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Abstract—Federated Learning (FL) is a new distributed ma-
chine learning (ML) approach which enables thousands of mobile
devices to collaboratively train artificial intelligence (AI) models
using local data without compromising user privacy. Although
FL represents a promising computing paradigm, such training
process can not be fully realized without an appropriate economic
mechanism that incentivizes the participation of heterogeneous
clients. This work targets social cost minimization, and studies
the incentive mechanism design in FL through a procurement

remuneration to winners. Finally, Ar; returns the best solu-

Android, is adopting the FL process to make typing faster and
easier. Mobile phones locally store users’ typing preference
every time when Gboard shows a suggested query. FL trains
Gboard’s query suggestion model using history on device to
improve user experience in the next iteration [5].

. . . s . . . | 3 Cloud Server
auction. Different from existing literature, we consider a practical 1 @u pload informations!
scenario of FL where clients are selected and scheduled at ! 4’ (11 o]
different global iterations to guarantee the completion of the 'EL Platform ; (11 o]
FL job, and capture the distinct feature of FL that the number | ! H-J N
of global iterations is determined by the local accuracy of all ® Broadcast FL job ENWQ'W' m°df',’,f' *\\, Local updates
participants to balance between computation and communica- '@ @ Submit bids ! N
tion. Our auction framework Ap; first decomposes the social ! ® Winner & Payment, r AR
cost minimization problem into a series of winner determination i DB @ #] @
problems (WDPs) based on the number of global iterations. ‘ | R R
Then to solve each WDP, Ar; invokes a greedy algorithm to ! 2 Winner &&hedmef 2 - 2 & m
determine the winners, and a payment algorithm for computing ! Q e ¢ ¢ ¢ ¢ o

tion among all WDPs. Theoretical analysis proves that Ap;
is truthful, individual rational, computationally efficient, and
achieves a near-optimal social cost. We further conduct large-
scale simulation studies based on the real-world data. Simulation
results show that Ar; can reduce the social cost by up to 75%
compared with state-of-the-art algorithms.

Index Terms—Federated Learning, Incentive Mechanism, Auc-
tion

I. INTRODUCTION

The emergence of federated learning (FL) provides a new
computing paradigm for artificial intelligence (AI) and its
application. Traditional machine learning (ML) trains Al
models centrally, which is privacy-intrusive, especially for
mobile devices which contain owners’ privacy-sensitive data
[1], [2]. Compared to the centralized training process, FL
is a decentralized training approach which distributes ML
jobs to thousands of geo-distributed mobile devices (a.k.a.
clients) [3], [4]. Mobile devices act as the computing nodes
to collaboratively train a ML model using local data, without
the risk of privacy disclosure. Major enterprises have launched
FL projects. For example, Gboard, the Google Keyboard on
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Fig. 1. An illustration of federated learning auction.

To fully realize the potential of FL in practice, two types
of challenges need to be addressed: technical and economic.
First, on the technical side, both computation and communica-
tion are the core challenges. The learning process in FL relies
on frequent communication between the cloud server and
mobile clients to update model, until the model converges [4].
To achieve a lower local accuracy!, mobile clients spend more
computation time to train their local models. Given a required
global accuracy of the model, the number of communication
rounds is proportional to the local accuracy achieved by all
clients [7], [8]. Thus, how to balance between computation
and communication time through the selection of clients with
their local accuracy while guaranteeing fast convergence of
the model becomes a vital problem. Second, on the economic
side, incentive mechanism design is a necessary enabling
technology for FL. The training process in FL is iterative,
and needs thousands of clients to work collaboratively and
continuously [4], [9]. However, it is not always practical to

!Here, local accuracy € and global accuracy e represent the relative gradient
difference of loss function between two iterations [6], i.e., HVF(w(t))H <
0||VE(w®D)|| and ||[VJ(w®)|| < ]|[VJ(wtV)||, where F(w)

and J(w) are the loss function of local and global model, respectively.
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assume that mobile clients are voluntary to fully participate in
the complete training process, since mobile clients consume
their own resources such as battery and GPU to calculate local
model updates. Moreover, clients have their own schedule and
may only participate in some particular time periods. There-
fore, incentive mechanisms which pay rewards to compensate
the cost of clients are the essential financial catalyst for making
FL a reality.

To overcome aforementioned challenges, one needs to cap-
ture the distinct feature of FL while designing incentive mech-
anisms, i.e., the relation between global accuracy and local
accuracy among many mobile clients. Most existing research
in FL focuses on the technical side, and investigates how to
improve the training efficiency or reduce energy cost [6], [10]—
[12]. There are only a few studies on the incentive mechanism
design in FL. Most work in FL assume that the same set of
clients can fully participate in the whole FL training process
from beginning to end, and select energy-efficient clients to
achieve fairness or utility maximization [13]-[16], which we
will discuss in details in Sec. II. In this work, we propose a
solution for incentivizing participation in FL as a procurement
auction, Arp. As shown in Fig. 1, the procurement auction
consists of multiple sellers (mobile clients) and a single
buyer (the cloud server). The goal of the auction design is
social cost minimization while guaranteeing computational
efficiency, truthfulness and individual rationality. Different
from existing literature, we describe a richer and practical
model of FL. We select and schedule clients at different global
iterations to guarantee the completion of the FL job, and
determine the number of global iterations (communication
rounds) by the local accuracy of all participants to balance
between computation and communication. We summarize our
main contributions as follows.

First, we model and formulate the social cost minimization
problem in FL as an integer linear program (ILP), and prove
it is NP-hard. Different from existing literature that only
determines winners (or selected mobile clients), we also need
to decide how to schedule the participation of winners and
the number of global iterations. To address the challenge
introduced by the variation on the number of global iterations,
our Apy, first calculates a range for the number of global iter-
ations. Then for each fixed number of global iterations within
the range, we formulate a winner determination problem
(WDP). This way, Ar; decomposes the original optimization
problem into a series of WDPs. To reduce computation, we
exclude those bids which violate the communication round and
computation time constraints, and further form a qualified bids
set for each WDP. App next invokes an algorithm A inner
to solve each WDP and finally announces the auction results,
including the winning bids which generate the minimum social
cost and the payment to winners.

Second, to determine and schedule winners for each WDP,
we first reformulate each WDP to a new ILP by using compact
exponential technique [17], which is a packing-type ILP with
an exponential number of variables corresponding to valid
schedules. This exponential-sized ILP and its dual are the
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foundation of algorithm design and analysis. We show that
the new ILP can be solved by a greedy algorithm A, inner-
Awinner iteratively selects a client with a schedule which
can cover available global iterations at the lowest average
cost, until there are enough participants in the winner set.
Furthermore, a payment scheme based on the critical value rule
[18], [19] is proposed as a subroutine of A inner to ensure
truthfulness and individual rationality.

Third, we conduct rigorous theoretical analysis to show
that Agy is truthful, individual rational and computationally
efficient. Furthermore, we adopt the primal-dual theory to
prove that Apy, achieves a good approximation ratio in social
cost. We also evaluate the performance of Agy, through large-
scale simulations based on real-world data. Numerical results
demonstrate that App always outperforms three benchmark
algorithms. Moreover, Ay, produces a close-to-optimal social
cost with a small ratio (< 1.3), and reduces the social cost by
10%, 40%, 75%, compared with Greedy [20], Aoniine [17]
and FCFS [21], respectively.

In the rest of the paper, related work is given in Sec. II.
The preliminary and system model of FL are introduced in
Sec. III and Sec. IV. The procurement auction is presented
and analyzed in Sec. V and Sec. VI. Sec. VII evaluates the
performance and Sec. VIII concludes the paper.

II. RELATED WORK

Federated Learning. In FL, majority of researchers focus
on learning algorithm design with verifiable convergence anal-
ysis, but ignore practical challenges and economic incentives.
Several papers studied FL based on practical scenarios. Smith
et al. [10] consider practical systems challenges in FL such
as straggler effort and random drops, and propose an efficient
optimization method to address these issues. Tran et al. [6]
focus on the trade-off between communication and compu-
tation cost, and obtain the optimal number of communication
rounds, accuracy-level and minimum energy cost. Nishio et al.
[11] present a FL protocol, which selects as many clients as
possible to maximize training efficiency under the stragglers’
effort caused by heterogeneous resources. Considering de-
vices’ computation capacity and limited networking resources,
Wang et al. [12] design a control algorithm to dynamically
adapt aggregation frequency. To speed up the convergence
of FL, Wang et al. [22] select clients (mobile devices) with
non-IID data through deep reinforcement learning (DRL),
rather than selecting randomly like FedAvg [4]. From the
perspective of energy efficiency, Zhan et al. [23] design an
experience-driven method based on DRL to control devices’
CPU-cycle frequency in a synchronized setting. For the above
work, their aim is to improve the performance or achieve cost
minimization, but neglect the problem of how to incentivize
the participation of clients.

Incentive Mechanisms. In mobile crowdsourcing or crowd-
sensing system, there has been a long study on incentive mech-
anisms, especially using contract theory [24], [25], auction
[26], [27] and game theory [28], [29]. However, there are
only a few studies on the incentive mechanism design for
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implementing FL. Kang ef al. [15] aim to address unreliable
updates, and propose a contract-theoretic method to motivate
clients that have a high reputation and high-qualified data to do
the update. Ding et al. [30] analyze the incentive mechanism
design for FL by using contract theory when considering
multi-dimensional privacy information. Pandey et al. [14] de-
velop a Stackelberg game-based framework to incentive clients
to participate in training to achieve utility maximization.
Toyoda et al. [13] design an incentive-aware mechanism for
a blockchain-enabled FL platform by using contest theory to
guarantee fairness. Zeng et al. [16] consider multi-dimensional
resources and present an incentive framework based on game
theory to achieve utility maximization. Le et al. [31] develop
an auction-based incentive mechanism to stimulate clients in
the wireless networks scenario. Above studies are all based
on an impractical assumption that the same set of clients can
fully participate in the complete process from beginning to
end. In addition, they fixed the number of global iterations
at the beginning. Different from the above literature, we
select cost-efficient clients and schedule them at different
global iterations. In addition, to balance between computation
and communication, we also determine the number of global
iterations that is affected by winners’ local accuracy.

III. PRELIMINARY OF FEDERATED LEARNING

The learning process in FL [8] relies on the iterative
interaction between the cloud server and clients. In each global
iteration: i) each selected client trains its local model on its
local dataset for a number of local iterations to achieve a
desirable local accuracy; ii) then each client returns its local
model update to the server; iii) the server aggregates all local
model updates and sends back the global model update to
clients. The above process terminates until the global model
accuracy reaches a predefined threshold. The upper bound
on the number of global iterations (7y) can be expressed
according to the definitions in [8], [10], as follows:

1
O(log(2))
A M

where ¢ € [0,1] is the predefined global accuracy and Omax €
[0,1] is the maximum local accuracy among all clients. For
the ease of presentation, O(log(=)) is normalized to 1 when
we consider a fixed global accuracy €. Let T;(6;) denote the
number of local iterations for client ¢ to achieve its local
accuracy 6;, which can be defined as follows [8]:

Ti(0) = log( ), @

where 7 is a positive constant.

IV. SYSTEM MODEL
A. System Overview

As shown in Fig. 1, we consider a typical scenario of
FL which involves a cloud server and a set of clients (e.g.,
smartphone or personal computer). On a FL platform, the
cloud server first broadcasts the information of a FL job to all
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clients and specifies the maximum number of global iterations
T. To incentivize clients, a procurement auction is applied
where the server acts as the auctioneer and each client submits
a bid for job participation. After collecting all bids, the server
determines and pays the selected winners, and then schedules
them to collaboratively execute the FL job. Let X denote the
integer set {1,2,...,X}.

B. Auction Model

Bid Information. Let I denote the number of available
clients. The cloud server needs K (where K < I) clients
in each global training iteration. In practice, a client may not
be able to fully participate in the entire training process due
to many factors, e.g., battery level or personal schedule. Fur-
thermore, a client values different periods and local accuracy
differently. Therefore, we assume that each client ¢ submits up
to J bids, and client 4’s j-th bid (B;;) is expressed as a tuple:

Bij = {bij,0ij, [aij, dij], cij}vjea, 3
where b;; is the “claimed” cost that user ¢ wants to charge for
the service. 0;; is the local accuracy. [aij,di;] is the available
time period within 7, which starts and ends at a;;-th and d;;-th
global iteration. In period [a;;, d;;], client ¢ can only participate
ci; number of global iterations, which is limited by its battery
level, and calculated based on 6;;. Let v;; be the “true” cost of
client 7’s j-th bid. Note that even each client submits J bids,
only one bid can be accepted. This is because each client can
only participate in one time period due to its battery capacity.

Decision Variables. After receiving all bids from the clients,
the cloud server needs to make the following decisions: i)
T, € {1,2,...,T}, the number of global iterations; ii) z;; €
{0, 1}, whether or not to accept client i’s j-th bid, and if so,
iii) y;(¢) € {0,1}, whether or not to schedule client ¢ at ¢-th
global iteration, and iv) p;, payment to client 7.

Auction Preliminary. We next introduce some definitions
in auction design. The cloud server’s utility is:

Userver = V(€) = Y _pi,
i€L

where V() indicates how the server values the FL job with
global accuracy . Client ¢’s utility is:

Pi — Vij,
U; =
07

In general, clients are selfish and tend to maximize their
own utilities. They may even lie about their true cost to get
a higher utility. We instead focus on the utilities of the entire
FL system, and target social welfare maximization. Therefore,
it is necessary to elicit truthful bids from clients.

(€]

if x;; =1
1 5 (5)

otherwise

Definition 1. (Truthful in bidding price): An auction is truthful
in bidding price if and only if each client’s utility is maximized
when it bids with its true cost, i.e., for all b;; # vij, ui(vij) >
u; (bij)-

Definition 2. (Individual Rationality): An auction is individual
rational if each client’s utility is non-negative, i.e., u;(b;;) > 0.
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Definition 3. (Social Welfare, Social cost): The social welfare
of the FL system is the aggregate utility of the cloud sever and
clients, and equals V(¢) = 3,c7 > c 7 vijzij. When V(e) is
a fixed value, one can ignore it. Note that in the optimizing
process, maximizing social welfare is equivalent to minimizing

the social cost, €., 3 ;7> jc 7 VijTij-

TABLE I
LIST OF NOTATIONS

1 # of clients [ S ] winner set
Di payment to client ¢ | e | global accuracy
J # of submitted bids
T maximum number of global iterations
Ty # of global iterations
B bid information of client ¢’s j-th bid
bi; asking price of client 7’s j-th bid
Vij true cost of client ¢’s j-th bid
0i; local accuracy of client ’s j-th bid
a;j starting global iteration of the available time period
of client ¢’s j-th bid
dij ending global iteration of the available time period
of client ¢’s j-th bid
Cij # of participation rounds of client i’s j-th bid
Tij whether or not to accept client ¢’s j-th bid
yi(t) | whether or not to schedule client ¢ at ¢-th iteration
t;"7 | computation time required for client 4 to perform
one local iteration
e communication time required for client  in
one global iteration
tmax duration of a single global iteration
T1(0:;) | # of local iterations with local accuracy 6;;

L; the set of feasible schedules of client ¢

pil client ¢’s bidding price with schedule [

Zil whether or not to accept client ¢’s schedule [
HT~g a harmonic number, which is equal to ZtTil %

w an auxiliary variable defined in line 18 of Alg. 2,

equals max, 7 wi

C. Social Cost Minimization Problem

Problem Formulation. Under truthful bidding (b;; = vs;),
the social cost minimization problem can be formulated into
the following integer linear program (ILP):

minimize Z Z bi;jxij (6)
€L jeJ
subject to: Zyz(t) > K, VteT,, (62)
€T
1
Ty > ——, VielVj 6b
R 1e€IVje T, (6b)
Z y7(t) = Z CijTij, Vi e I, (6¢c)
teTy JjeTJ
i (TOE™ +1°7) Stma, Vi€ Vi€ T, (60
yi(t) =1 only if z;; =1, ¢ €laij,diy],Vie I,Vj €T, (6e)
> wiy <1, Viel, (6f)
jeT
zij,yi(t) €{0,1},\Vi€Z, Vje T, VteT,, (69)
T, € {1,2,...T}. (6h)
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Constraint (6a) ensures that at least /' clients are selected
for each global iteration. Constraint (6b) calculates the number
of global iterations, 7,, according to the maximum local ac-
curacy Opmax among the winners. The number of participation
rounds for each bid is implied by constraint (6¢). In constraint
(6d), tmax is the time limit for each global iteration. The time
for client 4’s j-th bid to compute the local update in one global
iteration consists of two parts: computation time 7;(0;;)t;™"
and communication time ¢{°™. For simplicity, suppose that
when a client registered at the FL platform, the cloud server
can access its information. Therefore, ¢;"* and ¢$°™ can be
considered as constants. The relationship between y;(¢) and
x;; is shown in constraint (6e). Constraint (6f) specifies that
one can only accept at most one bid for each client.

Challenges. Note that even a simplified version of ILP (6)
without constraints (6b), (6d) and (6h) is still NP-hard, which
is equivalent to the set cover problem [32]. The challenge
becomes more complicated when this problem involves a non-
trivial variable T which relates to all winners. Moreover,
two sets of bmary variables determine clients’ participation
schedules, and eventually affect the total social cost.

V. AUCTION DESIGN
A. Overview of Auction Design

Algorithmic Idea. To solve the ILP (6), we present an
auction framework, Apy, to determine the winning bids and
corresponding schedules to minimize the social cost with a
bounded approximation ratio. The algorithmic idea of Apy, is
shown in Fig. 2.

i. Ay first computes the range of T accordmg to clients’
local accuracy. Then for each ﬁxed T within the range,
it formulates a winner determmatlon problem (WDP).
The input of each WDP is a qualified bids set which
satisfies constraints (6b) and (6d). A, then decomposes
ILP (6) into several WDPs. Apy, next calls Ainner to
solve each WDP and finally outputs the winning bids
which generate the minimum social cost.

In Sec. V-B, we show how to determine the winners
for each WDP. We first encode x;; and y;(¢) into one
variable and reformulate each WDP into ILP (7). To
solve it, we design an approximation algorithm A;nner
based on a greedy strategy to select winning bids and
schedule clients’ participation.

In Sec. V-C, we show how to charge winners for each
WDP. We propose a payment algorithm Ap,qyment Which
is a subroutine of A, inner based on the critical value
rule [18], [19].

ii.

iii.

Auction framework Winner determination Payment design
winner
ILP (5) Demmpose m Reformulate ILP (7) Subroutine A payment
Theorem 4 Theorem 3 Theorem 1,2

Correctness and time

Approximation ratio
complexity

r=Hpw

Truthfulness and individual

Fig. 2. Main idea of FL auction App,
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Algorithm 1 FL Auction Apy,

Input: T, K, B;;,Vi € I,Vj € T,

Output: T, minicost, S™;

1: Initialize t;; = Ty (0s;)t;" 7 +15°™, Vi, j; S* = P* = Iz, = @
mainicost = oo;

: Find the minimum local accuracy Omin of all bids;

: To = 1/(1 - gmin);

s for Ty =To toTElo

Omax = 1 —1/Ty;

Jj«g = {(4,j)viez,vies|0ij < Omax&ti; < tmax&aij+ci; <

Ty} N .

7 (8, P, cost(Ty))=Awinner (T, Ty, K):;

8 if cost(T,) < minicost then

9: Ty = T,, minicost = cost(Ty), S* =S, P* = P;
10:  end if

11: end for

12: for all z;; == 1,Vz;; € S* do

Accept client ¢’s j-th bid and schedule 7 according to y;(t) €
li;; Pay p; € P* to client i;

end for

return T, minicost, S*;

14:
15:

Auction Framework. Our FL auction Apy is presented in
Alg. 1. Let t;; be the time for client ¢’s j-th bid to compute
and transmit the local update in one global iteration. Line 1
initializes all variables. Given the local accuracy of all bids,
Apr selects the minimum local accuracy to compute the initial
value Ty for Ty in lines 2-3. Then, Ap; enumerates the
number of global iterations Tg from 7 to 7" and computes
the feasible maximum local accuracy 6. for different Tg
according to Eq. (1) in lines 4-5. Next, Omax, tmax and Tg
are used to get a set of qualified bids J; for Ayinner (line
6). In line 7, algorithm A ;nner returns winners’ set S, the
payment set P and the corresponding social cost cost(Tg).
Apr then compares the resulting costs at different Tg, and
records the best solution which achieves the minimum social
cost (lines 8-10). Finally, Ar; announces the auction result
in lines 12-15.

B. Winner Determination

To solve each WDP and determine the winners, we next
present the algorithmic design of Ayinner-

1) Problem Reformulation

For each fixed Tg, there is a WDP with a qualified bids
set ji“g' Recall that each WDP is equivalent to a simplified
version of ILP (6) without constraints (6b), (6d) and (6h).
Note that two decision variables x;; and y;(t) have a natural
precedence correlation. To address this problem, we apply
compact exponential technique [17] to reformulate the WDP
to the following ILP (7) by encoding z;; and y;(t) into a new
decision variable z;;.

minimize Z Z pilZil (@]

€L IEL;

subject to:
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> mzK, vteT, (7a)
PET Ly, ()€l
d <1, Viel, (7b)
leL;
za €{0,1}, VieL;,Viel. (7c)

In the above ILP (7), £; is the schedule set of client i. A
feasible schedule [ is a vector I = {{z;}vii. e, » {¥i(t)}vie}
which satisfies constraints (6¢) and (6e). The value of pj;
equals the corresponding b;; based on I. z; denotes whether
or not to select client i’s schedule [. Note that the number
of feasible schedules z;; for client 7 is exponential, due to
combinatorial property of variables z;; and y;(t) (i.e., the
number of feasible schedules for client i is up to 3 (d”;]“"f)).
Constraint (7a) is equivalent to constraint (6a). And constraint
(7b) ensures that one client can be selected according to at
most one schedule. It is clear that a feasible solution to ILP
(7) is also a feasible solution to the WDP, and vice versa, with
the same objective value.

Dual Problem. In order to analyze the performance of
Awinner» we formulate the dual problem of ILP (7) by relaxing
the integrality constraint (7c) into 0 < z;; < 1, and introduce
dual variables ¢(t), ¢; and )\; to constraint (7a), (7b) and
zii < 1, respectively. Then, the dual problem of relaxed ILP
(7) is:

maximize Y Kg(t) =Y. > Xa—» @ (8)
teT, i€T leLl; i€l
subject to: N~ g(t) — Xy —q; < pu, VIEL,Vi€L,  (8a)
tiy;(t)€El
(), X, qi >0, VteT,vleL,Viel (8b)

2) Winner Determination and Scheduling

Main Idea. To get a feasible solution of the exponential-
sized ILP (7), we design an efficient algorithm A,;,ner Which
selects schedules iteratively based on a greedy strategy. We say
the ¢-th global iteration is available if the number of selected
clients in the ¢-th global iteration is less than K. A, inner Starts
with an empty set. In each iteration, A inner selects a client
with a schedule which can cover available global iterations
at the lowest average cost. Then A, ;nner adds the selected
client with its corresponding schedule to the winner set. This
process terminates until there are enough participants in the
winner set.

Average Cost. Let S = {(i1,l1), (i2,12),...} be a set where
(i1,10) is client i1’s I1-th schedule. v7 = 3 sy, yer 1
denotes the number of clients which are scheduled at the ¢-
th global iteration in set S. The utility of set S is its valid
contribution, which is defined as R(S) = 2t min(v7, K).
The increased utility of adding client ¢’s {-th schedule to S is:

Rau(S) = R(S| (i, 1)) — R(S)

= Z (min(’ytSU(i’l),K) — min(+;, K))
teTy

)
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The average cost of schedule [ is R” L. At the beginning,
S is an empty set. In each iteration, the schedule with the
minimum average cost is added to set S, until there are enough
participants. Although the number of feasible schedules for
client i’s j-th bid is up to (d”cj]“”), for each bid, we only
need to consider one representative schedule which generates
the maximum utility. Let /;; denote the representative schedule
for client i’s j-th bid. /;; consists of ¢;; global iterations which
have the smallest v within the time period [a;;, d;;]-

Algorithm 2 Winner Determination Algorithm Ainner

Input: jT‘ s Tg, K;

Output: S/ P, cost;

1: Initialize S=P=C=G =@, cost =0, v; =0, Vt;

2: while R(S) < KT do

3: Sort T, global iterations according to ¢ in nondecreasing
order; Save the order as T';

4 for all bids in J; ~do
Select the top c;; global iterations in T and within time
period [a;j, d;;] to form the representative schedule ;;;
6: Compute R;,;(S); Save/update schedule (i,1;;) in sets C
and G ;
7:  end for
8 (i",1") = argming, )ec /)1#’
T R, (S)
i* Pix1*
9: e =1L 0(t 1" ) = —75,VE I
Zixl o1 ) Rt (S € Firt
10: Pix = Apayment(cy (i*7 l*)v Rzl (S))’
11 e l# _ . s 1l”
(37, .#) argmin(,i,.)eg 5 o Rus, (S)
120 gt 17y = L i€ Frapss
R (5)
3 =\, D),
14:  S=8SUGEN1); G=0\@"107);
15: end while .
16: Yhhax = MaXe(a,;.a,,1{pit;; }, Vt < Tos
17: wmm Il’lll’ll{{(ﬁ(t l)}U{(b(t ll ) }} vt € 7—07
18: w wmzx/wmm7Vt € 777’ w= ma’XtEf Wwts
19: nas(t = maxi{¢(t, 1)}, g(t) = 1s(t)/(Hp,w),Vt € Tg;
20: for all z;; == 1 do
21 Ny =D per, (Mo(t) — (L,1)/(Hz,w):
22: Save p; to P; cost = cost + Pily;s
23: end for

24: Return S, P, cost;

Algorithm Details. The winner determination algorithm
Awinner 18 shown in Alg. 2. Here C is a candidate set
which records representative schedules for selection during
each iteration. G is a grand set which records unselected
representative schedules. Let F;; be the set that stores the
current available global iterations in client 4’s [-th schedule.
Line 1 initializes sets and variables. Note that the default value
of all primal and dual variables is zero. In lines 2-15, the while
loop selects schedules iteratively until all global iterations have
K participants. Lines 3-7 compute the representative schedule
l;; for each bid. Line 8 selects the schedule (i*,[*) with the
smallest average cost. Then, the corresponding variable z;«;«
is updated to 1, and its average cost ¢(t,17") is recorded in
line 9. Line 10 calls the subroutine Ap,ymen: to calculate
the payment for each new selected schedule (¢*,l*). Lines
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11-12 record auxiliary variables for updating dual variables.
Lines 13-14 update sets C, S and G. To satisfy constraint
(8b), set C removes all remaining schedules of client i*. Then,
the winner set S adds the new selected schedule (¢*,1*), and
set G excludes it. In order to bound the approximation ratio,
Awinner updates dual variables. The value of dual Van'able

g(t) is calculated in lines 16-19, where H Zt 1 1isa
harmonic number. Finally, lines 20-23 compute value of dual
variable )\11” for each selected schedule and save winners’
information.

Example. We illustrate the process of Ainner by a simple
example. Suppose T_,] =3 and K = 1. For any client ¢ € Z,
it only submits one bid with a form of B;(b;,[ai,d;], c;).
There are three qualified bids in set J3: B1($2,[1,2],1),
B, (%6, [2,3],2), B3($5,[1,3],2). First, Ayinner initializes
R(S) =0and 47 =0,Vt € [1,2,3].

o In the first iteration, the candidate set C includes three
representative schedules: I3 = {1},lo = {2,3},13
{1,2}. Since R(S) < 3, Ayinner computes #15) =2,
#(23): 3, m =2.5. (1,11) is selectgd since it ha}s
the minimum average cost. Its correspondmg payment is
calculated as p; = R(S) - ( y = 2.5. Next, Ayinner
updates S = {(1,{1)} and R(S 1, and then removes
[y from set C.

o In the second iteration, the candidate set C contains
two representative schedules: lo = {2,3}, I3 = {2,3}.
Because R(S) < 3, Auwinner computes % = 3,
% = 2.5. (3,13) is selected. The corresponding pay-
ment is p3 = R3(S)- zfsy = 6. S0 & ={(1, 1h), (3,15)}
and R(S) = 3. I3 is removed from set C. The while loop
in Ayinner terminates since R(S) = K ’f’g = 3 now.

C. Payment Design

Algorithm 3 Payment Algorithm Ap.yment
Input: C, (i*,1"), Ru,;(S);
Output: Di;
(@ ll) = argmin(; ; Pty
L (i,l)=arg (i, l”)ec:<z,z”->¢(z*.l*) Rir,, (5)°
2: pix = Rz*l*(s)

3: return p;=;

1/ 4 (S) '

We next discuss how to calculate the payment for winners.
The basic idea is to calculate the payment based on the critical
bid, i.e., the schedule which has the second smallest average
cost. (Please see Theorem 1 for details). Apqyment is shown in
Alg. 3. Line 1 finds the critical bid (¢’,1’) and line 2 calculates
the payment for each new selected schedule (¢*,!*) based on
the critical value rule [18], [19].

VI. THEORETICAL ANALYSIS

In this section, we analyze the property of Apy, in terms of
truthfulness, individual rationality, correctness, time complex-
ity and approximation ratio.
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A. Truthfulness and Individual Rationality

Lemma 1. Apy is schedule-monotonic, i.e., Vi € I, Vl7l~ S
Li, if p;; < par and R (S) = Ry(S), za = 1 implies z; = 1.

Proof: Please see Appendix A. O

Lemma 2. The payment to all selected schedules are critical,
i.e., suppose that a selected schedule (z;«;~ = 1) has a bidding
price pix1= (# pix1+ ), then this schedule will win if pyp < p;«,
and will fail otherwise.

Proof: Please see Appendix B. O

Theorem 1. Ap;, is a truthful auction.

Proof: (Truthfulness in bidding price b;;): The Myerson’s
theorem [18], [19] shows that a reverse auction is truthful in
bidding price if the following conditions are satisfied: (i) the
result of auction (z;;) is monotonically non-decreasing with
the decrease of bidding price p;; and (ii) the payment of
each selected schedule is calculated based on the critical value.
Combining Lemma 1 and 2, we finish this part of proof.

(Truthfulness in local accuracy 0;;): We first prove that
client 7 will not report a smaller local accuracy 9’ than its true
local accuracy 6;;. A smaller local accuracy leads to a longer
computation time, which will risk failing to satisfy the time
limitation of one single communication round, i.e., constraint
(6d). Even if client 7 submits a smaller local accuracy and
it is selected by the FL platform, client ¢ cannot achieve the
local accuracy that it claimed. Therefore, the FL platform will
refuse to pay when this happened.

If client ¢ bids with a larger local accuracy, it would reduce
the probability of being accepted by the FL platform. This is
because the larger local accuracy may not satisfy the accuracy
requirement of FL job, i.e., constraint (6b). Thus, clients will
not misreport the local accuracy of their bids.

(Truthfulness in available time period [a;j,d;;] and the
number of participation rounds c;;): If client 7 reports a longer
available time period and it is accepted by the FL platform,
client ¢ may not be able to participate in some rounds due
to its actual schedule. Hence, the FL platform will refuse to
pay when this happened. If client 7 claims a shorter available
time period, the average cost of that bid may increase and it
will further reduce the probability of acceptance. The reason
is that the average cost is calculated based on the increased
utility of adding one schedule, i.e., R;(S), and the value of
R;;(S) may reduce because a shorter available time period
will narrow down the range that the schedule / can select. In
summary, there is no incentive to misreport the available time
period.

Similarly, clients who submit a larger number of participa-
tion rounds would not get the payment from the FL platform,
since they actually can not provide the service as they claimed.
On the other hand, a smaller number of participation rounds
submitted by clients results in a higher average cost, reduc-
ing the likelihood of acceptance. Therefore, clients will not
misreport the number of participation rounds.

In conclusion, Agy, is a truthful auction.
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Theorem 2. Apj achieves individual rationality.

Proof: The payment of selected schedule (¢*,1*) is based on
the critical value. It is clear that (i’,l’)’s average cost will
be no less than (i*, l*)’% ie, s < R"/ sy Then, we
have p;«;x < R+ (S) - m = pix. Furthermore Theorem 1
ensures truthfulness, i.e., v;=;~ = p;=;~. Therefore, each client’s
utility, wi«;+ = p;x — vi=1= > 0, is always non-negative. |

B. Correctness and Time Complexity

Lemma 3. Ayinner produces a feasible solution to ILP (7)
and LP (8).

O

Lemma 4. The running time of Awinner IS O(ITg(log(Tg) +
1J)).

Proof: Please see Appendix C.

Proof: Please see Appendix D. O

Theorem 3. Apj, produces a feasible solution to ILP (6) in
polynomial time.

Proof: We first prove the time complexity of Ag;. Lines 1-2,
and 12-14 of Ay, can be finished within O(1.J) steps. Line
7 in Alg. 1 needs to search all bids, which takes O(I.J) steps.
According to Lemma 4, we know that the time complexity
of Ayinner 18 O(Ifq(log(fq) + I.J)). Therefore, the for
loop in Alg. 1 which includes Alg. 2 can be done within
O(IT?(log(T)+1J)) steps. In summary, the time complexity

Next, we discuss the correctness of Ap . Constraint (6h)
holds since we enumerate T, in the for loop (lines 4-11).
Before solving ILP (7), we pick those bids which satisfy
constraint (6b) and (6d) at different fixed T and form a
qualified set JT for ILP (7) (line 6). Therefore constraint
(6b) and (6d) hold. Finally, the correctness of Apj can be
guaranteed by combining Lemma 3.

In conclusion, Agy, produces a feasible solution to ILP (6)
in polynomial time. O

C. Approximation Ratio

Here, we prove that the theoretical approximation ratio of
Apyp is Hj.w. Furthermore, the value of Hp.w is around 1.1,
which W111 ‘be verified in our simulations in Sec. VIL.

Definition 4. (Approximation Ratio): The approximation ratio
of an algorithm A for a minimization problem is the upper
bound ratio of the objective value of the solution found by A
over the objective value returned by an optimal algorithm.

Lemma 5. Let P and D be the objective values of the primal
problem (7) and the dual problem (8) returned by Ayinner-
7D > P with T = Hj w, where Hj ZtTil% and w is
defined in line 18 of Aw”me, Aw”me, is a T-approximation
algorithm.

Proof. Please see Appendix E. O
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Theorem 4. The approximation ratio of Apyp is T where
7" = Hjww.
g

Proof: Suppose that the optimal number of global iterations is
Tg*. Let C* denote the optimal social cost. Let C# be the so-
cial cost returned by Apy. C' denotes the cost of corresponding
solution returned by Auinner under fixed T*. Then, we have
C#* < C. Hence, C*/C* < C/C* < Hz.w = 7*. Therefore,
we can conclude that Apy, in Alg. 1 is'a T*-approximation
algorithm. O

VII. PERFORMANCE EVALUATION
A. Evaluation Setup

System Settings. For fair comparison, we follow the similar
setting in [4], [6]. By default, there are 1000 () clients and
each client submits 5 (J) bids [4]. Assume that the maximum
number of global iterations equals 50 and each global iteration
needs 20 clients to train collaboratively, i.e., T 50 and
K =20 [4], [22]. ¢;"" and ¢5°™ are randomly picked within
the range of [5,10] and [10, 15], respectively [6]. The local
accuracy 6;; of all bids are uniformly distributed in [0.3,0.8]
[10], [8]. We calculate the number of local iterations 7;(0;;)
according to a simplified equation: T;(6;;) = [10(1 — 6s5)]
[4]. In our simulations, we do not consider the case that two
available time periods overlap since they can be considered
as one time period from the perspective of clients. Therefore,
we select 2J non-repeated random numbers within the range
[1,T], and sort them in non-decreasing order to form J avail-
able time periods. The starting time (a;;) and the ending time
(dy;) of each time period equal two adjacent random numbers
in the order, respectively. The number of participation rounds
(cij) is randomly generated within the range [1, di; — ai;].
Finally, the claimed cost of bids are uniformly distributed in
the range of [10,50]. The default value of tyax is set to 60
[6].

Benchmark Algorithms. To evaluate the performance of
Apr, we compare it with three benchmark algorithms:

e FCFS [21]: first-come, first-served algorithm, which se-
lects clients according to the non-decreasing order of each
bid’s start time, ie., a;;.

o Greedy [20]: a greedy algorithm which iteratively selects
bids with a lower average cost of one global iteration,
which is calculated as b;;/c;;.

o Aoniine [17]: Aonline first calculates the unit payment of
each global iteration based on a payment function. Then
it selects the client with larger utility and schedule the
client according to the best schedule that maximizes its
utility.

B. Evaluation Results

Performance ratio. The performance ratio of an algorithm
A for a minimization problem = the objective value of the
solution found by A / the objective value returned by an
optimal algorithm. We first study the performance ratio of
Awinner- To ensure there are enough bids, we assume that
all bids can satisty constraint (6b) and (6d). Fig. 3 depicts the
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trend of Ayinner’s performance ratio under different number
of global iterations (Tg) and bids per client (J). We can
observe that A, inner has a small ratio (< 1.3) and the ratio
becomes smaller as T y decreases and J increases. This result
is coincident with the theoretical analysis in Lemma 5 that Tg
determines HTq' In addition, the increase of .J will decrease
the length of time period (i.e. |d;; — ai;]) since we select 2.J
non-repeated random numbers to form J time periods for each
client. The value of ! . increases when the length of time
period decreases. Therefore, parameter w eventually decreases.
Next, we also study the impact of the number of clients (/)
and bids per client (J) on performance ratio of Apy,. Fig. 4
shows performance ratios of all algorithms under different I
and J. We can observe that the performance ratio of Apyp
is the smallest and not affected greatly by the change of I
and J. One reason is that Apy can find the best solution by
enumerating the number of global iterations T}, from T to 7.

Social Cost. Fig. 5 and Fig. 6 further plot the social cost
under different number of clients (/) and bids per client (J). In
both Fig. 5 and Fig. 6, we can see that Apy, outperforms three
benchmark algorithms. Furthermore, the social cost of Apy, in
Fig. 5 will decrease slightly with the increase of I since there
is higher probability to select bids with lower average cost.
On the contrary, the cost of all algorithms increase when the
value of J increases in Fig. 6. Since the length of time periods
will decrease if the number of bids per clients (J) increases,
the average cost gets higher when the claimed cost remains
the same. As a result, the total cost of all algorithms become
larger. Fig. 7 illustrates the social cost at different fixed Tg
within the range [Ty, T']. From Fig. 7, we can find that Ap,
still generates the lowest social cost. Moreover, we can see
that all algorithms except FCES achieve the smallest cost when
Tg = 26. This is because the computation cost occupies a large
proportion of the total cost at the early stage and it drops with
the increase of Tg, When the number of global iterations Tl, is
close to 26, all algorithms except FCFS find the balance point
between the computation and communication cost. After that,
the total cost grows gradually with the increase of T, since
the communication cost dominates the total cost.

Running Time. In Fig. §, we investigate the running time of
Aprr, and A,ppine under different number of clients, measured
by tic and foc function in MATLAB. We evaluate the running
time on our laptop with an Intel Core i7-4270HQ and 8-GB
RAM memory. To minimize the error, we use the average
result of five tests. We observe that the running time of App
is not affected greatly by the number of clients. Furthermore,
Apy, can finish within 60 seconds even with a large input scale
(I = 9000, J = 10), and runs fast than A,,jine.-

Individual Rationality. Finally, Fig. 9 compares payment
and claimed cost of all winners selected by Apy. We can
see that the payment for the winner is always larger than its
corresponding claimed cost. Therefore, one can observe that
the property of individual rationality can be satisfied and each
winner’s utility is non-negative.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2022 at 10:14:44 UTC from IEEE Xplore. Restrictions apply.



3000
A, CGreedy EIEA, . EIFCFS
o 7
5 2500
s ¢ s
< 35
5 o o, o
2 g > [ 5
x g 25 g 4 = 150
2: g H
s
£ S 5 A 100
S 5 5o
] & &
o : - ! 500
w0 — ° 02 '
50 T 10
# of Global Iterations 40 15 # of Bids per client 1000 2000 ¢ 5 15 1000 1500 2000 2500
Number of Clients Number of Bids per client Number of Clients
Fig. 3. Performance ratio of Ay inner- Fig. 4. Performance ratio of App . Fig. 5. Social cost under different number of
clients.
6000
7000 500
s000 450
6000
)
o
4000 5000 =
o
2 g 8 w0
o S 4000 )
o <z
— 3000 I~ [
] 2 500 g
a o = 200
2000 v 2
2000 g 150
]
1000 1000 o« 100
W o8
0 & ./}

30

Number of Bids per client

Fig. 6. Social cost under different number of bids

per client.
50
>
P Payment Yo
» L
35 » *
[ ol
S wehe
< laad
>
& Sl
20 »’».P °
10 M

30
Number of Winners

40

Fig. 9. Payment versus claimed cost of winning bid.

VIII. CONCLUSIONS

Federated learning (FL) is proving a remarkable privacy-
preserving approach to train machine learning jobs without
exchanging data samples. Besides technical challenges that
are being studied in the literature, economic incentives of
such distributed machine learning process is also critical for
realizing practical applications. In this paper, we propose a
reverse auction to incentivize the participation of heteroge-
neous clients. Different from previous research, we select
and schedule winners (or mobile clients) to execute training
job in different global iterations, with a goal of social cost
minimization. In addition, the number of global iterations is
determined by the global accuracy and local accuracy. Both
theoretical analysis and large-scale simulations based on the
real-world data verified that our proposed auction is truthful,

ES

Number of Global Iterations

Fig. 7. Social cost at different fixed Tg.
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Fig. 8. Running time of Apy, and A,prine-

individual rational, computationally efficient, and achieves
near-optimal social cost.

In practice, one may not be able to obtain the actual local
accuracy and there may be some variations in the training
process due to hardware specifications. Furthermore, clients
drop out with high probability since the network connection
(4G or WiFi) can be unstable. As a future direction, it is
interesting to further study a more practical scenario that
combines these considerations.
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APPENDIX
A. Proof of Lemma 1

When client 7’s schedule [ was selected, then it has the
lowest average cost R:; j’(”s) in the current iteration. If client ¢
changes its cost to a smaller one p,; (< p;;) and others remain
the same, % < #(ls) implies that this schedule will still
be selected in the current iteration by the greedy algorithm
Awinner- Hence, Lemma 1 holds.

B. Proof of Lemma 2

According to Apqymemt, schedule (¢/,1) has the second

smallest average cost in set C at the current iteratiop. Then,
Pi**

the payment p;« = R;«;«(S) - % ensures that Al < <
s when pi+p» < pieoand L > S when

Ime) )
pix1= > p;=. Consequently, each wmnmg schedule 1s paid with

a critical value.

C. Proof of Lemma 3

We first prove that Ayipner in Alg. 2 returns a feasible
solution to ILP (7). If there exists enough clients, Alg. 2 has
at least one feasible solution and it can terminate either before
or when set C = @. When Alg. 2 terminates, the ending
condition of the while loop can guarantee that constraint (7a)
is satisfied. Then, constraint (7b) is not violated since line 13
in Alg. 2 removes all remaining schedules corresponding to
bids of client i* from set C. Constraint (7¢) holds because the
default value of z;,; is zero and it is updated to 1 only when
client ’s I;;-th schedule is selected. In conclusion, Ayinner
generates a feasible solution to ILP (7).

We next prove that Ayipner in Alg. 2 returns a feasible
solution to LP (8) in two cases.

Case 1: If client ’s [-th schedule is not selected by
Alg. 2. we first sort all global iterations in client ¢’s [-th
schedule in non-decreasing according of ~, and denote it
as t = {ty,ts, wrte,,;| }- Let ty, be the k-th global iteration in
t. If t;, is available (i.e. %i < K), schedule [ has at least k
available global iterations. Thus, the average cost for client i’s
[-th schedule to cover available global iterations is no larger
than % Note that ¢ . is the maximum bidding pricing in
t-th global iteration, and %! ; is the minimum average cost.
Therefore, the cost of ¢j-th global iteration 74(ty) is no larger
ptl wmax

k
Then

than

, when t;-th global iteration has K participants.

min

Z g(t) = da—aqi = Z 9(t)

tiy;(t)€l tiy; (1) €l
leijl
1 pil 11/1mdx
eI IR o
9 ty;(t)el mm
pit pit
= Hp, w < H
HT{ | 17‘“} HTy Tgw Pil

Therefore, constraint (8a) can be satisfied when client i’s
[-th schedule is not selected.

Case 2: If client i’s [-th schedule is selected by Alg. 2.
Then, we have
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Recall that F;; represents a set involves those global it-
erations within schedule [ that still available. And [\F;
denotes the set of non-available global iterations in sched-
ule /. Similarly, we order all global iterations in set I\F;
as {t1,ta,...,tj\7,(}- If tg-th global iteration is just non-
available after client 7’s I-th schedule is selected, its cost 74 ()

) tic
should be at most 3 fﬁr ‘ ?ﬁax Hence, constraint (8a) can
’ il Prin

also be satisfied.
In summary, Ayinner generates a feasible solution to ILP
(7) and LP (8).

D. Proof of Lemma 4

Line 1 of Ayinner in Alg. 2 first defines and initializes
variables in O(T},) steps. The while loop (lines 2-15) runs at
most [ iterations since the number of clients can be selected
is at most . Sorting all global iterations within 7; needs
at least O(Tg log(T})) steps. The inner for loop in lines 4-
7 selects and updates the representative schedule for each bid,
which can be calculated in O(I JTg) steps. To find a schedule
(i*,1%) or (i*#,17), we need to search all schedules within the
corresponding set, which takes O(I.J) steps. Then, computing
the payment in Alg. 3, updating three related sets C,G and
S, and recording its cost can be done within O(I JTg) steps.
Consequently, the running time of the while loop in Alg. 2
is O(IT,(log(T}) + 1.J)). Lines 16-19 calculate dual variable
g(t), which take O(I.J T o) steps. The second for loop takes
O(IJ) steps to calculate dual variable \;;, save corresponding
payment p;, and record the total cost. In conclusion, the time
complexity of Awinner is O(IT,(log(Ty) + I.J)).

E. Proof of Lemma 5

The objective value of dual problem (8) is

Too 2 2 ne(t) = (kD)
7% teT, Ty (i,0) t:t€Fyy
DI 0)
7, teT, titeFyp (i)

T, (i,1) t:t€Fyy

ZZ(;HZ

9 (i,0) te Ty

\ \

193

For each global iteration in set F;;, the number of selected
clients is no larger than K. Hence, the first term of the
second equality is larger than 0. Meanwhile, ¢(¢,1) is assigned
a value only when ¢-th global iteration belongs to set Fj.
Therefore, it is rational to extend the range of ¢ in the term
V/(Hp,0) X5 Srer, ¢(6,1) from ¢t € Fy to t € T,

Then, the objective value of primal problem (7) is

P= Z Pil:ZZ¢>(t>Z)~

(i.h)es (1) teT,

The above equation holds since when client ¢’s [-th schedule
is selected by Ayinner, pir is evenly distributed to variables
o(t,1), i.e., all global iterations in F;.

Obviously, H; w - D > P. Let P* denote the optimal
objective value 0? ILP (7). We have P* > D according to
LP duality [33]. Consequently, P/P* < P/D < H LW =T
Therefore, the approximation ratio of Ay inner 1S 7.
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