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Abstract—Random walk is widely applied to sample large-scale graphs due to its simplicity of implementation and solid theoretical
foundations of bias analysis. However, its computational efficiency is heavily limited by the slow convergence rate (a.k.a. long burn-in
period). To address this issue, we propose a common neighbor aware random walk framework called CNARW, which leverages
weighted walking by differentiating the next-hop candidate nodes to speed up the convergence. Specifically, CNARW takes into
consideration the common neighbors between previously visited nodes and next-hop candidate nodes in each walking step. Based on
CNARW, we further develop two efficient “unbiased sampling” schemes, and we also design two variant algorithms which can reduce
sampling cost and speed up the convergence. Experimental results on real-world network datasets show that our approach converges
remarkably faster than the state-of-the-art random walk sampling algorithms; and to achieve the same estimation accuracy, our
approach reduces the query cost significantly. Last, we use two case studies to demonstrate the effectiveness of our sampling
framework in solving large-scale graph analysis tasks.

Index Terms—Random walk, online social networks, graph sampling
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1 INTRODUCTION

IN recent years, online social networks (OSNs) such as
Facebook,Twitter and Flickr have become more and more

popular, so how to take advantage of these platforms to pro-
mote commercial businesses, like viral marketing, product
recommendation and advertisement promotion, has gained
significant attention. This task necessitates an accurate esti-
mation or even mining of various kinds of graph centrali-
ties. The rationale is that different kinds of graph
centralities imply different attributes of users, which can be
effectively used for promoting commercial businesses.

We use two application examples to further justify the use-
fulness of estimating graph centralities. The first example is

investment on networking platforms. It is well known that OSNs
are proven to be effective for viral marketing due to the
“word-of-mouth” effect [7], [14], [30]. That is, a user who
bought a product may influence her friends (neighboring
nodes in OSNs) to purchase the same product. Clearly, differ-
ent OSN platforms may have different potentials to do viral
marketing, as both the activeness of users and the influence
between users may differ significantly across different OSNs.
Therefore, one interesting problem for a product owner is: Which
OSN platform should be targeted to do viral marketing so as to
attract as many buyers as possible with a given advertisement bud-
get? This problem may be heuristically solved by estimating
the average similarity of all user pairs in different OSNs,
because higher similaritymay imply easier influence. Another
example is bundling in viral marketing.Note that bundling sales
which bundle multiple products together to sell with some
discount can be witnessed everywhere in our daily life, and it
is also widely studied in network economics. In the situation
of viral marketing in OSNs, we can also expect that bundling
can be used to promote the sale. However, its efficiency may
depend on which products to bundle, e.g., bundling two
products which target young and elderly people respectively
may even reduce the sale.Thus, one interesting problem is:Which
products should be bundled together so as to trigger a larger sale?
This problem can be better solved by mining the value of the
OSN, e.g., we can estimate the interest distribution of users on
every product, and then bundle the set of products which
have similar distributions, as similar distributions may imply
that users have similar interest in the set of products.

However, it is not easy to accurately estimate graph cen-
tralities or efficiently solve graph mining problems. First,
OSNs can be extremely large. Second, many OSNs may
only allow third-party agents to access the networking data
through fixed API with rate constraints to protect user
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privacy. These challenges raise a fundamental question:
How to design computationally efficient algorithms for large-scale
OSNs? Graph sampling is a promising paradigm since it
generates representative samples of the OSNs without tra-
versing the whole network and has received extensive
attentions [4], [16], [31], [32], [33].

Among various sampling approaches, random walk
based method is the mainstream due to its scalability and
simplicity of implementation. Here is the general idea. A
walker starts at an arbitrary node, then repeatedly jumps to
another node by choosing from the current node’s neigh-
bors uniformly at random. After many steps, the probability
of a node being visited tends to reach a stationary probabil-
ity distribution, and one can start collecting samples (i.e.,
sample nodes or sample edges), after convergence [9], [25],
[36]. The time duration to reach the stationary distribution
is known as the burn-in period [24], [25]. Based on the col-
lected samples and the knowledge of the stationary proba-
bility distribution, one can generate unbiased estimations
for interested graph measures.

However, random walk based sampling algorithms suf-
fer from the long burn-in period issue in real-world OSNs
[24], [36], i.e., they may cost lots of steps to reach the conver-
gence status. This leads to a high cost, especially for the net-
work sampling situation, in which it needs to query from
the network at each step if a new node is accessed. Conse-
quently, given a sampling budget (e.g., a limited number of
nodes can be queried from the network), we may be able to
collect only a small number of representative samples,
which would severely reduce the accuracy of graph mining
tasks. Thus, one important question is: How to speed up the
convergence of random walk over large-scale graphs?

Currently, there are two classes of methods to accelerate
the convergence of random walk. The first one aims to
increase the conductance of graphs [23], [26]. These schemes
often need the global information of the graph, which is
usually infeasible in practice. The second class modifies the
transition probabilities in each walking step [18], [35]. These
schemes usually utilize the walking history and require
only partial information of the graph. The key issues are
what kind of partial information is needed and how to uti-
lize the information to speed up the convergence of random
walk.

In this paper, we propose a new random walk frame-
work CNARW in which the walker optimizes the next-hop
node selection by looking back previously visited nodes
and also looking one step ahead with a small overhead. Our
intuition behind the design is simply “ common neighbors
matter.” In particular, CNARW takes into consideration the
number of common neighbors between the current node
and the next-hop candidates so that it can speed up the con-
vergence significantly. We also study another fundamental
question: How many steps should the walker look back? Intui-
tively, the larger the number of steps to look back, the more
historical information the walk can have, which will lead to
faster convergence speed. However, this also leads to a
larger computational cost. Our contributions are:

! We propose CNARW, a common neighbor aware
random walk, which selects the next node to visit by
taking into consideration the number of common

neighbors between the currently visiting node and
its neighbors. CNARW shrinks the burn-in period
and speeds up the convergence of random walks.

! We also develop efficient node and edge sampl-
ing algorithms based on CNARW, and develop
an efficient scheme to provide “unbiased statistical
estimation”. We also provide theoretical proofs to
guarantee the unbiasedness of graph measure
estimation.

! We design two variant algorithms of CNARW to fur-
ther improve the performance. The first one incorpo-
rates the idea from non-backtracking random walk,
which can reduce the sampling cost. The second one
utilizes more visited nodes which further speeds up
the convergence.

! We conduct extensive experiments on real-world
datasets to evaluate the efficiency of CNARW.
Results show that with CNARW the number of steps
needed to converge can be reduced by up to 71.9%
compared to existing schemes like SRW [22], NBRW
[18] and CNRW [35]. Furthermore, to achieve the
same estimation accuracy, CNARW can also reduce
the query cost by up to 35.7%.

2 PRELIMINARIES

2.1 RandomWalk on Graphs
We consider undirected and connected graphs which are
denoted by GðV;EÞ, where V is the set of nodes and E is the
set of edges. We use jV j and jEj to denote the numbers of
nodes and edges in G, respectively. We denote NðvÞ for v 2
V as the set of neighbors of v and degðvÞ as the degree of v,
i.e., degðvÞ ¼ jNðvÞj.

A random walk on graph GðV;EÞ can essentially be
viewed as a finite Markov chain, in which the walker starts
from a given node, say v0 2 V , then randomly chooses a
neighbor of v0 and jumps to it according to some transition
probability distribution defined by the random walk algo-
rithm. The walker continues this process by repeating the
above step. The transition probability distribution in one
step can be represented as a jV j% jV j matrix P ¼ ðPuvÞ,
u; v 2 V , where Puv denotes the probability of moving from
u to v in one step. For different algorithms, they can be
mathematically represented by their transition probability
matrices. Here, we introduce simple random walk (SRW),
which is classical and widely used as the baseline of various
optimized random walks.

Simple Random Walk (SRW) [22]. Suppose that the walker
is currently at node u, SRW chooses the next node v from
NðuÞ uniformly at random according to degðuÞ, i.e., Puv is
1=degðuÞ if v 2 NðuÞ or 0 otherwise. For SRW, the stationary
distribution pp ¼ fpðuÞgu2V , where pðuÞ denotes the proba-
bility of node u being visited when the random walk con-
verges, can be derived as pðuÞ ¼ degðuÞ

2jEj :

2.2 Unbiased Graph Sampling
Unbiased graph sampling aims for collecting node/edge
samples with the uniform distribution, i.e., each node/edge
is sampled with an equal probability, while random walks
may not produce uniform samples as they visit nodes/
edges with the probability of stationary distribution p after

WANG ETAL.: COMMON NEIGHBORS MATTER: FAST RANDOMWALK SAMPLINGWITH COMMON NEIGHBOR AWARENESS 4571

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:14:18 UTC from IEEE Xplore.  Restrictions apply. 



convergence. Therefore, to realize unbiased graph sampling
via random walks, a bias correction method is in need. And
the whole process can be divided into two steps: (1) collect
enough number of samples, and (2) perform an unbiased
estimation.

In the first step, there are two ways of collecting samples:
continuous sampling [9], [18], [21] and independent sam-
pling [25], [36]. Continuous sampling initiates one walk
only and keeps walking after convergence until collecting
enough samples, while independent sampling initiates
many random walks and collects only one sample from
each walk after convergence. Note that samples can only be
collected after convergence for both approaches so as to pro-
vide predictable or unbiased estimations. Thus, reducing
the burn-in period is crucial to reduce the computation cost
in random walk sampling, no matter which approach is
used to collect samples.

The second step of unbiased graph sampling is to per-
form estimation on collected samples. Suppose that the
graph measure to be analyzed is defined by a function f :
V ! R, then applying f on enough number of samples for a
random walk with stationary distribution pp produces an
estimation of Epp½f ' ,

P
u2V fðuÞpðuÞ. The accuracy of this

estimation is guaranteed by the Strong Law of Large Numbers
(SLLN) [13], [18], which can be stated as follows.

Theorem 1. Strong Law of Large Numbers (SLLN). Suppose
that fXtgt(0 is a finite, irreducible Markov chain with station-
ary distribution pp, where Xt denotes the state of the Markov
chain at time t. As t!1, we have

mtðfÞ! Epp½f'; almost surely (a.s.),

for any function f : V ! R with Epp½jf j' < 1, where

mtðfÞ ,
1

t

Xt

s¼0
fðXsÞ; Epp½f ' ,

X
u2V

fðuÞpðuÞ:

Note that in the above formula,Xs 8 pp, mtðfÞ denotes the
average of f over the samples, and Epp½f' denotes the mathe-
matical expectation of f with respect to pp.

As random walks may not always produce uniformly
distributed samples, to achieve unbiased estimation EU ½f '
(where U denotes the uniform distribution), we can correct
the bias by using Importance Sampling Framework [11], [18].
That is, by setting a bias correction weight vðXsÞ ¼
UðXsÞ=pðXsÞ, we have

Pt
s¼1 vðXsÞfðXsÞPt

s¼1 vðXsÞ
! EU ½f '; as t!1: (1)

3 CNARW: COMMON NEIGHBOR AWARE

RANDOM WALK

In this section, we present the details of our common
neighbor aware random walk (CNARW). Specifically, we
first introduce the main idea of CNARW by using a sim-
ple example, then we present its algorithm design in
details and provide theoretical analysis of its stationary
distribution.

3.1 Main Idea of CNARW
The intuition of CNARW is simply “your common neigh-
bors matter,” and its main idea is to utilize the common
neighbor information. To illustrate, suppose that the walker
is currently at node u, so u’s neighbors, i.e., nodes in NðuÞ,
present as the candidates of next-hop nodes (see Fig. 1).
Instead of choosing the next-hop node uniformly at random
from all candidates as in SRW, which we call uniform walk-
ing (see Fig. 1a), CNARW differentiates the candidates by
taking into consideration their degrees and the number of
common neighbors between them and node u, which we
call weighted walking (see Fig. 1b). Specifically, if a candidate
node, say v 2 NðuÞ, has a higher degree or less common
neighbors with u, then the walker moves to v with a higher
probability. That is, the weight of the transition probability
from u to v is larger, e.g., in Fig. 1b, Puv ¼ 12=37 is the largest
as v has higher degree but less common neighbors with u
than other nodes in NðuÞ. In fact, we can easily verify from
Fig. 1b that v should be a better choice as it is easier to
explore more unvisited nodes though v.

The rationale of the above weighted walking strategy
used by CNARW can be justified as follows. We observe
that one key reason why simple random walk converges
slowly is that it is easy to fall into local loops due to the high
clustering feature, which is very common for OSNs. In other
words, by moving to neighbors uniformly at random, it is
very likely to walk back to previously visited nodes, and
this kind of revisits clearly slow down the convergence. To
avoid frequent revisits to preciously visited nodes so as to
speed up the convergence, one way is to give higher priority
to nodes which provide higher chance of exploring unvis-
ited nodes in each walking step. Therefore, if a candidate
node has a higher degree, then it may provide a higher
chance of connecting to more unvisited nodes. However, if
it has more common neighbors with previously visited
nodes, then the walker may also have a high probability of
walking back to those visited nodes through common
neighbors. Thus, walking to a node which has higher degree
but fewer common neighbors with previously visited nodes
(or simply the current node) not only provides higher
chance of walking to unvisited nodes, but also reduces the
probability of walking back to visited nodes in the future
walking steps. With the above weighted walking strategy,
CNARW is expected to converge faster.

3.2 Algorithm Design of CNARW
To realize CNARW described above by using the weighted
walking strategy, the key issue is to formulate the selection
of the next-hop node with a mathematical model. Based on

Fig. 1. Comparison of CNARW with SRW: SRW chooses next node uni-
formly at random from the current node’s neighbors, while CNARW
walks with higher probability to a neighbor which has larger degree and
less common neighbors with the current node.
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the formulation, the transition probability matrix can be for-
mulated, and the random walk algorithm can also be devel-
oped accordingly. In the following, we first formulate next
node selection by leveraging the concept of “set con-
ductance”, then present the design of a transition matrix and
show the random walk algorithm in details.

Importance of Common Neighbors. To evaluate the impor-
tance of common neighbors, we leverage the concept of “set
conductance” [26]. Its definition is given below.

Definition 1. (Set Conductance) [26]. Let G ¼ ðV;EÞ be an
undirected graph and C ) V be a set of nodes, Let fðCÞ
be the conductance of set C and it is defined as

fðCÞ ¼ fðC; !CÞ ¼ jEC; !C j=VolðCÞ;

where !C ¼ V * C, EC; !C ¼ fðu; vÞ 2 Eju 2 C; v 2 !Cg, and
VolðCÞ ¼

P
u2C degðuÞ, degðuÞ indicates the degree of ver-

tex u in G.

Remark: Note that the conductance fðCÞ can be consid-
ered as the ratio of the number of connections between C
and !C to the number of connections inside C. More impor-
tantly, the conductance of set C can be taken as an efficient
indicator to reflect the difficulty of being trapped into the
local community C if a walker is currently at a node in C. In
particular, larger conductance fðCÞ may imply a higher
chance of not being trapped into the local subgraph, because
larger fðCÞmeans more connections to nodes outside C, i.e.,
it provides higher chance of walking outside C.

Now we formulate the selection of the next-hop node by
using the concept of set conductance described above. Sup-
pose that the walker is currently at node u, we define a set of
frontier nodes, which contains the current node and its
neighbors, and call it frontier set denoted as S, i.e., S¼
fug [NðuÞ. For example, as shown in Fig. 1a, S¼
fu; a; b; v; c; dg. According to previous discussions, fðSÞ can
be used as an indicator to characterize the difficulty of being
trapped in S. Let degðSÞ ¼

P
i2S degðiÞ.We can derive fðSÞ as

fðSÞ ¼ jES !Sj=degðSÞ:

Note that all candidates of the next-hop nodes are now in
S, to evaluate the goodness of being selected as the next hop
for each candidate, say node v, we characterize the contribu-
tion of v to the conductance of set S, which can be mathe-
matically expressed as Dfv ¼ fðSÞ * fðS*vÞ where
S*v ¼ S n fvg. For example, as in Fig. 1a, S*v ¼ fu; a; b; c; dg.
The physical meaning is that if v contributes more to the
conductance of set S, then walking through v may provide
higher opportunities of exploring unvisited nodes outside
S. We give the mathematical expression of Dfv in Theorem
2.

Theorem 2. Given the current node u and it’s frontier set S, the
contribution of node v to the conductance of set S, denoted as
Dfv, can be derived as

Dfv ¼
ð1*fðSÞÞ * 2ðCuvþ1Þ=degðvÞ

ð
P

i2S degðiÞÞ=degðvÞ*1
; (2)

where degðvÞ and Cuv denote the degree of v and the number of
common neighbors between v and u, respectively.

Proof:

Dfv ¼ fðSÞ * fðS*vÞ

¼ jES !SjP
i2S degðiÞ

*jES !Sj*½degðvÞ * ðCuvþ1Þ'þðCuvþ1ÞP
i2S degðiÞ * degðvÞ

¼
degðvÞ½

P
i2S degðiÞ*jES !Sj'*2ðCuvþ1Þ

P
i2S degðvÞP

i2S degðiÞ½
P

i2S degðiÞ*degðvÞ'

¼ ð1*fðSÞÞ * 2ðCuvþ1Þ
degðvÞ

! "# P
i2S degðiÞ
degðvÞ

*1

! "
:

Remark: We can see that Dfv is only dependent on degðvÞ
and Cuv. For any fixed degðvÞ, if v has fewer common neigh-
bors with u, then it contributes more to the conductance
(the higher Dfv). On the other hand, if Cuv is fixed, then a
larger degree implies a higher contribution to the conduc-
tance. Thus, the change of Dfv with respect to the degree
and the number of common neighbors of a candidate node
are consistent with the intuition behind the weighted walk-
ing strategy. In summary, for each v ) NðuÞ, its contribution
to the conductance of frontier set can be taken as an effective
indicator to evaluate the goodness of being chosen as the
next node. Precisely, CNARW gives higher weights to nodes
which contribute more to the conductance of the frontier set.

Design of the Walker’s Transition Matrix. To develop a
weighted walking strategy, an intuitive strategy is to make
the transition probability from u to v (i.e., Puv) be propor-
tional to Dfv. To avoid computing fðSÞ, we can let Puv be
proportional to 1* Cuv

degðvÞ . The rationale is that if v has a
larger degree and fewer common neighbors with u, i.e., 1*
Cuv

degðvÞ is larger, then the contribution of v to fðSÞ is bigger, so
the walk should select it as the next node with a higher
probability. For ease of deriving the stationary distribution,
we also guarantee the symmetric property when designing
Puv, i.e., to design a reversible random walk satisfying
pðuÞPuv ¼ pðvÞPvu [29]. Mathematically, we let Puv satisfy.

1

Puv / 1* Cuv=minfdegðuÞ; degðvÞg: (3)

We point out that one can also adopt other functions in
Eq. (3) to develop a new transition matrix, for example,
using degðuÞ þ degðvÞ or maxfdegðuÞ; degðvÞg can also satisfy
the symmetric property. However, taking the minimum can
eliminate the dominating effect of degðuÞ when it is very
large so that different neighbors of u can be differentiated.
Thus, taking the minimum usually leads to better perfor-
mance, which is also validated via experiments.

Walking-With-Rejection Implementation. To realize the pro-
portional strategy in Eq. (3), we need to know Cuv and
degðvÞ for each v 2 NðuÞ. This means we need to fetch all
these neighbors from the network to conduct one step of
random walk, which is expensive for high network query
cost. To limit the overhead, CNARW adopts a walking-
with-rejection policy: in each step, CNARW first selects a
candidate node v from NðuÞ uniformly at random with

1. In general, one can consider the common neighbors’ weight in the

transition matrix design as Puv / 1* aCuv
minfdegðuÞ;degðvÞg , where 0 , a , 1 to

guarantee 0 , Puv , 1. When a decreases, the weight of common neigh-
bors also decreases. We also experimentally study the impact of the
common neighbors’ weight in Section 6.5, and find that a larger com-
mon neighbors’ weight always brings a better performance.
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probability buv ¼ 1
degðuÞ , if v 2 NðuÞ, then fetches v’s informa-

tion from the network. After that, it accepts v as the next
node with probability quv ¼ 1* Cuv

minfdegðuÞ;degðvÞg , where Cuv

and degðvÞ can be computed based on the fetched informa-
tion. Note that with the walking-with-rejection policy, we
only need to fetch node v if it is accepted, so we do not have
to access all nodes in NðuÞ, which largely reduces the net-
work query cost.

The random walk can move from u to its neighbor v in
one try with probability ~puv ¼ 1

degðuÞ % ð1* Cuv
minfdegðuÞ;degðvÞgÞ.

Note the selected node has a chance of being rejected with
probability ~puu ¼ 1*

P
v2NðuÞ

1
degðuÞ % ð1* Cuv

minfdegðuÞ;degðvÞgÞ >

0. If this happens, the walker repeats the selection again by
checking another randomly selected node from NðuÞ until a
selected node is accepted. We call the above process as one
walking step of CNARW. We have:

Theorem 3. The transition matrix PP ¼ ½Puv'u;v2V is

Puv ¼
~puv=ð1* ~puuÞ; if v 2 NðuÞ;
0; otherwise;

$
(4)

where ~puv is defined as

~puv¼

1
degðuÞ%ð1* Cuv

minfdegðuÞ;degðvÞgÞ; if v2NðuÞ;
1*

P
k2NðuÞ ~puk; if v ¼ u;

0; otherwise:

8
><

>:
(5)

Proof: According to the walking-with-rejection and loop-
until-accept policy, we have

Puv ¼
quv

degðuÞ
%
X1

n¼0

P
k2NðuÞð1* qukÞ

degðuÞ

% &n

¼ ~puv %
1

1* ~puu
:

According to the above result, we can also to show that
CNARW is a stochastic random walk in the following
theorem:

Theorem 4. Given an undirected and connected graph
GðV; EÞ, CNARW on G is a stochastic random walk, i.e.,P

k2NðuÞ Puk ¼ 1.

Proof: Based on Eqs. (4)–(5), we have

X

k2NðuÞ
Puk ¼

X

k2NðuÞ
~puv %

1

1* ~puu

¼ 1

1* ~puu
%

X

k2NðuÞ
~puv

¼ 1

1* ~puu
% ð1* ~puuÞ ¼ 1:

Therefore, we can conclude that CNARW is a stochastic ran-
dom walk.

Let us use Fig. 1 as an example to illustrate the walking
process in one step. Note that NðuÞ ¼ fa; b; v; c; dg as shown
in Fig. 1, the acceptance probabilities are qua ¼ 1=2, quv ¼ 1,
qub ¼ 1=2, quc ¼ 3=4, qud ¼ 1=3, and the transition probabili-
ties are Pua ¼ 6=37, Puv ¼ 12=37, Pub ¼ 6=37, Puc ¼ 9=37,

Pud ¼ 4=37. We can see that node v has a higher acceptance
probability than other candidate nodes, and this implies
that v will be selected as the next-hop node by CNARW
with a higher probability, which is consistent with the intui-
tion that v is a better choice as being the next node so as to
explore more unvisited nodes. The complete random walk
algorithm via CNARW is stated in Algorithm 1.

Algorithm 1. One Walking Step of CNARW

Input: current node u
Output: next-hop node v

1 do
2 Select v uniformly at random from u’s neighbors;
3 Generate a random number q 2 ½0; 1';
4 Compute quv ¼ 1* Cuv

minfdegðuÞ;degðvÞg ;
5 while (q > quv)
6 Return v;

3.3 Analysis of Stationary Distribution
To guarantee the effectiveness of CNARW, we provide the
theoretical analysis to show that CNARW has a unique sta-
tionary distribution in Theorem 5. We also derive the proba-
bility distribution of each node and each edge being visited
in Theorems 6 and 7.

Theorem 5. Given an undirected and connected graph GðV;EÞ,
CNARWonG has a unique stationary distribution.

Proof: Note that for any node u 2 V and any v 2 NðuÞ,
the acceptance probability quv ¼ 1* Cuv

minfdegðuÞ;degðvÞg is larger

than 0 and the transition probability Puv is also larger than
0. Thus, for any two nodes u and v in G, u and v are reach-
able from each other in finite steps for CNARW as G is an
undirected and connected graph. Based on this, we con-
clude that the Markov chain constructed by CNARW is irre-
ducible. Since any irreducible Markov chain on an
undirected and connected graph has a unique stationary
distribution [10], we can conclude that CNARW has a
unique stationary distribution.

Theorem 6. The stationary distribution pp of CNARW satisfies
the following condition: 8u; v 2 V , we have pðuÞ=pðvÞ ¼
½degðuÞð1* ~puuÞ'=½degðvÞð1* ~pvvÞ'. Further, we have pðuÞ ¼
Z % degðuÞð1* ~puuÞ; where Z is a normalization constant.

Proof: To derive the stationary distribution pp, we first
show the time reversibility of the Markov chain constructed
by CNARW. According to Proposition 1.1 in [29], we only
need to show that pðuÞ % Puv ¼ pðvÞ % Pvu has a unique
solution. Based on Eqs. (4)–(5), we have

pðuÞ
pðvÞ ¼

Pvu

Puv
¼ degðuÞð1* ~puuÞ

degðvÞð1* ~pvvÞ
: (6)

Note that 1* ~pvv and 1* ~puu are fixed for a given graph, so
Eq. (6) has a unique solution as

P
u2V pðuÞ ¼ 1. So the sta-

tionary probability for any u can be derived as

pðuÞ ¼ Z % degðuÞ % ð1* ~puuÞ; (7)

where Z is the normalization constant.
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Theorem 7. After CNARW algorithm converges, for any edge
euv 2 E, the stationary probability of euv being visited pðeuvÞ is
Z*1 % ð1* Cuv=minfdu; dvgÞ, and it satisfies pðeuvÞ ¼
pðuÞ % Puv.

Proof: Let Xt 2 V (t ¼ 0; 1; 2; :::) denote the location at
time t. We construct an expanded Markov chain fZt ¼
ðXt*1; XtÞgt(1 with its transition matrix EP ¼
fEPeij;elkgeij;elk2E given by

EPeij;elk ¼
Plk; j=l;

0; j6=l:

$
(8)

One can easily find that the static probability of edge
ðu; vÞ being visited by CNARW is equal to the static proba-
bility of state euv being visited by the expanded Markov
chain. Then, we can utilize the definition of static distribu-
tion [15]. We first prove that

P
i2V

P
j2NðiÞ pðeijÞ ¼ 1:

X

i2V

X

j2NðiÞ
pðeijÞ ¼

X

i2V

X

j2NðiÞ

1

Z
% 1* Cij

minfdi; djg

% &

¼
X

i2V

X

j2NðiÞ

dið1* PiiÞ
Z

%
1
di
ð1* Cij

minfdi;djg
Þ

1* pii

¼
X

i2V

X

j2NðiÞ
pðiÞPij ¼

X

i2V
pðiÞ

X

j2NðiÞ
Pij ¼

X

i2V
pðiÞ ¼ 1:

We then prove pðeijÞ ¼
P

k2V pðekiÞP
0ðeki; eijÞ:

X

k2V
pðekiÞP

0ðeki; eijÞ

¼
X

k2NðiÞ

1

Z
1* Cki

minfdk; dig

% &
%

1
di
% ð1* Cij

minfdi;djg
Þ

1* Pii

¼ 1

Z
1* Cij

minfdi; djg

% &
1

1*Pii

X

k2NðiÞ

1

di
ð1* Cki

minfdk; dig
Þ

0

@

1

A

¼ 1

Z
1* Cij

minfdi; djg

% &
¼ pðeijÞ:

Up till now, we have stated our novel design of CNARW
framework, its corresponding random walk algorithm, and
provided theoretical proof on its stationary distribution. In
the next two sections, we will discuss (a) how to perform
unbiased graph sampling based on our new algorithm, and
(b) two variants of the algorithm based on CNARW frame-
work which might have better performance.

4 UNBIASED GRAPH SAMPLING

In this section, we introduce how to use CNARW to
develop an asymptotically unbiased graph sampling. We
focus on two sampling schemes, unbiased node sampling
and unbiased edge sampling, which can be used to sam-
ple a sequence of nodes and a sequence of edges, respec-
tively. Note that, nodes and edges may have label and
property information in social networks, and such infor-
mation can also help with the graph sampling, such as
filtering the mismatching information. For example, sup-
pose we want to estimate the average number of friends
of female users, we could only sample the nodes labeled
by ‘ Person’ with the ‘gender’ property valued by ‘Female’.

Our proposed algorithms can also be applied to execute
this kind of sampling tasks, and incorporate with such
kind of label/property filtering mechanisms.

Algorithm 2. Unbiased Node Sampling via CNARW

Input: Graph GðV;EÞ, initial node x, sample size k
Output: estimated result mðfÞ
1 Run CNARW until converges; /* Burn-in Period */
2 Let u denote the first node being visited after convergence;
3 sumf  0; sum 0;
4 for i ¼ 1 to k do
5 /* Sampling Phase after Convergence*/
6 Sample node v based on node u via random walk defined

by Algorithm 1, and get the value of gðvÞ;
7 w ¼ gðvÞ = degðvÞ;
8 sumf þ ¼ w% fðvÞ; /* Aggregate Function f */
9 sum þ ¼ w; u v;
10 end
11 Return mðfÞ ¼ sumf = sum;

Unbiased Node Sampling. Since the stationary probability
distribution of a node being visited via CNARW is not uni-
form, bias correction is necessary to achieve asymptotically
unbiased estimation. Based on important sampling framework
(see Section 2.2), we set the bias correction weight wðuÞ as:

wðuÞ ¼ gðuÞ=degðuÞ; where gðuÞ ¼ 1=ð1* ~puuÞ: (9)

With the above weight factors, unbiased estimation can
be derived based on the following theorem.

Theorem 8. For a function of interest f , which is related to node
properties, and a set of samples R collected by CNARW, when
jRj ! 1, the unbiased estimation with bias correction
weight of f over the samples, which we denote as mðfÞ, can be
derived as follows:

mðfÞ ¼
P

u2R
gðuÞ
degðuÞ fðuÞ

P
u2R

gðuÞ
degðuÞ

! EUðfÞ; a:s:

Proof: Based on Theorem 1 and UðiÞ ¼ 1=n, we have

mtðfÞ ¼
P

u2R
gðuÞ
degðuÞ fðuÞ

P
u2R

gðuÞ
degðuÞ

¼
P

u2R
1=jV j

Z%degðuÞ%ð1*~puuÞ fðuÞP
u2R

1=jV j
Z%degðuÞ%ð1*~puuÞ

¼
P

u2R
UðuÞ
pðuÞ fðuÞ

P
u2R

UðuÞ
pðuÞ

!
EpðUðXÞ

pðXÞ fðXÞÞ

EpðUðXÞ
pðXÞÞ

¼ Epp
UðuÞ
pðuÞ

f

! "
¼EUðfÞ; a:s:

Remark: From Theorem 8, we can see that given a set of sam-
ples R, if we know the weight functions wðuÞ (u 2 R), we
can achieve an asymptotically unbiased estimation for
EUðfÞ. However, computing wðuÞ requires us to compute
gðuÞ, which not only requires the degree of sampled nodes,
but also requires the information of the neighbors of the
sampled nodes. This may introduce a high network query
cost. To address this efficiency issue, we propose an optimi-
zation technique to approximate gðuÞ as follows. Observe
that 1* ~puu is the probability of jumping out of node u,
since the number of self-loop transitions to node u is

WANG ETAL.: COMMON NEIGHBORS MATTER: FAST RANDOMWALK SAMPLINGWITH COMMON NEIGHBOR AWARENESS 4575

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:14:18 UTC from IEEE Xplore.  Restrictions apply. 



geometrically distributed, then gðuÞ corresponds to the
average number of attempts required to jump out of node u.
Based on this understanding, we can simply take the num-
ber of self-loops in node u as an approximation of gðuÞ. We
formally present the unbiased node sampling algorithm
with this optimization in Algorithm 2.

Unbiased Edge Sampling. With CNARW, we can also per-
form an unbiased edge sampling. The whole sampling
framework is similar to that of unbiased node sampling
except for two things. First, the function f should be an
aggregate function of an attribute defined on edges, and not
an attribute defined on nodes as in node sampling. In par-
ticulary, f has a form of fðeuvÞ where euv 2 E. Second, the
weight function v should also be defined on edges, and we
set the weight function vðeuvÞ on edge euv as wðeuvÞ ¼ 1=
½1* Cuv=minfdu; dvg':.

Based on the bias correction weight wðeuvÞ, we can also
achieve an asymptotical unbiased edge sampling.

Theorem 9. For a function of interest f , which is related to edge
properties, and a set of samples R collected by CNARW, when
jRj ! 1, the unbiased estimationof f over the samples,
which we denote as mðfÞ, can be derived as mðfÞ¼P

euv2R
wðeuvÞfðeuvÞP

euv2R
wðeuvÞ

! EUðfÞ, almost surely.

Proof: Based on SLLN theorem and UðeuvÞ ¼ 1
2jEj , we

have

mtðfÞ ¼
P

euv2R wðeuvÞfðeuvÞP
euv2R wðeuvÞ

¼
P

euv2R 1=ð1* Cuv=minfdu; dvgÞ % fðeuvÞP
euv2R 1=ð1* Cuv=minfdu; dvgÞ

¼
P

euv2Rð
1

2jEj =½
1
Z % ð1* Cuv

minfdu;dvgÞ' % fðeuvÞ
P

euv2Rð
1

2jEj =½
1
Z % ð1* Cuv

minfdu;dvgÞ'

¼
P

euv2R UðeuvÞ=pðeuvÞ % fðeuvÞP
euv2R UðeuvÞ=pðeuvÞ

!
EpðUðXÞ

pðXÞ fðXÞÞ

EpðUðXÞ
pðXÞÞ

¼ Epp
UðuÞ
pðuÞ f

! "
¼ EUðfÞ; a:s:

We formally present the unbiased edge sampling algo-
rithm in Algorithm 3.

Algorithm 3. Unbiased edge sampling via CNARW

Input: Graph GðV;EÞ, initial node x, sample size k
Output: estimated result mðfÞ
1 Run CNARW until converges; /* Burn-in Period */
2 Let u denote the first node being visited after convergence;
3 sumf  0; sum 0;
4 for i ¼ 1 to k do
5 /* Sampling Phase after Convergence*/
6 Sampling an edge euv via random walk defined by Algo-

rithm 1;
7 w ¼ 1 =ð1* Cuv=minfdu; dvgÞ;
8 sumf þ ¼ w% fðuÞ; /* Aggregate Function f */
9 sum þ ¼ w;
10 u v;
11 end
12 Return mðfÞ ¼ sumf = sum;

5 EXTENSIONS: ALGORITHM VARIANTS

We would like to emphasize that CNARW is really a gen-
eral framework and one can develop numerous algorithms
based on it; the one we have presented earlier in Section 3 is
nothing but a typical and effective one of them. In this sec-
tion, we will discuss two variant algorithms and their
potential improvements over the basic one.

5.1 Incorporating NBRWWith CNARW
In this subsection we introduce a variant of CNARW algo-
rithm that may reduce the sampling cost, by incorporating
the idea from non-backtracking random walk (NBRW) [18].
It is a typical random walk sampling algorithm, which was
the first one to utilize the walking history to speed up sam-
pling by avoiding backtracking to the node of previous ran-
dom walk step. Authors in [18] show that NBRW is
theoretically guaranteed to achieve unbiased graph sam-
pling with higher efficiency than SRW.

Note that our CNARW approach is orthogonal to NBRW.
To further improve the efficiency of CNARW, we can con-
sider incorporating the idea of NBRW in CNARW by just
avoiding backtracking to the node of previous step in
CNARW. In particular, we modify the first step in Algo-
rithm 1, i.e., if random walk visits node x in last step, we
change the select probability buv as follows:

b0uv ¼
1

degðuÞ*1 ; if v 2 NðuÞ; v 6¼ x;

0; otherwise:

(

(10)

Then, we accept the node selection and move random walk
to node v with probability quv, or reject it and re-select a
node otherwise. We loop the process until the random walk
is successfully forwarded. We rewrite the transition proba-
bility PP 0 ¼ ½P 0uv'u;v2V as

P 0uv ¼
~p0uv=ð1* ~p0uuÞ; if v 2 NðuÞ;

0; otherwise;

$
(11)

where ~p0uv is defined as

~p0uv¼

1
degðuÞ*1%ð1* Cuv

minfdegðuÞ;degðvÞgÞ; if v2NðuÞ; v 6¼ x

1*
P

k2NðuÞ ~puk; if v ¼ u;

0; otherwise: (12)

8
><

>:

We name this variant algorithm as NB-CNARW, which
is stated in Algorithm 4.

Algorithm 4. One walking step of NB-CNARW

Input: current node u, last node x
Output: next-hop node v

1 do
2 Select v uniformly at random from u’s neighbors except x;
3 Generate a random number q 2 ½0; 1';
4 Compute quv ¼ 1* Cuv

minfdegðuÞ;degðvÞg ;
5 while (q > quv)
6 Return v;

Theoretical Analysis of NB-CNARW. According to [18], by
avoiding backtracking to the node of the previous walk
step, the new random walk still has a unique stationary
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distribution, so we will be able to realize unbiased graph
sampling. When we use the new random walk to conduct
unbiased graph sampling, we can get a smaller asymptotic
variance than using the origin random walk. It is proven to
guarantee that we can use the new random walk to realize
the same sampling accuracy with fewer samples. We restate
the authors’ finding as follows.

Theorem 10. [18] [Theorem3] Suppose that fXtg is an irre-
ducible Markov chain on the state space N with transition
matrix P ¼ fP ðu; vÞg and stationary distribution p. Con-
struct a Markov chain fZ0tg on the state space V with tran-
sition matrix P 0 ¼ fP 0ðeuv; exyÞg in which the transition
probabilities P 0ðeuv; exyÞ satisfy the following two
conditions:

for all euv; evu; evy; eyv 2 V with u 6¼ y,

P ðv; uÞP 0ðeuv; evyÞ ¼ P ðv; yÞP 0ðeyv; evuÞ; (13)

P 0ðeuv; evyÞ ( P ðv; yÞ: (14)

Then, the Markov chain fZ0tg is irreducible and non-reversible
with a unique stationary distribution p0 in which p0ðeuvÞ ¼
pðuÞP ðu; vÞ; euv 2 V. Also, for any function f , the asymptotic
variance of ~m0tðfÞ is not larger than of ~mtðfÞ, i.e.,
s02ðfÞ , s2ðfÞ.

Therefore, if we can prove CNARW and NB-CNARW
satisfy the two conditions in (13) and (14), then we can
obtain NB-CNARW algorithm’s stationary distribution p0

and the asymptotic variance ~m0tðfÞ. We state them in the fol-
lowing theorem.

Theorem 11. After NB-CNARW converges, for any edge euv 2
E, the stationary probability of euv being visited satisfies
p0ðeuvÞ ¼ pðuÞ % P ðu; vÞ ¼ pðeuvÞ, i.e., it equals the station-
ary probability of euv being visited in CNARW. Besides, for
any function f , the asymptotic variance of NB-CNARW ~m0tðfÞ
is not larger than of CNARW ~mtðfÞ, i.e., s02ðfÞ , s2ðfÞ.

Proof: Let Xt 2 V (t ¼ 0; 1; 2; :::) denote the location of an
CNARW. We construct an expanded Markov chain based
on Theorem 10, and then prove Eqs. (13)–(14) respectively.

First, we have:

P ðv; uÞP 0ðeuv; evyÞ ¼
1

degðvÞ
% 1

degðvÞ * 1
¼ P ðv; yÞP 0ðeyv; evuÞ

Note that we also have:

P 0ðeuv; evyÞ ¼
1

degðvÞ * 1
( 1

degðvÞ ¼ P ðv; yÞ:

From Theorem 11, we can derive the stationary distribu-
tion p0 of NB-CNARW. When we use NB-CNARW to con-
duct unbiased graph sampling, we can get a smaller
asymptotic variance and realize the same sampling accu-
racy with fewer samples than using CNARW. In other
words, we can further decrease the sampling cost by NB-
CNARW.

5.2 Extension of CNARW to Utilize More
Visited Nodes

In this subsection, we state the second variant algorithm, by
utilizing more visited nodes. Note that the algorithm
CNARW in Algorithm 1 only uses the information of cur-
rent node, or it only looks back one step. Considering that
the larger the number of steps to look back, the more histori-
cal information the walk can have, which will lead to faster
convergence speed. Thus, it is interesting to study how
much gain can be further obtained by considering more vis-
ited nodes. To answer this problem, we consider an exten-
sion of CNARW by utilizing multiple previously visited
nodes. We first extend the definition of frontier set, and
denote H as the number of previously visited nodes being
utilized, In particular, H ¼ 0 corresponds to SRW and H ¼
1 corresponds to CNARW. For H ( 2, we redefine the fron-
tier set S ¼ NðxHÞ [NðxH*1Þ [ . . . [Nðx2Þ [NðuÞ, where u
is the current node. For a candidate node v ) NðuÞ, we char-
acterize the contribution of v to the conductance of S, which
can be mathematically expressed as DfH

v ¼ fðSÞ * fðS*vÞ
where S*v ¼ S n fvg. Through similar derivation as in
Eq. (2), we can get the following result:

DfH
v ¼ ð1*fðSÞÞ*2ðCSvþ1Þ

degðvÞ

! ", P
i2S degðiÞ
degðvÞ

*1

! "
:

One can easily see that the DfH
v is only dependent on

degðvÞ and CSv, which denote the degree of v and the num-
ber of neighbors of v in the frontier set S respectively. Fol-
lowing the design of CNARW, we can define the transition
probability from node u to node v as follows:

PH
uv ¼

~pHuv
1*~pHuu

; if v 2 NðuÞ;

0; otherwise;

(
(15)

where ~pHuv is defined as

~pHuv¼

1
degðuÞ%ð1* CSv

minfjSj;degðvÞgÞ; if v2NðuÞ;

1*
P

k2NðuÞ ~p
H
uk; if v ¼ u;

0; otherwise:

8
><

>:
(16)

Now the complete random walk algorithm by taking use
ofH previously visited nodes is stated in Algorithm 5.

Algorithm 5. One Step of the Extended CNARW

Input: current node u, a queue QH

1 /* QH stores theH most recently visited nodes*/
Output: next-hop node v

2 do
3 Select v uniformly at random from u’s neighbors;
4 Compute CSv and jSj by using the queue QH ;
5 Generate a random number q 2 ½0; 1';
6 Compute qSv ¼ 1* CSv

minfjSj;degðvÞg ;
7 while (q > qSv)
8 Pop the tail node of QH and push node v into QH ;
9 Return v;

To answer how much history information is good
enough (i.e., to determine the best value of H), we study the
impact of H on the convergence rate through experiments
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in Section 6.4. In fact, our experiments show that using only
the current node is adequate and the benefit is twofold.
First, it is much easier and more efficient to implement the
algorithm when using only the current node compared to
using multiple previously visited nodes, and this is usually
one of the key factors when considering to deploy an algo-
rithm in practical applications. Second, as shown by our
experiment results in Section 6.4, leveraging only the cur-
rent node already takes most of the benefit of speeding up
the convergence. Thus, the marginal benefit of considering
more historical information might be marginal.

Summary. We stated two typical variants of random walk
algorithms based on the CNARW framework, but there are
unlimited potentials to explore new variants. We would
also like to mention that for each of the variant random
walk algorithms, one can use the same methodology to
design unbiased graph sampling algorithms so as to realize
unbiased node/edge sampling.

6 EVALUATION

In this section, we conduct extensive experiments on real-
world network datasets to evaluate the effectiveness and
efficiency of CNARW. Experiment results show that
CNARW reduces the query cost significantly over the state-
of-the-art sampling algorithms with the same estimation
accuracy. We also reveal fundamental understandings on
why CNARW has such a significant improvement.

6.1 Datasets & Experiment Setup
We conduct experiments on the datasets released by Lesko-
vec et al. [20] and Rossi et al. [28]. We present some simple
statistics of these datasets in Table 1. For datasets that are
directed graphs, we convert them into undirected graphs by
selecting the largest connected component after removing
edges which appear in one direction only. This method has
been used in prior works [3], [24], [25], [35], [36]. We catego-
rize the datasets into two groups: (1) large-scale graphs, i.e.,
Google Plus, Flickr, DBLP and LiveJournal, which are used
to study the performance measures like convergence rate
and query cost; and (2) small-scale graphs, i.e., Facebook,
Ca-GaQc, and Phy1, which are used to study mixing rate
which is computationally expensive for large-scale datasets.

We compare our algorithm with three typical random
walk sampling algorithms (RWSAs): (1) simple (or naive)
random walk (SRW) [19], which serves as our comparison
baseline; (2) non-backtracking random walk (NBRW) [18],
which was the first one to utilize the walking history to
speed up sampling; (3) circulated neighbors random walk

(CNRW) [35], which is the state-of-the-art walking history
aware sampling algorithm. All algorithms are implemented
in C++, and we conducted experiments on a computer with
two Intel Xeon E5-2650 2.60GHz CPUs and 64GB RAM.

6.2 Convergence Speed
Mixing Time.Wemeasure how fast a randomwalk sampling
algorithm converges to its stationary distribution by using
the concept of mixing rate [22]. One key indicator is the sec-
ond largest eigenvalue modulus (SLEM) of the transition
matrix [22]. The smaller the SLEM is, the faster the random
walk converges. Since it is very expensive to compute
SLEM, we consider three small-scale social networks listed
in Table 1. Besides, since the closed-form transition matrices
of NBRW and CNRW are hard to derive, we only compare
our CNARW with SRW. Table 2 shows the results of SLEM
for SRW and CNARW. We see that our CNARW indeed has
a smaller SLEM than SRW. This means that CNARW should
converge faster to the stationary distribution than SRW.

Convergence to Mean. To further evaluate how much
improvement CNARW can achieve on large graphs, and
also study its performance compared to NBRW and CNRW,
we show the convergence speed by evaluating another con-
cept called converge to mean, which characterizes the conver-
gence to the mean of a graphs statistics, e.g., average node
degree, instead of using the convergence to the stationary
distribution. Note that the notion of convergence to mean
only applies to sampling tasks that estimate the mean of
some functions defined on the sampled variables, e.g., aver-
age node degree and average local clustering coefficient,
and this metric depends on the sampling task. To quantify
the speed of convergence to mean, we define

Tcm , E½min. # of steps needed to converge to the mean':

It is also computationally expensive to compute the exact
value of Tcm. Thus, we estimate Tcm by simulating the
RWSA, and use the Geweke convergence monitor to detect
whether a RWSA converges to the mean. Note that this
method is computationally efficient and scalable to large
scale networks. The Geweke convergence monitor has been
widely used in prior works[6], [8], and we set its key param-
eter, i.e., the threshold Z , 0:1 by default.

To evaluate the rate of convergence to mean, i.e., Tcm, we
repeat the simulation for n times to obtain n samples
T 1
cm; . . . ; T

n
cm, and study both the mean and standard devia-

tion. Mathematically, we evaluate the average convergence
rate by the following metric:

!Tcm ,
Xn

i¼1
T i
cm=n:

We apply standard deviation (SD) to quantify the variation
of convergence rate, and we use the following estimator:

TABLE 1
Summary of Datasets

Name # of Nodes # of Edges Avg. Clustering Coefficient

Facebook 775 28012 0.4714
Ca-GaQc 2879 18474 0.4416
Phy1 4158 26844 0.5486
Google Plus 64517 2867802 0.3428
Flickr 80513 11799764 0.1652
DBLP 226413 1432920 0.6353
LiveJournal 1500000 29425194 0.2552

TABLE 2
The SLEM for SRW and CNARW: Smaller SLEM Means Faster

Convergence Speed

Algorithms Facebook Ca-GaQc Phy1

SRW 0.9923 0.9981 0.9981
CNARW 0.9852 0.9820 0.9847
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sðTcmÞ ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðT i

cm * !TcmÞ2=ðn* 1Þ
q

:

In particular, we take the average node degree and aver-
age node pair similarity as indicators. Figs. 2a and 2b
presents the minimum number of steps needed to converge
to mean !Tcm and its corresponding standard deviation
sðTcmÞ respectively by taking node degree as the indicator
of convergence. Figs. 2c and 2d show the results by taking
similarity of node pairs which is computed by using Jaccard
index [5] as the indicator of convergence. Each value of !Tcm

and sðTcmÞ is estimated by using 300 runs of an algorithm.
From Fig. 2 we observe that our algorithm CNARW has a
smaller !Tcm than SRW, NBRW and CNRW, which means
that CNARW converges faster. In particular, CNARW
requires fewer steps to converge to mean, e.g., the reduction
is up to 71.9%. We also observe that !Tcm varies across data-
sets, and this means that graph structure has an significant
impact on convergence speed. For example, the number of
steps required to converge to mean increases significantly
from Flickr to LiveJournal. Thus, we need more steps to con-
verge to mean when we sample a graph with larger number
of nodes, and this also implies that speeding up the conver-
gence of a sampling process is really meaningful, especially
for large graphs. Besides, Fig. 2 also shows that our
CNARW has a smaller standard deviation on !Tcm than
SRW, NBRW and CNRW. This means that the variation of
the convergence speed when using our CNARW is smaller.
This property is also very important in practical systems,
e.g., it can make our CNARW more suitable for parallel
sampling. Besides, it shows that NB-CNARW always has a
smaller !Tcm than CNARW from the results, and the reduc-
tion is up to 29.2%. This means by using the variant algo-
rithm NB-CNARW, we can further speed up the
convergence speed and decrease the burn-in time. We also
observe a smaller sðTcmÞ in NB-CNARW, which means a
smaller variance of the convergence speed of NB-CNARW.

6.3 Sampling Cost
Estimation Error versus Query Cost. A fundamental tradeoff
of sampling algorithms is: estimation error versus query cost.
The estimation error of a sampling algorithm decreases as
the query budget (or query cost) increases. In this paper, we
adopt relative error to quantify the estimation accuracy:

relative error , jX̂ *Xj=X;

where X̂ and X denote the estimated value and the ground
truth of a specific measure, e.g., average degree.

We define the query cost as the total number of unique
queries (i.e., the number of sampled unique nodes queried
from the network) in a sampling task, including the queries
in both burn-in period and sampling phase:

query cost , #funique queries in a sampling taskg:

For example, suppose that a sampling task visits a sequence
of nodes ða; b; c; d; a; c; dÞ, then the query cost is 4. This met-
ric is widely used to evaluate the efficiency of sampling
algorithms [25], [35], [36]. The reason why we consider only
unique queries is that once a node is visited, we can store its
associated information in local, and thus when it is visited
again, we do not need to query from the network again.
Note that in CNARW, each step may incur additional
queries to find a better next hop, we also include this part
when evaluating the query cost of CNARW.

We now study the tradeoff between estimation error and
query cost. We only show the results of one typical sam-
pling task, i.e., average degree estimation. We observe simi-
lar results for other sampling tasks like average clustering
coefficient estimation. We run five sampling algorithms
(i.e., SRW, NBRW, CNRW, and our algorithm CNARW,
NB-CNARW) on four large-scale datasets. Each algorithm
is repeated for 200 times to estimate the average node
degree and we also take an average to measure query cost.
Note that all these algorithms can realize the unbiased node
sampling through bias correction with theoretical guaran-
tees. Fig. 3 shows the tradeoff between estimation error and
query cost, where the horizontal axis represents the estima-
tion error and the vertical axis represents the corresponding
query cost. From Fig. 3, we observe that the query cost
increases as the relative error decreases, which implies that
we need more queries to increase the estimation accuracy.
We also observe that CNARW requires a smaller query cost
to achieve the same estimation accuracy. Furthermore, the
reduction in query cost (or improvement in estimation accu-
racy) is significant for CNARW (e.g., by up to 35.7%).
Besides, NB-CNARW always requires a smaller query cost
to achieve the same estimation accuracy compared to
CNARW, and the reduction of query cost is up to 25.4%.

Query Cost and Estimation Error Comparison. We also
study the query cost and estimation error comparison under
different sample size settings, and the results are shown in
Fig. 4. Note that the sample size denotes the number of sam-
ples collected after the random walk converges. The query
cost is defined as the total number of unique sampling
nodes queried from the network in a sampling task, includ-
ing the queries in both the burn-in period and the sampling

Fig. 2. Comparison of convergence speed, which is measured by the average and standard deviation (SD) of the convergence to mean (i.e., !Tcm and
sðTcmÞ) when using node degree and node pair similarity as the indicator.
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phase. We observe that as the sample size increases, the
query cost also increases, and the relative error decreases
accordingly, which implies that we need more samples and
queries to increase the estimation accuracy. We also observe
that the five algorithms achieve similar estimation accuracy
with the same sample size setting, but our algorithms
CNARW and NB-CNARW always require the lowest query
cost.

Time Cost Comparison. We further evaluate the actual
time cost of the five algorithms under the network sam-
pling situations. The total time cost includes two parts: (1)
Network query time cost and (2) Compute time cost. For
the network query time cost, it can be simulated through
the sleep() function. In our experiment, we set the latency
as ð106:603þ 4%degðuÞ

956:410 Þms for querying a node u with degðuÞ
neighbors in G, by deriving from the ping and wget test
results for the SNAP datasets. The compute time cost
includes the local computing for Cuv and gðuÞ in each step.
We show the total time cost and the compute time cost
under different sample size settings in Fig. 5. We can see
that CNARW and NB-CNARW bring much higher local
compute time cost than the baselines due to the extra com-
putation of Cuv and gðuÞ. However, in the network sam-
pling situations, the compute time cost only accounts for a
small proportion, and the total time cost is dominated by
the network query cost. Therefore, CNARW and NB-
CNARW cost much less total time cost because of the
largely reduced network query cost.

6.4 Tradeoff of Using More History Information
Our experimental results thus far consider one historical
neighbor for our CNARW and NB-CNARW. We also run
experiments to further show the impact of H on the conver-
gence speed. Fig. 6 presents the speed of convergence to

mean (i.e., !Tcm) and the rejection rate when H varies from 0
to 5. We observe that !Tcm decreases significantly when H
increases from 0 to 1. This implies that we can speed up the
convergence by exploiting the current node. However,
when utilizing more history information by further increas-
ing H, i.e., considering more previously visited nodes, we
can only have a diminish return. In particular, the reduction
of the number of steps required to converge is not signifi-
cant any more when we consider more than one visited
node.

Therefore, we conclude that utilizing more previously
visited nodes brings quite limited benefits for the following
reasons: (1) Larger H increases the rejection rate in each
walking step as shown in Fig. 6, which increases the average
number of nodes queried from the network, i.e., larger H
introduces higher query cost, which severely increases the
time cost. (2) Larger H decreases the difference between CSv

and minfjSj; degðvÞg, so we have no choice but to choose
the next node v from NðuÞ uniformly at random just like
SRW does. Thus, it is good enough to consider one visited
node only as CNARW and NB-CNARW.

6.5 Impact of Common Neighbors’ Weight
We further consider the common neighbors’ weight in the
transition matrix design as Puv / 1* aCuv

minfdegðuÞ;degðvÞg , where
0 , a , 1. When a decreases, the weight of common neigh-
bors also decreases. In particular, a ¼ 0 and a ¼ 1 repre-
sents the SRW and CNARW, respectively. Fig. 7 shows the
convergence speed with respect to various common
neighbors’ weight, and the results show that a larger com-
mon neighbors’ weight always brings a better performance,
i.e., fewer steps to converge to the mean. This further vali-
dates the positive impact of taking common neighbors into
transition matrix designs.

Fig. 3. Tradeoff between estimation error and query cost, where the query cost is defined as the total number of unique queries, i.e., #(sampled
unique nodes), in a sampling task, including the queries in both burn-in period and sampling phase.

Fig. 4. Query cost and estimation error comparison under different sample size settings, where the query cost is defined as the total number of
unique queries, i.e., #(unique sampled nodes) here, in a sampling task, including the queries in both burn-in period and sampling phase.
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6.6 Applications of CNARW
In this subsection, we investigate two applications, which
we mentioned in Section 1, to further study the accuracy
and efficiency of CNARW.

Application 1: Investment on Networking Platforms. A fun-
damental problem for this application is to estimate the
average similarity of node pairs. We use the Jaccard index
[5] to calculate the similarity of a node pair, and focus on
the average similarity over all node pairs. We apply
CNARW to sample edges and make unbiased estimation
based on Algorithm 3. According to the convergence rate of
CNARW in Fig. 2c, we run CNARW until the total number
of sampling edges reach 105 for each sampling process.
Then we use the sampled edges to estimate the average sim-
ilarity. To verify the accuracy of CNARW, we repeat the
sampling process three times (each time with a random
start), and the corresponding experimental results are
shown in Figs. 8a and 8b. One can observe that, as the num-
ber of samples increases, the relative error drops fast and it
is close to zero when the number of samples is more than
104. This implies CNARW can accurately estimate the aver-
age edge similarity with a small number of samples. Note
that we only show the experiment results of Flickr and Goo-
gle Plus, and similar results can also be found for other two

datasets. We further show the efficiency of CNARW in
Figs. 8c and 8d, where the horizontal axis represents the
estimation error and the vertical axis represents the corre-
sponding query cost. Note that CNRW is not included here,
because CNRW is not suitable for edge sampling. From
Figs. 8c and 8d, we observe that CNARW requires a smaller
query cost to achieve the same estimation accuracy, which
implies a higher efficiency.

Application 2: Bundling Strategy in Viral Marketing. A fun-
damental problem for this application is to estimate the dis-
tribution of user interests for each product. In particular, we
aim to estimate the distribution of user interests in different
age groups. Note that our datasets only contain the topol-
ogy of OSNs, we thus synthesize the distribution of user
interests, which are shown in Table 3. Specifically, we con-
sider four different age groups and three products. The per-
centage of populations of each age group is shown in the
first column, and the percentage of users in each age group
being interested in each product are shown in the right three
columns. Based on this dataset, we assign to each user with
her interested products, and Fig. 9a shows the ground truth
for the ratio of populations in different age groups who are
interested in each product. From Fig. 9a, one can observe
that, product A and B should be sold as a bundle, since they

Fig. 5. Time cost comparison under different sample size settings.

Fig. 6. Impact of utilizingH previously visited nodes (H ¼ 1 for CNARWandH ¼ 0 for SRW).

Fig. 7. Impact of utilizing a as common neighbors’ weight (a ¼ 1 for CNARWand a ¼ 0 for SRW).
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have similar distribution of user interests. To estimate the
distribution of user interests, we apply CNARW to collect
105 node samples and make an unbiased estimation based
on Algorithm 2. Fig. 9b shows that the estimated distribu-
tion of user interests using our CNARW’s is very close to
the ground truth, implying high accuracy. Figs. 9c and 9d
further show that our CNARW is more efficient than the
stat-of-the-art sampling algorithms.

Lessons Learned. Our CNARW is highly accurate and effi-
cient in estimating graph measures defined on both nodes
and edges. For example, a product owner can apply our
CNARW to estimate the average similarity of node pairs
with edge samples, and can also accurately estimate the dis-
tribution of user interests with node samples. More impor-
tantly, our CNARW requires much less query cost than the
stat-of-the-art sampling algorithms.

7 RELATED WORKS

Traditional sampling methods, e.g., random node sampling,
random edge sampling, and random subgraph sampling,
all need the knowledge of the global graph topology [19],
which is infeasible in many applications like network sam-
pling situations. Instead, graph sampling via crawling, e.g.,
BFS, DFS, and random walk, have been widely used for that
purpose. Even though BFS and DFS are simple to imple-
ment, they are hard to derive the sampling probability [17],
thus they can not be used for unbiased estimation. Random
walk sampling has become the mainstream for its simplicity
of implementation and solid theoretical foundations of bias
analysis [9], [18], [21], [35], [36].

To improve the efficiency and effectiveness of random
walk sampling, a variety of methods have been proposed.
Jin et al. [12] and Xu et al. [32] considered random jumping
to increase the estimation accuracy. Lee et al. [18] proposed
non-backtracking and delayed acceptance to reduce the
asymptotic variance of estimators. Li et al. [21] combined
the idea of delayed acceptance with Metropolis-Hastings
algorithm to further reduce the asymptotic variance. Ribeiro
et al. [27] proposed a multidimensional random walk and
Zhao et al. [34] proposed a multi-graph random walk to
address the limitation that a walk can easily get trapped by
local communities.

In the aspect of speeding up random walk sampling,
Boyd et al. [2] applied optimization techniques to optimize
the mixing rate, but requiring full information of the graph.
Avrachenkov et al. [1] combined uniform sampling with
random walk sampling to speed up the convergence. Zhou
et al. [35], [36] proposed to speed up the convergence by uti-
lizing the walking history, which was first utilized in non-
backtracking random walk (NBRW) [18]. They constructed
a “virtual” overlay network from the walking history to
guide the walker in [36], and later, they proposed the Circu-
lated Neighbors random walk (CNRW) by constructing a
higher-ordered Markov chain [35].

The difference of CNARW from existing approaches is
that CNARW speeds up the convergence by utilizing the
walking history and next-hop candidates, i.e., the number
of common neighbors between visited nodes and next-hop
candidates. Querying the neighbors of a next-hop candidate
only incurs a small overhead. Besides, the unbiased sam-
pling scheme via CNARW only requires the information of
visited nodes only, but not requires the information about
their neighbors, so CNARW provides fast and efficient
unbiased graph sampling.

8 CONCLUSION

In this paper, we propose a fast and efficient random walk
based sampling approach. Specifically, we first design a

Fig. 8. Performance of CNARW in Application 1.

TABLE 3
Summary of Datasets

Age groups Product A Product B Product C

10-25 (30%) 0.8 0.9 0.2
26-40 (40%) 0.5 0.6 0.2
41-35 (20%) 0.5 0.6 0.6
56-70 (10%) 0.2 0.3 0.8

This table shows the percentage of users in each age group being interested in
each product. Note that a user may be interested in multiple products.

Fig. 9. Performance of CNARW in Application 2.
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common neighbor aware random walk to speed up the con-
vergence, which takes into account both measures of degree
and the number of common neighbors between next-hop
candidate nodes and the current node, and then develop an
efficient unbiased sampling scheme with theoretical guaran-
tee on the unbiasedness by using the tailored random walk.
We also conduct extensive experiments with real-world
graph datasets, and results show that our sampling
approach not only speeds up the convergence, but also
reduces the query cost with the same estimation accuracy.
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