, determining the rating sufficiency condition is important. However,
this is a challenging task. Our objective is to demonstrate how to apply our framework
to address these challenges. We explore the following questions: What is the minimum
number of ratings that a product needs so that the system can accurately elicit the
collective preference of a user group? Considering the average score rule, the majority
rule, and the median rule, which one is more efficient for a group recommendation
task?

We apply our framework to explore the minimum number of ratings that a movie
needs. We treat all Netflix users (or Flixster users) as a whole group, and the system
seek to recommend movies to this group. Similar to Section 6, we select the movies with
at least 400 ratings to study. In our dataset, 2,807 movies from Flixster and 10,135
movies from Netflix satisfy this selection criterion. We then compute the minimum of
ratings for each selected movie using the same method as that described in Section 6.
Let n′ denote the minimum number of ratings that a movie needs. Let Pr[n′ ≥ n]
denote the fraction of movies with a minimum number of ratings larger than or equal
to n. Figure 9 shows the numerical results of Pr[n′ ≥ n] corresponding to Flixster
and Netflix. The complementary cumulative distribution function curve corresponding
to the average score rule lies in the bottom. In other words, the average score rule
requires fewer ratings than the majority rule and median rule. The majority rule
requires a lot more ratings than the median rule and average score rule. Hence, the
average score rule is more efficient than the majority rule and the median rule for
group recommendation tasks. Table XXI presents the mean, median, maximum, and
minimum of n′ corresponding to the average score rule. Netflix movies need at most
64 ratings, as the maximum of n′ is 64. Most Netflix movies need 36 ratings, as the
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Fig. 9. Distribution of minimum number of ratings across movies.

Table XXI. Statistics of the Minimum Number of Ratings That a Movie Needs to Receive

Mean on n′ Median on n′ Maximum on n′ Minimum on n′

Netflix 37 36 23 64
Flixster 101 100 52 157

mean and the median of n′ are around 36. Similarly, Flixster movies need at most 157
ratings, and most of them need a 100 rating.

Lessons learned and tips. The average score rule requires fewer ratings than the
majority rule and median rule for group product recommendation tasks. Suppose that
we adopt the average score rule; around 36 ratings are sufficient for Netflix movies and
100 ratings are sufficient for Flixster movies.

8. RELATED WORK
A variety of works studied adoption maximization for a given product. These works are
orthogonal to ours in that increasing the number of adoptions may lead to an increase
in the number of users who express ratings to a product. Namely, these works increase
the rating sufficiency indirectly. Our work aims to establish rating sufficiency condi-
tions. There are two typical approaches to maximize product adoptions. One approach
maximizes the influence of a product across a social network [Bhagat et al. 2012; Goyal
et al. 2010; Kempe et al. 2003; Yang and Leskovec 2010]. The works using this approach
assumed an adoption (or influence) propagation mechanism that an adoption by a user
triggers the same adoption by his neighbors (or friends) with some probabilities. Their
objective is to determine a small subset of initial adoptions that can maximize the
expected total number of adoptions. Another approach predicts product adoptions via
modeling and analyzing social correlations [Chua et al. 2011, 2013]. This works using
this approach predicted individual adoptions using a user–item adoption network and
a user–user social network.

Our work is related to works on score normalization. Score normalization normalizes
ratings assigned by different users to the same scale by some criteria. It is motivated
by assumption that users have different rating habits in many applications, such as
recommender systems. For example, some lenient users assign higher ratings, whereas
some critical users assign lower ratings. There are two representative types of score
normalization approaches. One is the deterministic approach, which converts a rating
to a specific score. For example, Resnick et al. [1994] developed a z-score normalization–
based method, Sarwar et al. [2000] proposed a dimensionality reduction–based method,
Lemire [2005] proposed an Lp normalization method, and Traupman and Wilensky
[2006] proposed a factor analysis–based method. Another one is the probabilistic ap-
proach, which converts a user rating to a probability value [Fernández et al. 2006; Jin
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et al. 2003; Jin and Si 2004]. This approach requires a larger number of ratings by a
user to guarantee a good estimation on this probability value.

Rating aggregation rules have been studied extensively. A class of rating aggregation
rules that incorporate human factors such as bias, leniency, and controversy were
developed in Lauw et al. [2008, 2012]. Reputation-aware aggregation rules [Chen and
Singh 2001; Riggs and Wilensky 2001] compute the average rating of products weighted
on the reputation score of users. Other nice rating aggregation rules were developed
in Jin and Si [2004], Jin et al. [2003], and Traupman and Wilensky [2006]. Our work
differs from them in that we study the three most widely used rating aggregation
rules—the majority rule, median rule, and average score rule—and explore under
which condition they can produce reliable product quality evaluation.

Several works have investigated fraud detection.For example, a review of spam de-
tection in online reviewing systems was explored in Jindal and Liu [2007, 2008]. Fraud
detection in trading communities was studied in Dellarocas [2000] and Zhang and
Cohen [2006]. Fraud detection in recommendation systems was investigated in Lam
and Riedl [2004] and Mobasher et al. [2006]. The robustness of collaborative filtering
algorithms was studied in Van Roy and Yan [2010]. Our work provides a general proba-
bilistic model and analysis of misbehaving users in ratings systems and establishes the
condition under which a rating system may fail to reflect the true quality of products.

Online rating systems are widely deployed in recommendation systems [Adomavicius
and Tuzhilin 2005; Resnick and Varian 1997]. Recommendation systems were intro-
duced following the seminal work on collaborative filtering [Hill et al. 1995; Resnick
et al. 1994]. In general, recommendation systems interpret ratings as preferences of
users and try to make personalized recommendations taking into account their pref-
erences. Researchers have investigated various algorithmic and complexity issues in
designing recommendation systems [Adomavicius and Tuzhilin 2005; Herlocker et al.
2004; Resnick and Varian 1997]. Our work differs from them in that we treat ratings
as product quality assessment and explore the condition under which we can reveal
the true quality with high probability.

9. CONCLUSION AND FUTURE WORK
This article presented a general model and analysis of product rating with partial
information. We explored a probabilistic model to capture various important factors of
an online rating system. We derived the minimum number of ratings needed to reveal
the quality of a product. We extended our model to accommodate users’ misbehavior
in product rating. We derived the maximum fraction of misbehaving users that a
rating aggregation rule can tolerate and the minimum number of ratings needed to
compensate. We performed experiments using both synthetic and real-world data (from
Amazon and TripAdvisor). We validated our model and showed that the average score
rule produces more reliable and robust product quality assessments than the majority
rule and the median rule. We found that around 100 ratings are sufficient to reflect
the true quality of an item on TripAdvisor and Amazon. Ratings on TripAdvisor are
more reliable than those found on Amazon. TripAdvisor has a higher rating sufficiency
than Amazon. Finally, we performed experiments on two movie rating datasets (from
Flixster and Netflix) to demonstrate that our framework also applies to recommender
systems.

We believe that there are a number of future directions for further studies. A user’s
rating might be influenced by other users’ opinions over a product, especially friends’
opinions. Extending our model to capture these dependencies makes this research
problem more realistic, and one may obtain more interesting results. Specifically, we
plan to explore the following questions. How are users’ opinions influenced by others?
Do most users heavily rely on others’ opinions? Can we reveal the true quality?
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APPENDIX

THEOREM 1 ([MATOUSŠEK AND VONDRÁK 2001]). Let X1, X2, . . . , Xn denote n independent
random variables each attaining values in [0, 1]. Let X = X1 + X2 + · · · + Xn and
let σ 2 = Var[X] =

∑n
i=1 Var[Xi]. Then for any t ≥ 0, the following conditions hold

Pr[X ≥ E[X] + t] < exp(− t2

2(σ 2+t/3) ), Pr[X ≤ E[X] − t] < exp(− t2

2(σ 2+t/3) ).

THEOREM 2 ([MATOUSŠEK AND VONDRÁK 2001; FELLER 1943]). Let X be a sum of inde-
pendent random variables each attaining values in [0, 1] and let σ =

√
Var[X] ≥ 200.

For all t ∈ [0, σ 2

100 ], Pr[X ≥ E[X] + t] ≥ c exp(− t2

3σ 2 ) holds for a suitable constant c > 0.

COROLLARY 3 (ANTICONCENTRATION). Let X be a sum of independent random variables
each attaining values in [0, 1] and let σ =

√
Var[X] ≥ 200. For all t ∈ [0, σ 2

100 ], Pr[X ≤
E[X] − t] ≥ c exp(− t2

3σ 2 ) holds for a suitable constant c > 0.

A.1. Proof of Lemma 3.1
Let ρ ′ = (ρ ′

i j,1, . . . , ρ
′
i j,m) denote the rating distribution representing the rating behavior

that results in r+
i, j . Recall that the ρ ′ is a sample randomly drawn from Dir(αi); given

ρ ′, the conditional pmf of r+
i, j is specified by Pr[r+

i, j = k|ρ ′] = ρ ′
i j,k. It follows that

Pr[r+
i, j = k] =

∫
Pr[ρ ′] Pr[r+

i, j = k|ρ ′]dρ ′ =
∫

Pr[ρ ′]ρ ′
i j,kdρ ′ = αi,k, where the last step

follows a basic property of Dirichlet distributions [Bishop 2006].

A.2. Proof of Theorem 3.4
We prove this theorem by applying Theorem 1 to show that Pr[ℓ̂i ̸= ℓi] ≤ δ. By some
basic probability arguments, we have

Pr
[
ℓ̂i ̸= ℓi

]
= Pr

[⋃
k̸=ℓi

{
ℓ̂i = k

}]
≤

∑

k̸=ℓi

Pr
[
ℓ̂i = k

]
≤

∑

k̸=ℓi

Pr[ni,k ≥ ni,ℓi ].

Let Rk
ij , where j = 1, . . . , ni and k = 1, . . . , m denote a set of random variables with

Rk
ij =

⎧
⎪⎨

⎪⎩

1, with probability Pr[r+
i, j = k],

0, with probability Pr[r+
i, j = ℓi],

1/2, otherwise,

where the pmf of r+
i, j is derived in Lemma 3.1. Let Rk

i =
∑

j Rk
ij . Observe that Rk

i =
ni,k + (ni −ni,k −ni,ℓi )/2. It follows that ni,k ≥ ni,ℓi if and only if Rk

i is larger than or equal
to ni/2, or mathematically,

Rk
i ≥ ni

2
⇔ ni,k + ni − ni,k − ni,ℓi

2
≥ ni

2
⇔ ni,k ≥ ni,ℓi .

Thus, we have Pr[ni,k ≥ ni,ℓi ] = Pr[Rk
i ≥ ni/2]. We finish this proof by showing that

Pr[Rk
i ≥ ni/2] ≤ δ/(m − 1),∀k ̸= ℓi because this inequality implies that Pr[ℓ̂i ̸= ℓi] ≤∑

k̸=ℓi
Pr[ni,k > ni,ℓi ] =

∑
k̸=ℓi

Pr[Rk
i ≥ ni/2] ≤ δ. We express the expectation and variance

of Rk
i as E[Rk

i ] = ni/2 − (αi,ℓi − αi,k)ni/2, Var[Rk
i ] = (αi,ℓi + αi,k − (αi,ℓi − αi,k)2)ni/4. Let
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t = (αi,ℓi − αi,k)ni/2. Then by applying Theorem 1, we have

Pr
[
Rk

i ≥ ni

2

]
= Pr

[
Rk

i ≥ E
[
Rk

i
]
+ t

]
≤ exp

(

− t2

2(Var
[
Rk

i
]
+ t/3)

)

= exp

(

−ni ·
(

2(αi,ℓi + αi,k)
(αi,ℓi − αi,k)2 − 2 + 4

3(αi,ℓi − αi,k)

)−1
)

≤ exp

(

−ni ·
(

2(αi,ℓi + α̃i)
(αi,ℓi − α̃i)2 − 2 + 4

3(αi,ℓi − α̃i)

)−1
)

≤ δ

m− 1
.

This proof is then complete.

A.3. Proof of Theorem 3.5
We prove this theorem by applying Theorem 2 to show that Pr[ℓ̂ ̸= ℓi] ≥ )(δ). Let
ℓ̃i ∈ argk{αi,k = α̃i} denote the index that αi,ℓ̃i

attains the value α̃i. Let Ri =
∑

j Rℓ̃i
i, j ,

where Rℓ̃i
i j is defined in the proof of Theorem 3.4. We express the expectation and

variance of Ri as E[Ri] = ni/2 − (αi,ℓi − α̃i)ni/2, Var[Ri] = (αi,ℓi + α̃i − (αi,ℓi − α̃i)2)ni/4.
We derive an upper bound of αi,ℓi − α̃i as

100
101

αi,ℓi ≤ α̃i ⇔ αi,ℓi − α̃i ≤ 1
201

(αi,ℓi + α̃i). (9)

With this upper bound, we derive a lower bound of αi,ℓi + α̃i − (αi,ℓi − α̃i)2 as αi,ℓi +
α̃i − (αi,ℓi − α̃i)2 ≥ αi,ℓi + α̃i − ( αi,ℓi +α̃i

201 )2 ≥ 40400
2012 (αi,ℓi + α̃i) ≥ 1.99αi,ℓi . It follows that

Var[Ri] ≥ 1.99αi,ℓi ni ≥ 1.99ni
m .

We first consider the case in which Var[Ri] ≤ 1.99
m ln 1

δ
. We seek to show that Pr[ℓ̂ ̸=

ℓi] ≥ δ. Observe that ni,ℓi = 0 implies that the ℓ̂i ̸= ℓi. This fact gives a lower bound of
Pr[ℓ̂ ̸= ℓi] ≥ (1−αi,ℓi )ni . Since 100

101αi,ℓi ≤ α̃i and αi,ℓi +α̃i ≤ 1, then an upper bound of αi,ℓi is
given by αi,ℓi ≤ 101

201 . Since Var[Ri] ≥ 1.99ni
m and Var[Ri] ≤ 1.99

m ln 1
δ
, then an upper bound of

ni is given by ni ≤ ln 1
δ
. It follows that Pr[ℓ̂ ̸= ℓi] ≥ (1−αi,ℓi )ni ≥ (1− 101

201 )ln 1
δ = δln 201

100 ≥ δ.

We now consider the case that Var[Ri] > 1.99
m ln 1

δ
. We apply Theorem 2 to finish this

proof. With some basic probability arguments, we have Pr[ℓ̂i ̸= ℓi] ≥ Pr[ni,ℓ̃i
> ni,ℓi ] =

Pr[Ri > ni/2]. With a similar derivation as that of Theorem 3.4, we have Pr[Ri > ni/2] =
Pr[Ri > E[Ri]+(αi,ℓi − α̃i)ni/2]. Let us choose t = ni(αi,ℓi − α̃i)/2+ϵ, where 0 < ϵ < 10−10.
Observe that E[Ri] + t = ni/2 + ϵ > ni/2, and thus Pr[Ri > ni/2] ≥ Pr[Ri ≥ E[Ri] + t].
We now check whether the conditions specified in Theorem 2 are satisfied. We first
show that

√
Var[Ri] ≥ 200 holds. Choosing η = e−20101m, then for any δ ≤ η, it holds

that Var[Ri] ≥ 1.99
m ln 1

δ
≥ 1.99

m 20101m ≥ 40, 000. We now show that t ∈ [0, Var[Ri]/100]
holds. By applying Inequality (9), we have

t
Var[Ri]

= 2(αi,ℓi − α̃i)
αi,ℓi + α̃i − (αi,ℓi − α̃i)2 + ϵ

Var[Ri]
≤ 2

(
αi,ℓi + α̃i

αi,ℓi − α̃i
− (αi,ℓi − α̃i)

)−1

+ 10−14

≤ 2
(
201 − (αi,ℓi + α̃i)/201

)−1 + 10−14 ≤ 1/100.
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Choosing ni ≤ αi,ℓi (αi,ℓi − α̃i)−2 ln 1
δ

and applying Theorem 2, we have

Pr[Ri > ni/2] ≥ Pr[Ri ≥ E[Ri] + t] ≥ c exp
(
− t2/(3Var[Ri])

)

= c exp
(

−1
3

ni(αi,ℓi − α̃i)2

αi,ℓi + α̃i − (αi,ℓi − α̃i)2

)
≥ c exp

(
−1

3
ni(αi,ℓi − α̃i)2

1.99αi,ℓi

)
≥ cδ.

This proof is then complete.

A.4. Proof of Theorem 3.7
We prove this theorem by extending Theorem 3.4. We first present a probabilistic
interpretation of the rating process under a fraction of fr random misbehaving users:
with probability fr, a random misbehaving user is generated to rate Pi, and with
probability 1 − fr, an honest user is generated to rate Pi. Then we have

Pr[Pi receives a rating k] = fr/m+ (1 − fr)αi,k, for k = 1, . . . , m.

It follows that fr/m+ (1− fr)αi,ℓi and fr/m+ (1− fr )̃αi are the largest and second largest
among Pr[Pi receives a rating 1], . . . , Pr[Pi receives a rating m], respectively. Plugging
the two terms into Theorem 3.4, we finish this proof.

A.5. Proof of Theorem 3.9
Similar to the proof of Theorem 3.7, we present a probabilistic interpretation of the
rating process under a fraction of fb biased misbehaving users: with probability fb, a
biased misbehaving user is generated to rate Pi, and with probability 1 − fr, an honest
user is generated to rate Pi. Then we have

Pr[Pi receives a rating k] =
{

fb + (1 − fb)αi,ℓ′ , for k = ℓ′

(1 − fb)αi,k, otherwise.

The biased misbehavior can be tolerated if and only if the rating ℓi still has the
largest probability mass—that is, (1 − fb)αi,ℓi > fb + (1 − fb)αi,ℓ′ . Namely, we need
fb < (αi,ℓi − αi,ℓ′)/(1 + αi,ℓi − αi,ℓ′). Thus, f b = (αi,ℓi − αi,ℓ′)/(1 + αi,ℓi − αi,ℓ′). Observe that
(1− fb)αi,ℓi and max{ fb + (1− fb)αi,ℓ′, (1− fb)̃αi} are the largest and second largest value
among Pr[Pi receives a rating 1], . . . , Pr[Pi receives a rating m], respectively. Plugging
the two terms into Theorem 3.4, we finish this proof.

A.6. Proof of Theorem 3.11
We prove this theorem by applying Theorem 1 to show Pr[̂li ̸= li] ≤ δ. With some basic
probability arguments, we have Pr[̂li ̸= li] = Pr[|{ri, j |ri, j ≤ li}|/ni < 1/2] + Pr[|{ri, j |1 ≤
ri, j < li}|/ni > 1/2]. We show Pr[|{ri, j |ri, j ≤ li}|/ni < 1/2] ≤ δ/2 first. Let Ri, j , denote
j ∈ {1, . . . , ni}, and denote a set of independent random variables with Ri, j = 1 if
r+

i, j ≤ li; otherwise, Ri, j = 0. Let Ri =
∑

j Ri, j . We set its expectation and variance as
E[Ri] = ni Fi(li) and Var[Ri] = ni Fi(li)(1 − Fi(li)). Observe that Ri = |{r+

i, j |r
+
i, j ≤ li}| =

|{ri, j |ri, j ≤ li}|. Based on this fact, we have Pr[|{ri, j |ri, j ≤ li}|/ni < 1/2] = Pr[Ri/ni <
1/2] = Pr[Ri − ni F(li) < −ni(F(li) − 1/2)] = Pr[Ri − E[Ri] < −ni(F(li) − 1/2)]. Observe
that (αi,li − |2Fi(li) − αi,li − 1|)/2 = (Fi(li) − Fi(li − 1) − |Fi(li) + Fi(li − 1) − 1|)/2 =
min{Fi(li)−0.5, 0.5− Fi(li −1)} ≤ Fi(li)−0.5. By applying Theorem 1 and with a similar
derivation as that of Theorem 3.4, we obtain that Pr[|{ri, j |ri, j ≤ li}|/ni < 1

2 ] ≤ δ/2.
Similarly, we have Pr[|{ri, j |1 ≤ ri, j < li}|/ni > 1

2 ] ≤ δ/2. Hence, Pr[̂li ̸= li] ≤ δ.

A.7. Proof of Theorem 3.12
We prove this theorem by showing that Pr[̂li ̸= li] ≥ )(δ). We consider two cases.
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Case 1. Fi(li) − 1
2 ≤ 1

2 − Fi(li − 1). It follows that αi,li − |2Fi(li) − αi,li − 1| = 2Fi(li) − 1.
We adopt the notations Ri, j and Ri defined in the proof of Theorem 3.11. Recall that
Var[Ri] = ni Fi(li)(1 − Fi(li)). Let us choose η2 = (

√
10001 − 99)/2. Recall that Fi(li) ∈

[0.5, η2]. It follows that Var[Ri] > 0.24ni. We first consider the case Var[Ri] ≤ 0.24 ln 1
δ
.

Observe that all ratings of Pi being larger than li implies that l̂i ̸= li. This fact gives
Pr[̂li ̸= li] ≥ Pr[r+

i, j > li,∀ j] = (Fi(li))ni ≥ (1 − (
√

10001 − 99)/2)ni ≥ 1/eni ≥ δ, where the
last step follows that Var[Ri] > 0.24ni and Var[Ri] ≤ 0.24 ln 1

δ
, implying that ni ≤ ln 1

δ
.

We now consider the case Var[Ri] > 0.24 ln 1
δ
. By applying Corollary 3, and with a

similar derivation as that of Theorem 3.5, we conclude that Pr[̂li ̸= li] = )(δ).
Case 2. Fi(li) − 1

2 ≥ 1
2 − Fi(li − 1). Let us choose η3 = (101 −

√
10001)/2. Recall that

Fi(li − 1) ∈ [0, η3]. Then, by applying Theorem 10.2 and with a similar derivation as
that of the proof of Case 1, we obtain Pr[̂li ̸= li] = )(δ). The proof of this theorem is
then complete.

A.8. Proof of Theorem 3.16
We prove this theorem by applying Theorem .1 to derive an upper bound of Pr[|γ̂i −γi| >
Er]. Let Xi, j = r+

i, j/m, j = 1, . . . , ni denote a a set of independent random variables.
We express the pmf of Xi, j as Pr[Xi, j = k/m] = αi,k for all k = 1, . . . , m and for all
j = 1, . . . , ni. Note that Xi, j ∈ [0, 1]. Let Xi =

∑
j Xi, j . Observe that γ̂i =

∑
j r+

i, j/ni =
mXi/ni and γi =

∑
k kαi,k = mE[Xi]/ni. Then we have Pr[|γ̂i − γi| > Er] = Pr[Xi >

E[Xi] + ni
m Er] + Pr[Xi < E[Xi] − ni

m Er]. Then by applying Theorem 1 and with a similar
derivation as that of Theorem 3.4, we conclude this theorem.

A.9. Proof of Theorem 3.17
Let Xi =

∑
j r+

i, j/mdenote the same random variable as specified in the proof of Theorem
3.16. We express the expectation and variance of Xi as E[Xi] = γini/m and Var[Xi] =
(
∑

k k2αi,k − γ 2
i )ni/m2. Note that

∑
k k2αi,k − γ 2

i ≥ m2

100 , thus Var[Xi] ≥ ni/100.
We first explore the case of Var[Xi] ≤ 1

100 log202
2
δ
. We seek to show that Pr[|γ̂i − γi| >

Er] ≥ δ. We divide the rating into three disjoint groups based on their distance to
γi—that is, G1 = {k|k < γi − Er}, G2 = {k||k − γi| ≤ Er} and G3 = {k|k > γi + Er}. Observe
that

∑
k k2αi,k − γ 2

i =
∑

k(k − γi)2αi,k ≤
∑

k∈G2
αi,kE2

r +
∑

k∈G1∪G3
αi,km2. Let us choose

η1 = (
∑

k k2αi,k − γ 2
i )/100m. It is easy to prove that

∑
k k2αi,k − γ 2

i ≤ (m− 1)2/4, then for
any Er ∈ [0, η1], we have Er ≤ 1

100m · (m−1)2

4 ≤ m
400 . Note that

∑
k k2αi,k−γ 2

i ≥ m2

100 ; it follows
that m2

100 ≤
∑

k∈G2
αi,k( m

400 )2 +
∑

k∈G1∪G3
αi,km2. Observe that

∑
k∈G1∪G3

αi,k = 1 −
∑

k∈G2
αi,k;

we then have
∑

k∈G2
αi,k ≤ m2−m2/100

m2−(m/400)2 ≤ 100
101 . Note that all ratings of Pi being in G1 implies

that γ̂i < γi − Er, and all of these ratings being in G3 implies that γ̂i > γi + Er. These
facts give the following lower bound:

Pr[|γ̂i − γi| > Er] ≥ Pr
[
r+

i, j ∈ G1,∀ j
]
+ Pr

[
r+

i, j ∈ G3,∀ j
]

=

⎛

⎝
∑

k∈G1

αi,k

⎞

⎠
ni

+

⎛

⎝
∑

k∈G3

αi,k

⎞

⎠
ni

≥ 2

⎛

⎝
∑

k∈G1∪G3

αi,k/2

⎞

⎠
ni

≥ 2 · 202−ni ≥ δ,

where the last step follows Var[Xi] ≥ ni
100 and Var[Xi] ≤ 1

100 log202
2
δ
, implying that

ni ≤ log202
2
δ
.

We now explore the case Var[Xi] ≥ 1
100 log202

2
δ
. By applying Theorem 2, and with a

similar derivation as that of Theorem 3.5, we conclude this theorem.
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A.10. Proof of Lemma 3.21
With a similar derivation as that of Theorem 3.7, we have that for all k = 1, . . . , m, it
holds that Pr[Pi receives a rating k|assigned by misbehaving users] = fr

fr+ fb
1
m + I{k=ℓ′} fb

fr+ fb
.

It follows that the majority rating of the ratings assigned by misbehaving users con-
verges to ℓ′. Since ℓ′ ̸= ℓi, we therefore conclude the result for the majority rule.
Consider the median rule; the median of the ratings assigned by misbehaving users
converges to li if and only if li

m
fr

fr+ fb
+ I{ℓ′<li } fb

fr+ fb
> 1

2 and li−1
m

fr
fr+ fb

+ I{ℓ′<li } fb
fr+ fb

< 1
2 . Namely, we

need ( li
m − 1

2 ) fr > ( 1
2 − I{ℓ′<li}) fb > ( li−1

m − 1
2 ) fr. We now consider the average score rule.

The mean of the ratings assigned by misbehaving users is fr
fr+ fb

m+1
2 + ℓ′ fb

fr+ fb
. Thus, to

guarantee fr
fr+ fb

m+1
2 + ℓ′ fb

fr+ fb
= γi, we only need fr

fb
= γi−ℓ′

(m+1)/2−γi
.
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