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Abstract
Many computationally expensive problems are solved by a
divide-and-conquer algorithm: a problem over a big dataset
can be recursively divided into independent tasks over smaller
subsets of the dataset. We present a distributed general-
purpose framework called T-thinker which e!ectively uti-
lizes the CPU cores in a cluster by properly decomposing
an expensive problem into smaller independent tasks for
parallel computation. T-thinker well overlaps CPU process-
ing with network communication, and its superior perfor-
mance is veri"ed over a re-engineered graph mining system
G-thinker available at h!p://cs.uab.edu/yanda/gthinker/.

CCS Concepts • Theory of computation → Parallel
computing models; Distributed computing models.

1 Problem De!nition
Many computationally expensive problems can be solved by
divide and conquer: the computation over a big dataset can be
recursively divided into independent tasks over smaller sub-
sets of the dataset, exposing great parallelism opportunities.
To illustrate, we provide 3 examples described as follows.
Application 1: Mining Subgraphs. We consider the prob-
lem of mining those subgraphs in a big input graph G =
(V ,E) that satisfy certain conditions, such asmaximum clique
"nding, quasi-clique enumeration and triangle counting. The
search space is the power set of V : for each vertex subset
S ⊆ V , we check whether the subgraph of G induced by S
satis"es the conditions. This giant search space can be orga-
nized into a set-enumeration tree [3] as shown in Figure 1.
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Figure 1. Set-Enumeration Tree

A graphG with
four vertices {a,b,
c,d} is consid-
ered where a <
b < c < d
(ordered by ID).
Each node in the
tree represents a vertex set S , and only vertices larger than
the last (and also largest) vertex in S are used to extend S .
For example, node {a, c} can be extended with d but not b
as b < c . Edges can be used for the early pruning of a tree
branch: for example, to "nd cliques (i.e., complete subgraphs),
one only needs to extend a vertex set S with those vertices
in (V − S) that are common neighbors of every vertex of S .
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Figure 2. Training a Tree

Application 2:Decision
Tree. Figure 2 shows the
divide-and-conquer train-
ing of a decision tree. The
root node is associated
with all input data in-
stances, and for each at-
tribute xi and for each
splitting value v of that
attribute, we compute the decrement of a impurity function
when splitting the node into two child nodes based on the
condition xi < v , and split based on the condition that maxi-
mizes that metric. Each child node is associated the part of
data instances that satis"es the condition along its branch,
and it can be recursively split into two nodes, making the tree
training process a top-down divide-and-conquer algorithm.
Application 3: Frequent Pattern Mining. We consider
the pattern-growth approach: we check whether a pattern
is frequent, and if so, we grow the pattern for further ex-
amination. Figure 3 illustrates the Pre"xSpan algorithm for
mining frequent sequential patterns, where the sequence
database D in Figure 3(a) is projected by pre"x patternA (i.e.,
Figure 3(b)), and then AB (i.e., (c)), and "nally ABC (i.e., (d)).
We see that the projected database D |P is shrinking in size.
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Figure 3. Frequent Sequential Pattern Mining

Without loss of generality, we illustrate the use of T-
thinker by considering the application of mining subgraphs
in the rest of this paper. Earlier work attempts to tackle this
problem using MapReduce but is found to be 10 times slower
than a single-threaded program [2] due to a communication-
bound execution pattern that underutilizes CPU cores. Other
attempts face a similar problem [4, 5] which motivates the
development of task-centric graph mining systems like G-
thinker [6] and G-Miner [1]. However, the latter two systems
still su!er from design problems such as (1) expensive initial
graph partitioning and task generation, (2) threads contend
on a single data cache for one-at-a-time access, (3) a disk-
based task queue that is expensive to insert new tasks.

2 The T-thinker Framework
T-thinker makes it convenient for users to write divide-and-
conquer programs for execution with a high parallelism.
T-thinker considers two kinds of objects: (1) tasks and

(2) data objects. An underlying distributed data store is cre-
ated for tasks to request their needed data objects. Each
machine also maintains a cache Tcache to maintain remote
data objects for use by tasks, which allows di!erent tasks on
a machine to share data and reduce redundant data requests.
Data objects in Tcache are organized as buckets hashed

by object IDs, so that two concurrent tasks can access data
objects inTcache together as long as they are not in the same
bucket. In each bucket, we track whether a data object o
is cached, or has been requested. This is because, if a task
already requested o, then even if o’s content has not been
received yet, another task on the same machine should not
send a redundant request for o. To keepTcache bounded, data
objects no longer needed by any task are tracked for eviction.
A task may be spawned from input data, or recursively

generate more new (but smaller) tasks by divide and conquer.
Upon their generation, tasks are independent of each other
and there is no need of complicated scheduling (e.g., by a de-
pendency DAG). T-thinker adopts a lightweight scheduling
strategy. It generates tasks in a proper pace to keep memory
consumption bounded (as each task maintains its associated
data objects and states), i.e., more tasks are created for pro-
cessing only if enough memory space is released by "nished
tasks. Tasks are maintained by an in-memory concurrent
queue Qtask for fetching by computing threads, and since
an active task may generate many new tasks, we spill tasks
to local disk in batches if Qtask over$ows. These tasks are
later loaded back when memory permits, prioritized over
spawning new tasks to keep the pool of active tasks minimal.

Table 1. System Comparison: Maximum Clique Finding
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If a task is waiting for data objects, it is suspended to re-
lease CPU core for use by other tasks, and it will be timely re-
sumed when the requested data are all received. This allows
communication cost to be hidden by computation (which
is the performance bottleneck). Load balancing among ma-
chines is handled by allowing an about-to-be-idle machine to
steal (i.e., prefetch) tasks from other machines for processing.
Programming Interface. T-thinker provides base classes
such as Task andObject, and users de"ne their contents using
C++ template arguments and implement abstract functions
in their subclasses to specify the task computing logic includ-
ing (1) how to spawn tasks from input data, and (2) how to
continue computing a task given previously requested data.
A task may call a function pull(o) to request a data object, and
may call a function add_task(t ) to add a new task t . If a task
involves too many objects to be collected at a machine, it
may request aggregated data (e.g., pattern frequency) instead
which is computed at each machine over its local dataset.
3 Performance Evaluation
To verify T-thinker’s e%ciency, we reengineeredG-thinker [6]
on top of it, and compared it with the state-of-the-arts such as
G-Miner [1] and Arabesque [5]. The experiments were con-
ducted on a cluster of 16 virtual machines (model D16S_V3)
on Microsoft Azure, and the code is released at h!p://cs.
uab.edu/yanda/gthinker/. As an illustration, Table 1 shows
the performance of the systems for the application of maxi-
mum clique "nding over 3 big graphs, where we can see that
T-thinker is a clear winner thanks to its e%cient design.
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