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Abstract—Mobile edge computing becomes a promising technology tomitigate the latency of various cloud services. In addition, network
function virtualization (NFV) has been shown a great potential in reducing the operational cost of cloud serviceswhile enhancing the
flexibility of virtual network function deployments, by implementing dedicated hardware network functions as pieces of software in generic
servers. Recently, the GPU acceleration has been investigated to speed up flow processing in virtual network functions (VNFs), by
leveraging the parallelism of GPUs. VNFs that need accelerations prefer to stay at cloudlets (locations) equipped withGPUs. However,
little attention has been paid for the VNF placement that takes into account GPU-affinity in cloudlets of mobile edge clouds. In this paper,
we consider the affinity-aware throughput maximization problem in amobile edge cloud via leveraging the parallelism onGPUs for user
requestswith VNFrequirements.We consider two types of affinities in the VNF placement: The soft-affinity that allows VNFs to be
executed by either CPUs orGPUs in cloudlets; and the hard-affinity that only allows VNFs to be placed to theGPUs of a specified set of
cloudlets.We formulate two corresponding VNF placement problems in amobile edge cloud. Specifically, we first propose an exact
solution to the soft-affinity throughputmaximization problem by formulating an Integer Linear Program (ILP).We then propose an efficient
algorithm for the problem, by proposing a randomized algorithmwith a provable approximation ratio for the hard-affinity-aware throughput
maximization problem and extending the proposed approximation algorithm to the soft-affinity throughputmaximization problem.
Furthermore, assuming that user requests arrive into themobile edge cloud one by onewithout the knowledge of future arrivals, we devise
an online algorithmwith a good competitive ratio for this dynamic hard-affinity-aware throughput maximization problem. Finally, we
evaluate the performance of the proposed algorithms, through simulations and implementations in a real test-bed. Experimental results
show that the performance of the proposed algorithms outperform their existing counterparts and achieve higher throughput.

Index Terms—VNF placement, GPU affinity, mobile edge clouds, approximation and online algorithms

Ç

1 INTRODUCTION

MOBILE edge computing and Network function virtuali-
zation (NFV) promise to provide flexible and low-

latency cloud services. Each of such services can be realized
as virtualized network functions (VNFs) running as pieces

of software in Virtual Machines (VMs) [13], [18], [24], [33] on
generic servers. Recently, new advances in NFVs using GPU
acceleration in cloudlets (servers with GPUs) further
improve the processing speeds of the VNFs. However, not
every cloudlet in a mobile edge cloud has GPU hardware
installed, and VNFs that require packet processing accelera-
tions need to reside in the cloudlets with GPUs [21]. This
means that the VNF placement needs to take into account the
affinity requirement of specific hardware such as GPUs. In
this paper, we consider the problem of affinity-aware VNF
placement in a mobile edge cloud, by exploring the parallel-
ism of GPUs in some cloudlets in themobile edge cloud.

Exploring the parallelism of GPUs in cloudlets to maxi-
mize the system throughput poses several challenges. First,
a mobile edge cloud has various capacity constraints on its
different types of resources. For example, the GPU resource
in each cloudlet of the mobile edge cloud is precious and
thus can only execute a limited number of GPU threads.
Selecting the right user requests to accelerate their VNF run-
ning plays a vital role in enhancing the system performance.
Also, each switch node is equipped with a Ternary Content-
Addressable Memory (TCAM) to implement its forwarding
routing table that contains a limited number of forwarding
rules [8]. Such resource capacities of GPU, CPU, and
TCAMs in switches need to be jointly considered. Other-
wise, the imbalanced usage of resources may lead to a sig-
nificant reduction in the system throughput and violations
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of delay requirements of users. Second, user requests with
VNF requirements have both GPU affinity and end-to-end
delay requirements in the mobile edge cloud, meeting one
of the requirements may lead to the violation of the other
one. For example, to maximize the system throughput, a
user request with high demand of data volume may be
placed to the cloudlets without GPUs, due to the sparsity of
GPU resources. This however may violate its delay require-
ment due to the slow data processing of VNFs running on
CPUs. Therefore, it is challenging to explore non-trivial
interplays among GPU affinity, the delay and system
throughput in a mobile edge cloud. Third, the arrivals of
user requests with different VNF requirements are usually
unknown in advance. How to dynamically admit user
requests while considering their VNF affinities is challeng-
ing too.

Most existing studies [6], [9], [15], [16], [17], [20], [22], [40]
did not incorporate the GPU affinity to the VNF placement
in mobile edge clouds with cloudlets having both CPU and
GPU capacities. In addition, most existing studies proposed
heuristics for their problems without any performance guar-
antees. In contrast, in this paper we propose approximation
and online algorithms with provable approximation and
competitive ratios for the affinity-aware VNF placement
problems under static and dynamic request scenarios.

To the best of our knowledge, we are the first to explore
the affinity-awareness VNF placement in a mobile edge
cloud equipped with GPU accelerators, by leveraging the
parallelism of GPUs. We consider both hard-affinity VNFs
that have to be placed to a specified set of cloudlets with
GPUs and the soft-affinity that allows VNFs to be imple-
mented by CPUs in cloudlets. To this end, we jointly con-
sider CPU and GPU capacity constraints on cloudlets and
the TCAM capacity constraints on switches in the mobile
edge cloud. We propose an approximation algorithm with a
provable approximation ratio, an efficient heuristic and an
online algorithm with a competitive ratio for the offline and
online versions of the affinity-aware throughput maximiza-
tion problem in the mobile edge cloud.

The main contributions of this paper are as follows.

! We propose an exact solution to the soft-affinity-
aware throughput maximization problem, by formu-
lating an Integer Linear Program (ILP) solution
when the problem size is small.

! We devise a heuristic solution to the soft-affinity-
aware throughput maximization problem, by first
devising proposing a scalable, efficient approxima-
tion algorithm with an approximation ratio for a spe-
cial case of the problem, and then extending the
proposed approximation algorithm for the soft-affin-
ity-aware throughput maximization problem.

! We propose an online algorithm with a competitive
ratio for the online hard-affinity aware throughput
maximization problem, by adopting the primal-
dual-update optimization technique [3].

! We evaluate the performance of the proposed algo-
rithms through experimental simulations and imple-
mentations in a real testbed. Experimental results
show that the proposed algorithms outperform exist-
ing methods.

The remainder of this paper is arranged as follows.
Section 2 will survey state-of-the-arts on this topic. Section 3
will introduce the system model, notations and problem
definitions. Section 4 will formulate an ILP solution to the
soft-affinity-aware throughput maximization problem. Sec-
tions 5 and 6 will propose approximation, heuristic and
online algorithms for the problem under static and dynamic
settings. Section 7 will evaluate the performance of the pro-
posed algorithms, and Section 8 concludes the paper.

2 RELATED WORK

There are extensive studies on SDN, NFV and mobile edge
computing [6], [9], [15], [16], [17], [20], [22], [30], [34]. For
example, Song et al. [32] investigated the task assignment
problem in a mobile edge network with node and link
capacity constraints as well as security requirements. Chen
and Wu [6] developed algorithms for the NFV middlebox
placement, by balancing the set-up and bandwidth con-
sumption costs.

Although the virtualization of network functions reduces
the cost of network management and increases the flexibil-
ity of network function deployment, the flow processing
time of some computation-intensive VNFs may be dragged
down by the additional virtualization layer in the software
stack. To avoid such increase of VNFs’ processing time,
there are recent research efforts on using of GPUs to acceler-
ate VNF executions [39], [43], [45]. For example, G-NET [43]
is a NFV system that adopts a novel GPU virtualization
technique to enable spatial GPU sharing among VNFs. By
designing a hypervisor layer and adopting Hyper-Q tech-
nique, G-NET enables spatial GPU sharing among the
VNFs. GEN [45] is a framework that accelerates VNF execu-
tion in GPUs. An infrastructure for VNF acceleration is pro-
posed to enable elastic network function scaling and
runtime modification of service function chains. However,
these studies focus on either effective GPU sharing by VNFs
or the acceleration of a single VNF. It must be mentioned
that these studies are made the very first contributions
towards enabling VNF execution and acceleration. We are
motivated by these studies. In this paper, we aim to explore
the use of GPUs in mobile edge clouds to accelerate VNF
executions, such that the system throughput is maximized,
while meeting the delay requirements of user requests.

Several efforts aim to provision NFV-enabled network
services in mobile edge clouds [26], [40]. For example, Nam
et al. [26] studied service chaining in mobile edge networks
with the aim to minimize the average service time of traffic
flow. Yu et al. [40] formulated a QoS-aware reliable traffic
routing problem for service function chaining in mobile
edge networks. They showed that the problem is NP-hard,
and developed an approximation algorithm for the prob-
lem. Huang et al. [17] studied the online multicasting in soft-
ware-defined networks with both node and link capacity
constraints. Jia et al. [19] proposed a solution of offloading
mobile services with NFV instances in a mobile edge cloud,
assuming that all VNFs in a service chain can be consoli-
dated into a single edge node. Carpio et al. [5] investigated
the joint active and backup stateless VNF placement prob-
lem. Zhang et al. [44] studied the problem of joint service
chaining and request scheduling problem, by proposing a
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priority-driven weighted algorithm to improve resource uti-
lization and a heuristic algorithm to reduce the response
latency. Fei et al. [10] developed efficient methods for the
deployment service chain instances in a mobile edge net-
work. In addition, several studies focused on the manage-
ment of stateful VNFs [37] and hardware acceleration for
VNFs [21], [43]. For example, Yang et al. [37] proposed a set
of efficient methods to enable fault-tolerant VNF placement
in a mobile edge cloud. Li et al. [21] proposed a novel CPU-
FPGA co-design framework for NFV with both high perfor-
mance and flexibility and implemented a dynamic hard-
ware library based on FPGA. The locality and hardware
affinity requirements, however, have not been considered
in these mentioned studies, not to mention that the TCAM
capacity of SDN switches and computing resources in
cloudlets have ever been jointly considered. Bao et al. [2]
studied the problem of parallelizing the execution of many
VNFs for acceleration, by using a directed acyclic graph
(DAG) to model the dependency of VNFs, such that the
dependencies in the DAG are preserved while the delay is
minimized.

3 PRELIMINARIES

In this section, we first introduce the system model, defini-
tions and notations. We then define the problems precisely.

3.1 System Model
We consider a mobile edge cloud ðG ¼ V [ CL;EÞ deployed
in a wireless metropolitan area within the proximity of
users, where V is a set of switches, CL is a set of cloudlets,
and E is a set of links that interconnect switches and cloud-
lets in the network. Each switch vi 2 V is installed with a
TCAM that supports fast parallel look-up of forwarding
rules. Such a TCAM can store a limited number of forward-
ing entries and usually are very expensive [7]. Denote by
NðvÞ the number of forwarding entries in the TCAM of
switch v 2 V [7]. Also, a switch with the minimum forward-
ing table size can install at least a % jCLj forwarding rules,
where a is a given integer constant with a > 1. Each cloud-
let clm 2 CL has limited CPU and GPU resources to imple-
ment network functions. Let CðclmÞ be the CPU resource
capacity of clm, in terms of the total number of data packets
that can be processed. Denote by Cmin the minimum CPU
resource capacity among cloudlets in CL, i.e, Cmin ¼
minclm2CLCðclmÞ. Without loss of generality, we assume that
the cloudlet with computing capacity Cmin is capable to
accommodate any single request. Cloudlet clm may be
installed with GPUs, and its capacity is denoted by ThðclmÞ
in terms of the maximum number of GPU threads it can run
in parallel. Also, data transfers at each link e 2 E incur
transmission delays, and let de be the delay of transmitting
a unit of packet along link e. An example of the mobile edge
network is shown in Fig. 1.

3.2 VNF and User Requests
Each user usually requires to process its data traffic in a
sequence of network functions such as IDS, firewall, and
load balancers, to guarantee the performance and security
of its data transfer. Such a requirement of a user request
then can be expressed in the form of a service function chain

that consists of a sequence of VNFs, specifying the order of
VNFs that its data traffic should pass through. Specifically,
denote by rk ¼ ðsk; tk; VNFk; rk;DkÞ a user request. Each
request rk requires to transmit data from a source node sk to
a destination node tk at a packet rate rk within a delay no
greater than Dk. Request rk also requires its traffic to pass
through each VNF instance in its service chain VNFk before
reaching destination tk. We consider that the computing
resource demanded by service chain VNFk is RC % rk [37],
[40], where RC is the amount of computing resource to pro-
cess a packet. For the sake of clarity, we set RC to 1; RC
however can be adapted to real environments with different
settings of resource consumptions. Without loss of general-
ity, we assume that the total capability of a number of
cloudlets is sufficient for the processing of all requests.
Thus, the total packet rates of all requests is no greater than
d times of the minimum computing resource capacity of
Cmin, i.e.,

P
rk2R rk & d % Cmin. However, a single cloudlet

may not be enough to process all requests in the system,
which means that there are at least two cloudlets for request
admissions, i.e., d > 2. In this paper, we assume that all
requests can be admitted by the system. Without loss of
generality, we assume that d & jCLj. The value of d thus is
in the range of ½2; jCLj(.

3.3 Soft- and Hard-Affinity
Implementing VNFs in generic CPU cores may degrade its
performance. To improve the performance, some packet
processing acceleration methods have been proposed [43].
For example, GPU based packet processing acceleration is
used to implement IDSes. VNFs that adopt such flow proc-
essing acceleration methods favor staying in the cloudlets
with GPUs or FPGAs. Otherwise, their performance may
degrade significantly. In addition, VNFs usually generate
various states in the processing of data traffic, and such
states ensure the correct processing of future data packets.
Therefore, cloudlet clm saves some state information and
relevant data of a VNF VNFk for the future usage of other
requests demanding VNFk too. If we deploy an instance of
VNFk to a cloudlet that is far away from the location of
cloudlet clm with its state data, the delay of pulling those
state data from clm might take prohibitively long. The rea-
son is that interconnection fabrics are typically much con-
gested and slower than the high-speed local data storage.

Fig. 1. An example of the mobile edge cloud.
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Therefore, an instance of VNFk prefers to be instantiated in
the cloudlets with GPU accelerations or states. This is
referred to as affinity of VNFs.

In this paper, we consider soft-affinity where each VNFk

prefers to be implemented by GPUs of a specified set of
cloudlets in the mobile edge cloud; however, it can also be
placed into any cloudlet that is not in the specified set and
being implemented using CPU resource. Denote by CLafk the
set of cloudlets that rk specifies to implement its VNFk, where
CLafk ) fCLg. An instance of VNFk can be placed to a cloudlet
clm =2 CLafk ; however the delay of processing its traffic will be
higher as no GPU accelerators can be leveraged and its
required states have to be pulled while processing the data
traffic. On the other hand, the hard-affinity considers that each
VNFk can only be placed to the GPUs of one of its specified
cloudlets in CLafk . The cloudlets in CLafk can be obtained in his-
torical information of implementations of similar VNFs. Or,
users can select a set of such cloudlets for their initial requests
according to the recommendations of network operators, and
then update the set for their future requests according to the
performance of previous VNF implementations.

3.4 VNF Accelerations in GPUs
We adopt the Pascal architecture of NVIDIA’s GPUs. Specif-
ically, each GPU has several graphics processing clusters
that are composed by number of streaming multiprocessors.
Each streaming multiprocessor has multiple stream process-
ors, with each stream processor executing a single GPU
thread. To support the execution VNFs in the GPU architec-
ture, there are several GPU acceleration designs for the
implementation of VNFs. We here adopt the design of Flow-
Shader [39] that requires the minimum modification of the
software design of each VNF. In FlowShader, each GPU
thread is used to process a single data flow and run the
whole logic of a VNF. Recall that we consider that each
request rk requires to transmit and process its data traffic at
rate of rk. We thus assume that each data flow can be proc-
essed by a GPU thread. Specifically, if request rk is assigned
to a GPU for processing, there will be a GPU thread
assigned to it. This means that the maximum number of
requests that can be processed by each GPU is the total
number of GPU threads it can run. It must be mentioned
that the sizes of data traffic of requests varies, which may
cause some GPU cores overloaded. To avoid this, large
flows of requests are divided among CPU cores and GPU
cores, following the flow balancing method for CPU and
GPU of each edge server in FlowShader [39]. The benefit of
doing this is to allow any VNF to be accelerated without
redesigning the processing logic of its network function.
The rationale behind is that by adopting a weak-scaling
approach and a flow-level parallelism, similar VNF logic
running on CPU is run on each GPU thread. Therefore, the
network operator does not need to decide which VNF can
or cannot be accelerated by its GPUs, as long as the VNFs
are flow-processing network functions and each of its logic
can run in a GPU thread.

3.5 End-to-End Delay Requirement
Cloud services usually have delay-sensitive requirements
for the processing of their data traffic. We here consider the

end-to-end delay requirement of a packet processing from
the source to destination of each service request, which is a
main metric indicating the quality of a VNF instance. In par-
ticular, the end-to-end delay requirementDk of each request
rk specifies the maximum tolerable delay of its packet trans-
fer from the source node sk to the destination node tk. It con-
sists of the processing delay of VNFk, and the transfer delay
on each link in the routing path of the data traffic.

For the processing delay of VNFk in a cloudlet clm with a
GPU, we consider the flow-parallel acceleration framework
in [39], where similar network function logic as that running
on CPU can be executed on the CPU with a minimum logic
modification. In the framework, the entire flow of a request
will be processed by a GPU thread if the request is assigned
to a GPU. Therefore, the performance of the parallel flow
processing of cloudlet clm is limited by the number of GPU
threads that can be provided by the GPUs of clm. Recall that
ThðclmÞ is the number of GPU threads provided by cloudlet
clm. Following the results in [39], we consider that the proc-
essing delay remains a constant if the number of requests
that are processed by a GPU is lower than ThðclmÞ. Let
dðVNFk; clmÞ be the delay of processing a packet of request
rk in a GPU of clm, which is usually a given small constant,
if the number of concurrent requests is no greater than
ThðclmÞ. If VNFk is implemented in a GPU of cloudlet clm,
the end-to-end delay of request can be calculated by

dðsk; clmÞ ¼ dðsk; clmÞ þ dðVNFk; clmÞ þ dðclm; tkÞ; (1)

where dðsk; clmÞ is the transmission delay from source sk to
cloudlet clm, and dðclm; tkÞ is the delay from clm to destina-
tion tk.

The end-to-end delay of rk when it is processed by a CPU
in clm, denoted by d0ðsk; clmÞ, thus is

d0ðsk; clmÞ ¼ dðsk; clmÞ þ d0ðVNFk; clmÞ þ dðclm; tkÞ; (2)

where d0ðVNFk; clmÞ is the delay of processing a packet of rk
by the CPU power of cloudlet clm.

Let Dk be the maximum delay that is tolerable by
request rk. We then have the end-to-end delay requirement
dðsk; clmÞ & Dk and d0ðsk; clmÞ & Dk.

3.6 Problem Definitions
Given a software-defined mobile edge cloud G ¼ ðV [
CL;EÞ and a set of user requests R, we first consider the
admission of requests in G. We then consider the dynamic
admission of requests, by assuming that requests arrive one
by onewithout the knowledge of future arrivals. Specifically,
we consider the following two optimization problems.

Problem 1. The soft-affinity-aware throughput maximiza-
tion problem in GðV [ CL;EÞ is to admit as many requests
in R as possible such that the system throughput – the accumu-
lative data volume of admitted requests – is maximized, while
VNFs of the admitted requests can be implemented in cloudlets
with or without their required hardware accelerators and state
information, subject to the constraints of computing resource
on each cloudlet clm, the capacity constraint of the accelerator
of clm, the TCAM capacity on each SDN switch v 2 V , and the
end-to-end delayDk of each request rk.
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Problem 2. Consider a dynamic environment where requests
arrive one by one without the knowledge of future arrivals. The
online hard-affinity-aware throughput maximization prob-
lem in GðV [ CL;EÞ is to find a scheduling that each arrived
request is either admitted or rejected immediately such that the
accumulative system throughput in a finite time horizon – the
accumulative data volume of admitted requests – is maximized,
while VNFs are implemented in cloudlets with their required
hardware accelerators and state information, subject to the com-
puting resource capacity on each cloudlet clm, the TCAM capac-
ity on each v 2 V , and the end-to-end delayDk of each request rk.

It must be mentioned that the aforementioned optimiza-
tion problems are NP-hard, which can be shown through a
reduction from the generalized assignment problem [28] to a
special case of the problems without imposed the end-to-end
delay and TCAM constraints, while the former is NP-hard.

3.7 Approximation and Competitive Ratios
The Approximation Ratio. Given a value 0 < g < 1, a
g-approximation algorithm for a maximization problem P1 is
a polynomial time algorithm A that outputs a solution
whose value is no less than g times the value of an optimal
solution for any instance I of P1, where g is termed as the
approximation ratio of algorithm A.

Let OPT and S be an optimal solution of the offline prob-
lem and the solution delivered by an online algorithmA0 for
a maximization problem P2 respectively, where a sequence
of requests arrives one by one without the knowledge of
future request arrivals.The competitive ratio of the online algo-
rithmA0 is ! if S

OPT + 1
! for any instance I of the maximization

problem P2.
For clarity, the symbols used in this paper are summa-

rized in Table 1.

4 INTEGER LINEAR PROGRAMMING

In this section we formulate the soft-affinity-aware through-
put maximization problem as an Integer Linear Program.

Recall that if a cloudlet clm 2 CLaf
k is selected to admit

request rk, VNFk may or may not be accelerated by a GPU
in clm. We thus use an indicator decision variable xkm to
indicate whether request rk is assigned to an instance of its
VNF in a GPU of cloudlet clm. We also use another indicator
variable ykm to indicate whether request rk is assigned one
VNF instance to cloudlet clm for implementation by the
CPU resource of clm. This means that for a cloudlet clm,
CPU resource is used to process the traffic of VNFk instead
of a GPU of clm if xkm ¼ 0 and ykm ¼ 1. The data traffic of rj
then is routed via a shortest path from its source node sk to
the selected cloudlet, and then from the selected cloudlet to
its destination tk. The optimization objective of the soft-
affinity-aware throughput maximization problem thus is to

ILP-SA : max
X

clm2CLafk

X

rk2R
xkmrk þ

X

clm2CL

X

rk2R
ykmrk;

(3)
subject to the following constraints.

X

clm2CL
ðxkm þ ykmÞ & 1; 8rk 2 R (4)

xkm ¼ 0; 8rk 2 R and 8clm 2 CL n CLaf
k (5)

xkm þ ykm & 1; 8rk 2 R and 8clm 2 CLaf
k (6)

X

rk2R
ðxkm þ ykmÞ % rk & CðclmÞ; 8clm 2 CL (7)

X

rk2R
xkm & ThðclmÞ; 8clm 2 CLaf

k (8)

X

rk2R
ðxkm þ ykmÞ & NðvÞ;

for each clm and each v 2 psk;clm [ pclm;sk

(9)

xkm % dðrk; clmÞ & Dk; 8clm; rk 2 R (10)

ykm % d0ðrk; clmÞ & Dk; 8clm; rk 2 R (11)

xkm; ykm 2 f0; 1g; (12)

where Constraints (4) say that the VNF of each request rk
can only be placed into one cloudlet clm 2 CL no matter
whether its VNF is implemented in a GPU or not. Con-
straints (5) indicate that xkm ¼ 0 for all cloudlets not in CLaf

k .
This is because the cloudlets not in CLaf

k are not allowed to
accelerate the VNF of rk, by the definition of soft-affinity.
Constraints (6) indicate that for a cloudlet with GPUs, the
traffic of rk can be processed by an instance of its VNFk in a
GPU, or an instance of VNFk in a CPU of clm. In other
words, ykm must be 0 if xkm ¼ 1, meaning that rk is acceler-
ated by a GPU of clm. Also, xkm has to be 0 if ykm ¼ 1, indi-
cating that the request is implemented via a CPU in clm.
However, xkm and ykm can be both zeros, saying that other
cloudlets will implement rk. Constraints (7) show that the
computing resource demanded by the requests assigned to
clm should not exceed its capacity CðclmÞ no matter whether
its traffic is implemented in a GPU. The rationale behind is
that, even if the traffic of a request is processed by a GPU,
CPU capacity is still needed to process partial of the traffic
of the request [39]. Also note that we adopt the popular pro-
portional resource consumption model for each user
request, following many existing studies [1], [4], [46]. This
means that the resource consumption of a request rk is pro-
portional data rate rk. It is true that CPU resource consump-
tion of processing a unit of data rate varies for different
types of VNFs. Constraints (7) can be extended easily to con-
sider such scenarios, by adding a scaling factor for each
request rk in the RHS of Constraints (7). Constraints (8)
ensure that the number of requests processed by the GPUs
of a cloudlet cannot exceed the number of GPU threads in
clm, i.e., ThðclmÞ, such that the acceleration performance of
packet processing is guaranteed. Constraints (9) make sure
that the forwarding table size of each switch that forwards
the pre-processing traffic or post-processing traffic of rk
should not be violated. Note that we assume that only one
forwarding rule in a switch is enough for both pre- and
post-processing traffic. Constraints (10) and (11) say that the
end-to-end delay requirement Dk of each admitted request
rk should not be violated. Constraints (12) impose the inte-
gral constraint of the indicator variables xkm and ykm.

It must be mentioned that the ILP solution may take pro-
hibitively long to deliver an exact solution for the problem
when its size is large, i.e., with hundreds of nodes in the
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network. Even if the exact solution is eventually obtained, it
may no longer be valuable, and the result cannot be used
for improving the network performance due to dynamic
evolution of resources in the network.

5 ALGORITHMS FOR THE SOFT-AFFINITY-AWARE

THROUGHPUT MAXIMIZATION PROBLEM

In this section, we propose a heuristic for the soft-affinity-
aware throughput maximization problem. We first consider
a special case of the problem where a request can only be
assigned to a cloudlet in its specified set of cloudlets and
accelerated by aGPU thread.We refer to this special problem
as the hard-affinity-aware throughput maximization problem, and

we propose an exact and approximate solutions to it, respec-
tively. We then devise an efficient heuristic for the soft-affin-
ity-aware throughput maximization problem, based on the
proposed approximate solution.

5.1 An Exact Solution to the Hard-Affinity-Aware
Throughput Maximization Problem

In the hard-affinity-aware throughput maximization prob-
lem, a request rk has to be admitted into a cloudlet clm 2
CLaf

k and its VNFk is implemented by a GPU of clm. We re-
use the indicator variable xkm in ILP-SA to indicate whether
request rk is assigned to an instance of its VNFs in cloudlet
clm 2 CLaf

k to process its traffic. The optimization objective
of the hard-affinity throughput maximization problem is

TABLE 1
Symbols

Symbols Meaning

G ¼ ðV [ CL;EÞ a mobile edge network deployed in a wireless metropolitan area with a set V of switches and a set CL
of cloudlets.

v and NðvÞ a switch in V and the number of forwarding entries in the TCAM of switch v 2 V .
clm a cloudlet in CL.
CðclmÞ and Cmin the capacity of computing resource of clm and the minimum computing capacity.
ThðclmÞ the number of GPU threads of each cloudlet clm 2 CL.
RC the amount of computing resource to process a packet.
e and de a link in E and the delay of transmitting a unit packet data along link e.
pv;v0 the shortest path between v 2 V and v0 2 V .
dv;v0 the delay for transmitting a unit of data packets along the shortest path between v 2 V and v0 2 V .
rk, sk, tk a user request and its source, destination.
rk the volume of data packets that rk need to transmit.
VNFk andDk the VNF of rk and the delay requirement of rk.
CLaf

k the set of locations with the GPUs that rk requires its data to be processed.
dðVNFk; clmÞ the delay for processing the packets of rk in a GPU of cloudlet clm.
d0ðVNFk; clmÞ the delay for processing the packets of rk in a CPU of cloudlet clm.
drk;clm the end-to-end delay for transmitting the packets of rk from sk to tk.
dðsk; clmÞ the end-to-end delay of request rk if its implemented in the GPU of clm.
d0ðsk; clmÞ the end-to-end delay of request rk if its implemented in the CPU of clm.
xkm an indicator variable that indicates whether rk is deployed at the GPU of clm.
ykm a binary decision variable that shows whether rk is assigned to the CPU of clm.
Rha and Rsa the set of requests with hard-affinity and soft-affinity requirements.
x,
km the optimal fractional solution to the proposed ILP-SA.

a a constant value that illustrates the relationship between number of cloudlets jCLj and capacity of
TCAM in each SDN-enabled switch v.

d a constant value that illustrates the total packet rates of all requests is smaller than d times of the
minimum computing resource capacity of Cmin.

Pm and I, the shadowprice of each cloudlet clm and themaximum resource usage by a requestwith a unit packet rate.
D a constant value that guides resource reservations for future request admissions.
" a constant value that serves as a tradeoff between the competitiveness of the proposed online

algorithm and the degree of resource violations.
gk, hm, zm, kmv, and vmk the dual variables for Constraints (14), (15), (16), (17), and (18), respectively.
X an independent random variable that represents the amount of request traffic that is assigned to VNFs

in clm for processing.
EðXÞ and VarðXÞ the expectation and variance of the eventX.
Pr½X + CðclmÞ( the probability of violating the computing capacity of cloudlet clm.
Y an independent random variable that represents the number of requests whose traffics are forwarded

by switch v 2 V .
V pre
k the set of the switches that are used to forward the pre-processed traffic of rk.

Pr½v 2 V pre
k ( the probability of using switch v to forward the pre-processed traffic of rk.

Pr½Y + NðvÞ( the probability of violating the forwarding table size of switch v 2 V .
W the accumulative packet rate due to the randomized algorithm Appro.
b the approximation of the proposed algorithm Appro.
x0 the feasible solution to the problem calculated by the randomized algorithm Appro.
LmðkÞ the total packet rate of admitted requests after the admission of request rk.
hmðkÞ the value of dual variable hm after the admission of request rk.
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ILP-HA : max
X

clm2CLaf
k

X

rk2R
xkmrk; (13)

subject to the following constraints.

X

clm2CLaf
k

xkm & 1; 8rk 2 R (14)

X

rk2R
xkm % rk & CðclmÞ; 8clm 2 CL (15)

X

rk2R
xkm & ThðclmÞ; 8clm 2 CL (16)

X

rk2R
xkm & NðvÞ;

for each clm and each v 2 psk;clm [ pclm;sk

(17)

xkm % dðrk; clmÞ & Dk; 8clm; rk 2 R (18)

xkm 2 f0; 1g; (19)

where Constraints (14) indicate that the VNF of each request
rk can only be placed into one cloudlet clm 2 CLaf

k . Con-
straints (15) say that the CPU resource which will be used to
requests that are assigned to each cloudlet clm should not
exceed its capacity CðclmÞ. Constraints (16) make sure the
total number of requests that are assigned to the GPUs of clm
is no greater than the number ThðclmÞ of GPU threads in clm.
Constraints (17) guarantee that for each switch that forwards
the pre-processing traffic or post-processing traffic of rk will
not exceed its forwarding table size NðvÞ. Constraints (18)
say that the end-to-end delay requirementDk of each admit-
ted request rk should not be violated. Constraints (19)
impose the integral constraint on the indicator variable xkm.

5.2 An Approximation Algorithm for the
Hard-Affinity-Aware Throughput
Maximization Problem

Due to the high computational complexity of the proposed
ILP solution, in the following we propose an efficient
approximation algorithm with a good approximation ratio
for the problem.

The basic idea of the proposed approximation algorithm
is to adopt the randomized rounding technique [29] on the
ILP solution. Specifically, we first relax the proposed ILP-
HA by assuming xkm is a real value in the range of ½0; 1(. A
fractional solution to the constrained maximization problem
is then obtained in polynomial time. Let xx, be the optimal
fractional solution. Let OPT be the optimal solution to the
hard-affinity-aware throughput maximization problem. The
value of xx, is an upper bound of the value of the optimal
solution OPT . We then round the fractional xkm into 0=1
with probability x,

km.
We now describe the randomized algorithm. We first

relax the ILP-HA to a Linear Program (LP) by relaxing Con-
straints (19) into

0 & xkm & 1; (20)

subject to Constraints (14), (15), (16), (17), (18), and (20).
The obtained linear program is referred to as LP-HA. A

fractional solution xx, is obtained by solving the LP-HA.

We then round the fractional solution to an integral solu-
tion xx to the original problem. We round xkm to 1 with prob-
ability x,

km if x,
km + d2

1þd2
, where d2

1þd2
illustrates a threshold

that ensures the possibility of capacity violence on a cloud-
let clm 2 CL is acceptable. We thus consider Pr½xkm ¼ 1( ¼
x,km, which also means that we round xkm to 0 with probabil-
ity 1- x,

km, if x
,
km + d2

1þd2
or x,

km & d2

1þd2
. Note that Pr½xkm ¼

1( ¼ x,km represents the probability that the VNFk of request
rk is assigned to cloudlet clm. The intuition of setting a
threshold, i.e., d2

1þd2
, on the value of x,

km is to filter out the
impact of some trivial possible assignments with low proba-
bility. It must bementioned the performance of the proposed
approximation algorithm largely depends on the value of d.
For example, when d is small, the algorithm will have a
smaller value for threshold d2

1þd2
, implies that the algorithm is

loose in selecting solutions for request admissions. On the
other hand, when the algorithm prefers to select good solu-
tions with high probability, it may set a larger value for u.

The detailed algorithm is given in Algorithm 1.

Algorithm 1. Appro

Input: G ¼ ðV [ CL;EÞ, a set of requests R.
Output: The assignment of the each request rk 2 R to a
cloudlet.
1: Solve the relaxed version of ILP-HA, i.e., LP-HA;
2: for each rk 2 R do
3: Implement VNFk of each request rk 2 R in clm with a

probability of x,km, if x
,
km + d2

1þd2
;

5.3 A Heuristic for the Soft-Affinity-Aware
Throughput Maximization Problem

We now propose a heuristic for the soft-affinity-aware
throughput maximization problem, based on algorithm
Appro for its special case. Recall that the problem objective is
to maximize the accumulative data volume of admitted
requests. To this end, a request may be assigned to a cloudlet
by using the CPU resource of the cloudlet to process its traffic
if its delay requirement can be met, because CPU capacities
usually can process requests with large data volumes of
requests. The basic idea of the proposed algorithm thus is to
assign a request rk to a cloudlet in CL n CLaf

k as long as its
delay requirement can be met; otherwise, it will be preferably
assigned to a GPU of a cloudlet inCLaf

k .
We first rank requests in R into non-increasing order of

their data volume rk. We then partition the ranked list into
two sublists by going over the ranked list one by one. Let
Rha be the set of requests that have to be assigned GPUs of
cloudlets, i.e., the ones with hard-affinity requirements. The
set with the rest requests is denoted by Rsa. Specifically, we
add a request rk to Rha as long as its delay requirement can-
not be met if it is implemented using the CPU capacity of a
cloudlet; otherwise, it is added into Rsa. We then invoke
algorithm Appro to assign requests in Rha to cloudlets. We
admit requests in Rsa one by one until the CPU capacity of
each cloudlet is saturated. The detailed steps are shown in
Algorithm 2, which is referred to as algorithm Heu.

5.4 Performance Analysis
In the following, we analyze the performance of algorithm
Appro.
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Lemma 1. For the solution obtained from Algorithm 1, we claim
(1) the probability of violating the computing resource capacity
on a cloudlet is no more than 1

ðd-1Þ2
with d > 2; (2) the proba-

bility of violating the GPU thread limitation of each cloudlet
clm is no more than 1

ðd-1Þ2
; and (3) the probability of violating

the forwarding table size of each switch v 2 V is no more than
1

jCLjða-1Þ2
, where a is a given integer constant with a > 1.

Please see the appendix for the detailed proof, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TC.2020.3041629.

Theorem 1. Given a mobile edge cloud G ¼ ðV [ CL;EÞ with a
set of cloudlets in CL, a set of requests R with each request rk
specifying its VNF being implemented in a set CLaf

k of cloudlets,
the CPU computing and GPU resource constraints of each cloud-
let clm 2 CL, and the forwarding table size limitation of each
switch v 2 V , there is an approximation algorithm, Appro, for
the hard-affinity-aware throughput maximization problem in G,

which can achieve an approximation ratio of ð1þdÞ2%ðd-2Þ
d%ðd-1Þ2

with high

probability, where d is a given constant with 2 & d & jCLj.

Please see the appendix for the detailed proof, available
in the online supplemental material.

Algorithm 2. Heu

Input: G ¼ ðV [ CL;EÞ, a set of requests R.
Output: The assignment of the each request rk 2 R to a
cloudlet.
1: Rank the requests in R into non-increasing order in terms of

their data volume rk;
2: for each request rk in the ranked list do
3: Add rk to Rha and remove it from the ranked list, if its

delay requirement Dk cannot be met if it is implemented
by the CPU capacity of a cloudlet;

4: Invoke algorithm Appro to admit requests in Rha;
5: Add all the rest requests in the ranked list to Rsa, and admit

the requests in Rsa one by one greedily;

6 ALGORITHM FOR THE ONLINE HARD-AFFINITY-
AWARE THROUGHPUT MAXIMIZATION PROBLEM

In this section, we propose an online algorithm with a good
competitive ratio for the online hard-affinity-aware through-
put maximization problem.

6.1 Algorithm Overview
The basic idea of the proposed online algorithm is to adopt the
primal-dual-updating approach [3] for the problem, which
maintains shadow price variables for cloudlets and switches in
the software-defined mobile edge cloud G. As we assume
that requests arrive one by one, myopic requests admissions
may harm the admissions of future requests, thereby reduc-
ing the accumulative system throughput.We here propose an
efficient admission control policy that guides requests admis-
sions. Specifically, on the arrival of each request rk, the online
algorithm compares the price of the cheapest cloudlet in terms
of the shadow price to a specially calibrated threshold, to
determine whether rk should be admitted or not. For clarity,
the dual of the ILP-HA is given as follows.

Let gk, hm, zm, kmv, and vmk be the dual variables for Con-
straints (14), (15), (16), (17), and (18), respectively. Since our
objective is to maximize the accumulative packet rate of
admitted requests in R. Its duel objective is to minimize the
cost, i.e.,

min gk þ CðclmÞ % hm þ ThðclmÞ % zm þNðvÞ % kmv þDk % vmk;

(21)
subject to,

X

rk2R
gk þ

X

clm2CL
rkhm þ

X

clm2CL
zm

þ
X

clm2CL

X

v2CLaf
k

kmv þ
X

clm2CL

X

rk2R
dðrk; clmÞvmk + rk;

(22)

which can be re-written as

X

rk2R
gk + rk -

X

clm2CL
rkhm -

X

clm2CL
zm

-
X

clm2CL

X

v2CLaf
k

kmv -
X

clm2CL

X

rk2R
dðrk; clmÞvmk:

(23)

6.2 Online Algorithm
We first define the shadow price Pm of each cloudlet clm, the
maximum resource usage I, of requests in R, and a constant
D to guide resource reservations for future requests. Specifi-
cally, the shadow price Pm represents the marginal increase
of strengthening the resource capacity constraint on each
cloudlet, the GPU thread limitation constraint of each cloud-
let, and the forwarding table size constraint on each switch,
which is defined as

Pm ¼

 
kmv

rk
þ hm þ zm

rk

!

: (24)

Then, the maximum resource usage I, by a request with a
unit packet rate can be defined as

I, ¼ max

(
1; max

clm2CL;rk2R

 
dðrk; clmÞ

rk
;

1

NðvÞrk
;
1

rk

!)
:

(25)

We now provide a flexible way of tuning resource reserva-
tions for future requests. Specifically, we introduce a param-
eter "with 0 < " & 1 and

D ¼ I,=": (26)

This serves as a tradeoff between the competitiveness of the
proposed algorithm and the degree of resource violations.
In general, a smaller value of " means a conservative way of
reserving resources for future requests. It thus avoids severe
resource violations; however, it may miss the opportunity of
admitting future requests with higher demands and thus
reduce the system throughput. This feature will be intro-
duced in the performance analysis of the algorithm later.
The rationale of the proposed admission policy is to use a
pre-defined threshold of the resource usage of rk to decide
whether the request should be admitted. Specifically, if rk’s

XU ETAL.: AFFINITY-AWARE VNF PLACEMENT IN MOBILE EDGE CLOUDS VIA LEVERAGING GPUS 2241

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 12,2022 at 08:23:25 UTC from IEEE Xplore.  Restrictions apply. 

http://doi.ieeecomputersociety.org/10.1109/TC.2020.3041629
http://doi.ieeecomputersociety.org/10.1109/TC.2020.3041629


resource usage in the cloudlet with the minimum shadow
price is higher than the given threshold, the request will be
rejected. Namely, request rk will be rejected if

Pm, + 1- ðdðrk; clmÞÞ2

D %Dk % rk
; (27)

where Pm, ¼ minclm2CLfPmg.
Given the admission control policy, the dual variables

will be updated when request rk is admitted. We now
describe the update rules for the dual variables of the dual
program. Each dual variable is initially set to zero, and then
updated according to the following rules:

gk  rkð1- Pm,Þ; (28)

hm,  hm,

!
1þ rk

Cðclm, Þ

"
þ rk
D % Cðclm,Þ

; (29)

zm,  zm,

!
1þ 1

Thðclm,Þ

"
þ 1

D % Thðclm, Þ ; (30)

km,v  km,v

!
1þ 1

NðvÞ

"
þ 1

D %NðvÞ ; (31)

vm,k  
dðrk; clm, Þ
D %Dk

: (32)

The detailed algorithm is given in Algorithm 3, which is
also referred to as Algorithm Online.

Algorithm 3. Online

Input: G ¼ ðV [ CL;EÞ, a set of requests R that arrive into the
system one by one without the knowledge of their future
arrivals.

Output: The assignment of the each request rk 2 R to a cloudlet.
1: for each request rk do
2: Let CLk be the set of data centers that can meet the

end-to-end delay requirement of rk;
3: Find the cloudlet in CLk that has the minimum shadow

price, i.e, Pm, ;

4: if Pm, + 1- ðdðrk;clm, ÞÞ2
D%Dk%rk

then
5: Reject request rk;
6: else
7: Implement request rk in cloudlet clm, ;
8: Update the dual variables following rules (28), (29), (31),

and (32);

6.3 Algorithm Analysis
The rest is to show the dual feasibility of the dual variables
in the dual program, and then analyze the competitive ratio
of the proposed online algorithm.

Lemma 2. The updating rules for dual variables (28), (29), (31),
and (32) always meet the dual feasibility requirement of the
dual program.

The detailed proof is shown in the appendix of this
paper, available in the online supplemental material.

Lemma 3. Whenever a request rk is admitted, the increase of the
objective of the dual program is no more than ð1þ "Þrk, where
" is a parameter with 0 < " & 1.

The detailed proof of this lemma is shown in the appendix
of this paper, available in the online supplemental material.

We proceed by analyzing the upper bound on the
resource violation ratios of each constraint of the ILP in the
following lemma.

Lemma 4. The delay requirement of each admitted request is met.
The violation of the computing capacity constant, the GPU
thread limitation constraint, and the forwarding table size con-
straint is at most by a factor of OðlogN þ log ð1="ÞÞ, where
N ¼ maxfCðclmÞ; NðvÞ; Dkg.

Please see the appendix for the detailed proof, available
in the online supplemental material.

We finally analyze the competitive ratio of the proposed
Algorithm 3.

Theorem 2. Given a mobile edge cloud G ¼ ðV [ CL;EÞ with a
set of cloudlets in CL, a set of requests R that arrive into the
cloud one by one without the knowledge of future arrivals, the
set CLaf

k of cloudlets that each request rk specifies to implement
its VNF, the CPU computing and GPU resource constraints of
each cloudlet clm 2 CL, and the forwarding table size limita-
tion of each switch v 2 V , there is an online algorithm,
Online, which has a competitive ratio of ð1- 3"Þ, where " is a
constant with 0 < " < 1=3.

Please see the appendix for the detailed proof, available
in the online supplemental material.

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms by simulations and implementations in the real
test-bed.

7.1 Parameter Settings
We consider a mobile edge cloud by varying network size
from 50 to 250, where the number of cloudlets in the net-
work is set to 10 percent of the network size, and the
cloudlets are randomly co-located with switches. We also
utilize a real network AS1755 [31]. We consider that CPU
computing capacity of a cloudlet varies from [1,500,
2,500] amount of packet rates, where the computing
resource of processing a unit packet rate RC is randomly
drawn from [4, 12] MHz [23]. Each switch can install 2 %
jCLj forwarding rules. Six different types of GPU-acceler-
ated network functions: Flow Monitor (FM), Firewall
(FW), Load Balance (LB), IPv4 Router, Network Intrusion
Detection System (NIDS) and Internet Protocol Security
(IPSec) are considered, and the delay a VNF instance pro-
cesses a unit packet rate is randomly generated from the
range [0.5, 1.2] ms. We consider two types of service
chains: FM-FW-LB [42] and IPv4 Router-NIDS-IPSec [45].
The packet rate of each request is randomly drawn from
[50, 200] per second. The delay requirement of each
request is randomly drawn from [0.1, 1] seconds. We con-
sider two types of GPU, NVIDIA Titan X Pascal and NVI-
DIA Titan Xp. NVIDIA Titan X Pascal has 6 graphics
processing clusters and 30 SMs, and each consists of 128
SPs, resulting in 3584 SPs in total [42] and NVIDIA Titan
Xp has 3840 SPs respectively [45]. For each GPU-acceler-
ated VNF instance, we assume that GPU can reduce the
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process delay by 25 percent [42]. The running time of
each algorithm is obtained based on a machine with a
3.70 GHz Intel i7 Hexa-core CPU and 16 GiB RAM.

We evaluate the performance of the proposed algorithms
against the following benchmarks. The first one is a modi-
fied version of the solution in [43], which is referred to as
G-NET. In algorithm G-NET, a GPU-level scheduling of
VNFs is adopted. Specifically, G-NET adopts a greedy
approach that assigns a request with a minimum data rate
to a GPU that can meet its demand and delay requirements
greedily. We however deal with placing VNFs to cloudlets
that are different from the study in [43]. To make the com-
parison fair, we only compare the greedy assignment
approach in [43]. Specifically, the greedy approach greedily
assigns a request with minimum packet rate to a cloudlet
that can satisfy the delay requirement of rk and implement
VNF instances of rk at the cloudlet. The second benchmark
we consider is the one in [46], which is referred to as Q-

SCP. For each request rk, Q-SCP finds a shortest path and
selects a candidate cloudlet on the path meeting delay
requirement of rk. The third benchmark we adopt is a
multi-objective-based optimization algorithm in [47], which
is referred to as MOA. It formulated the problem as a multi-
objective integer Linear Programming and then trans-
formed the problem to a single-objective optimization prob-
lem to solve.

7.2 Performance Evaluation by Simulations
We first compute the approximation ratio of algorithm Heu

and Appro by setting the network size to 50, fixing the ratio
jCLj=jV j at 0.2 and varying the value of d from 2 to jCLj.
Recall that obtaining the optimal solution to the ILP may
take prohibitively long for a large problem size. To obtain
the approximation ratio of algorithm Heu and Appro, we

estimate the optimal solution by relaxing the integer deci-
sion variables of the ILP into real values. The obtained frac-
tional solution is an upper bound of the optimal solution. It
must be mentioned that this estimation on the optimal solu-
tion is very conservative, the real approximation ratio will
be much better than the ratio calculated based on the esti-
mated optimal solution. The results are shown in Fig. 2,
from which we can see that with the increase on the value
of d, the approximation ratio first deteriorates when 2 < d &
4 and then keeps increasing. This is because the system
throughput of the proposed algorithm is impacted by two
main reasons: the volume of the data packets of requests in
the system and the value of the threshold in algorithms Heu
and Appro, i.e., d2

1þd2
. When 2 & d & 4, with the increase on

d, there are more requests in the system, leading to the dete-
rioration of the approximation ratio. However, when d + 4,
algorithms Heu and Appro behave more like ILP because
d2

1þd2
approaches 1, which is large enough to approach a near

optimal solution. We can also see from Fig. 2 that the
approximation ratio of algorithm Appro in the worst case is
no less than 0.7, when d ¼ 4, which is consistent with the
theoretical results in Theorem 1. When d approaches jCLj,
the approximation ratio of algorithms Heu and Appro

are around 0.90 and 0.84, respectively, which indicates that
the performance of algorithms Heu and Appro are very
promising.

We then evaluate the performance of algorithms Heu

and Appro against algorithms G-NET, Q-SCP and MOA in
terms of the system throughput, average delay and run-
ning time, by varying the network size from 50 to 250,
while fixing the ratio jCLj=jV j at 0.1. From Fig. 3a, we can
see that the system throughput of algorithm Heu is 10
percent higher than that of algorithm Appro. However,
when comparing the average delay, the performance of
algorithm Heu is worsen than that of algorithm Appro, as
depicted in Fig. 3b. This is because algorithm Heu sacrifi-
ces the QoS of user requests to have a higher throughput.
Besides, we can see that that the throughput achieved by
algorithm Appro is consistently higher than that of algo-
rithms G-NET and Q-SCP, respectively, since algorithms
G-NET and Q-SCP do not consider global information,
leading to lower utilization of computing resources in the
system. Although algorithms MOA and Appro have the
similar performance behaviors, algorithm MOA takes a
longer running time, as illustrated in Fig. 3c. We can see
from Fig. 3b that algorithms Heu, Appro and MOA have
lower delays than algorithm Q-SCP, because some

Fig. 2. Approximation ratio of algorithm Heu and Appro against LP with
different d.

Fig. 3. The performance of algorithms Appro, Heu, G-NET, Q-SCP, and MOA.
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requests may be assigned to cloudlets without hardware
accelerators, making the processing delay very high and
leading to the requests being rejected due to the delay
requirement violations.

We also evaluate the performance of algorithms Heu,
Appro, G-NET, Q-SCP and MOA in the real network
AS1755, by varying the ratio jCLj=jV j from 0.1 to 0.3. Sim-
ilarly, we can see from Figs. 4a and 4b that algorithm Heu

has a higher throughput than algorithm Appro but algo-
rithm Appro can provide a lower latency services for
mobile users. We can also see from Fig. 4a that the
throughput is increasing with the growth of ratio
jCLj=jV j. The reason is that having the network size fixed,
the number of cloudlets increases with the growth of the
ratio jCLj=jV j, which means more computing resource
can be used to admit more requests. We can also see that
algorithm Appro has higher throughput than algorithms
G-NET, Q-SCP and MOA, respectively. Similar results on
delays as Fig. 3b are shown in Fig. 4b. From Fig. 4c, we
can see that algorithm MOA has the worst running time
among the three comparison algorithms.

We now investigate the performance of algorithm
Online against algorithms G-NET, Q-SCP and MOA in
terms of the system throughput, average delay and running
time, by varying the network size from 50 to 250 while fix-
ing the ratio jCLj=jV j at 0.1. We can see from Fig. 5a that
algorithm Online has a higher system throughput than
that of algorithm USUAL. From Fig. 5b, we can see that the
average delay increases with the growth of network size.
This is because in larger networks the source and destina-
tion of a request may be farther than that in smaller net-
works. Also, the performance gap between algorithms
Online and Q-SCP is enlarging with the growth of the net-
work size. The reason is that there are more cloudlets in
larger networks; considering that each request has a fixed
number of locations that can meet its data locality and hard-
ware affinity requirements, the impact of data locality and
hardware affinity requirements is enlarged. Similarly, algo-
rithms Online and MOA have similar performance, but the
latter has a longer running time.

We finally investigate the performance of algorithms
Online, G-NET, Q-SCP and MOA in the real network

Fig. 4. The performance of algorithms Appro, Heu, G-NET, Q-SCP, and MOA in the real network AS1755.

Fig. 5. The performance of algorithms Online, G-NET, Q-SCP, and MOA.

Fig. 6. The performance of algorithms Online, G-NET, Q-SCP, and MOA in the real network AS1755.
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AS1755 [12], by varying the ratio jCLj=jV j from 0.1 to 0.3.
The results are shown in Fig. 6. From Fig. 6a, it can be
seen that the system throughput increases with the
growth of the ratio jCLj=jV j from 0.1 to 0.2. It then keeps
stable when the ratio jCLj=jV j increases from 0.2 to 0.3.
The reason is that a higher jCLj=jV j that it needs means
more cloudlets to implement more requests. However,
the throughput becomes stabilized when jCLj=jV j + 0:2
for the reason that most requests are rejected because of
the delay requirement violation. The average delay by
algorithm Online is lower than algorithms Q-SCP and
MOA. We can see from Fig. 6b that algorithm G-NET has a
lower delay than that of algorithm Online, this is
because it first considers the GPU-enabled cloudlet for
service chain placement, which leads to the decrease on
its system throughput.

7.3 Performance Evaluation in a Real Test-Bed
We implement the proposed algorithms Appro, Heu and
Online in a real test-bed with five h3c-S5560X-30C-EI
switches and each switch is attached with a server with
Intel 8-core i7-4720 CPU. An overlay network following
AS1755 topology is constructed based on the physical net-
work of the test-bed using VxLan [35], as shown in Fig. 7.
A Ryu controller is used to control the overlay network,
and the proposed online algorithms are implemented as a
Ryu component. We use Openflow 1.3 [25] to transfer
control messages between controller and switches. All
the rest parameter settings are the same as the ones in
simulations.

We first evaluate the performance of algorithms Heu,
Appro against algorithms G-NET, Q-SCP and MOA in the
test-bed, by varying the ratio jCLj=jV j from 0.1 to 0.3.
Results are shown in Fig. 8. From Fig. 8a, we can see that
algorithms Heu and Appro achieve higher throughput
than that of algorithms G-NET, Q-SCP and MOA. How-
ever, we can see from Fig. 8b that algorithm MOA has a
longer delay than that of algorithm Heu when jCLj=jV j is
0.2. It must be mentioned that the objective of algorithm
Heu is maximizing the system throughput instead of min-
imizing the delay; the delay requirements of requests of
both algorithms Heu and MOA are all met. This certifies
the proposed online algorithm can deliver a higher
throughput than its counterparts in real environments.

We then evaluate the performance of algorithms Online
against algorithms G-NET, Q-SCP and MOA in the test-bed,
by varying the ratio jCLj=jV j from 0.1 to 0.3. Results are
shown in Fig. 9. From Fig. 9a, we can see that algorithm
Online delivers higher system throughput than algorithms

Fig. 7. Test-bed.

Fig. 8. The performance of algorithms Heu, Appro, G-NET, Q-SCP, and MOA in the test-bed.

Fig. 9. The performance of algorithms Online, G-NET, Q-SCP, and MOA in the test-bed.
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G-NET and MOA when jCLj=jV j and algorithm Q-SCP has
the lowest throughput as expected. This certifies the pro-
posed online algorithm can deliver a higher throughput
than its counterparts in real environments. From Fig. 9b, we
can see that the average delay of algorithm Online is only
slightly higher than that of algorithm MOA, but achieves a
higher throughput instead. Similarly, algorithm Online

considers the global information and achieves higher
throughput while algorithms G-NET and MOA focus more
on delay of service chain placement.

8 CONCLUSION AND FUTURE WORK

In this paper, we considered the locality- and hardware
affinity-aware VNF placement in a mobile edge cloud by
formulating two optimization problems. We provided an
ILP solution for the soft-affinity-aware throughput maxi-
mization problem. We also proposed a heuristic for the
soft-affinity-aware throughput maximization problem, by
devising an efficient approximation algorithm with prov-
able approximation ratio for its special case and then
extending that approximation algorithm to solve the orig-
inal problem. For the online hard-affinity-aware through-
put maximization problem, we devised an online
algorithm with a good competitive ratio. We finally eval-
uated the performance of the proposed algorithms by
simulations and implementations in a real test bed.
Experimental results showed that the performance of the
proposed algorithms are promising.

The future work of the locality- and hardware affinity-
aware VNF placement includes (1) considering the fairness
on the usage of GPU resources in cloudlets in mobile edge
clouds. With the quick deployment of GPU resources in
mobile edge clouds, GPUs may be shared by users just as
CPUs. Given different priorities and payments of users,
how to design a fairness-aware VNF placement algorithm is
challenging; and (2) there may exist many different types of
GPU resources, such as conventional GPUs, FPGAs, and
neural network accelerators in mobile edge clouds. Their
processing capacities can also be different in accelerating
the execution of VNFs. How to consider such resource het-
erogeneity in the VNF placement is is another potential
future work along this research line.
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