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Abstract—Mobile edge computing (MEC) is emerging as an
enabling technology of low-latency network services, such as
Augmented Reality (AR) and Virtual Reality (VR), by deploying
cloudlets in locations close to users. In MEC networks, telco-
operators can place their services to cloudlets, such that the
service accessing delay of users is minimized. In this paper, we
investigate a fundamental problem of caching services that are
originally deployed in remote clouds to cloudlets in an MEC
network within the proximity of users. Specifically, we focus
on the service caching problem in a two-tiered MEC network
with both remote clouds and cloudlets that are close to users, in
which multiple network service providers competing computing
and bandwidth resources. This setting is significantly different
from existing studies that focused on offloading user tasks from
mobile devices to cloudlets in MEC networks that typically do
not consider a service market with multiple network service
providers. For the service caching problem in a two-tiered MEC
network, we propose a novel approximation-restricted framework
that guarantees the stableness of the service market. Under
the proposed framework, an approximation algorithm with an
approximation ratio for the problem with non-selfish players
and an efficient, stable Stackelberg congestion game with selfish
players have been proposed. We also analyze the Price of Anarchy
(PoA) of the proposed Stackelberg congestion game to measure
the efficiency of the proposed game degrades due to selfish
behavior of network service providers. We finally evaluate the
performance of our mechanism on both simulated environments
and a real test-bed. Results show that the performance of our
proposed mechanism is promising.

Index Terms—Mobile edge computing; Service caching; Task
offloading; Stackelberg congestion game; Price of Anarchy.

I. INTRODUCTION

Mobile edge computing (MEC) is envisioned to be able to

revolutionize various multimedia applications, such as Aug-

mented Reality (AR) and Virtual Reality (AR). For example,

typical AR/VR services intensively need computing resource

for rendering and processing [41]. AR/VR services therefore are

usually implemented in central clouds with abundant computing

resource. However, interactive AR/VR services have very

stringent requirements on the motion-to-photon latency, and

using central clouds often leads to unacceptable delay (e.g.

hundreds of milliseconds [11]) and heavy backhaul resource

usage. By deploying VR services in cloudlets at a specific

location (such as museums and sport stadium) or even directed

at 5G base-stations within the proximity of users, the delay

experienced by VR users can be significantly reduced.

Since resources in an MEC are limited, each cloudlet may

only be able to host a limited number of services. Therefore,

caching services in cloudlets of the MEC temporarily while

keeping the original instances of the services is a smart,

progressive, and economic approach towards the wide adoption

of the MEC technique. In this paper, we consider a fundamental

problem of service caching in an MEC of a service market

with multiple network service providers [19], [37] competing

resources in cloudlets of the MEC. Each network service

provider is selfish and only aims to maximize its own revenue

by caching its services from remote clouds to cloudlets in a

two-tiered MEC.

The key technical question of the service caching problem

in a service market is how to design stable and performance-

guaranteed mechanisms for the market. The challenges are

three folds: (1) Network service providers are selfish and want

to maximize their own revenue by caching their services to

an MEC network with finite resources. This however may

lead to significant congestions of some cloudlets of the MEC.

Such congestion will eventually push up its processing delay,

trading-off the reduced network latency brought by the MEC

technique. Therefore, each network service provider needs

to strategically decide whether to cache their service or not,

considering the congestion levels of the cloudlets in the MEC.

That is, how to design efficient mechanisms that could reduce

the congestion levels of cloudlets in the MEC network while

meeting the requirements of both the infrastructure and selfish

network service providers; (2) the selfishness of network service

providers in a service market may jeopardize the social benefit

of all players [31], thereby leading to an unstable market that
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no player wants to participate in. Therefore, the mechanisms for

the market have to be stable and the obtained solution should

be close to the optimal one; (3) unlike conventional mobile

computing environments, service caching aims not only to place

instances of services in cloudlets, but also to keep the cached

and original instances consistent via data updates. Specifically,

how to place the to-be-cached instances, assign requests to

the cached services, and update the data processed by cached

instances to their original instances in remote data centers

are non-trivial. To tackle these challenges, we investigate the

service caching problem in a two-tiered MEC network of a

service market by designing a stable and near-optimal service

caching mechanism.
While several studies on computation offloading and service

placement [5], [3], [6], [10], [28], [13], [30], [32], [18], [35],

[22], [37], [23], [27], [36], [24], [25], [26], [40] have been

conducted in the past, service caching from remote cloudlets

in the core network to cloudlets in MEC networks has been

hitherto overlooked. Specifically, these studies only focused

on task offloading or service placement from mobile devices

to cloudlets. In contrast, we focus on the service caching

from remote clouds to cloudlets in a two-tiered MEC network,

thereby enabling a smooth transition to the MEC environment.

Also, due to the limited capacities of cloudlets, the MEC

network may get congested with more and more services being

cached in them, thereby trading-off the benefits brought by

MEC. Such congestion-aware service caching is largely not

considered by existing studies.
To the best of our knowledge, this is the first study that deals

with the congestion-aware caching of delay-sensitive services

from remote clouds to cloudlets in an MEC network operated

by an infrastructure provider who provide Virtual Machines

(VMs) to multiple mobile service providers. We provide both

an approximation algorithm with an approximation ratio and

Stackelberg congestion game with a guaranteed gap of the

obtained solution to the optimal one.
The main contributions of this paper are summarized as

follows.

• We are the first to consider the service caching problem

in a two-tiered MEC of a service market with both an

infrastructure provider and multiple selfish mobile service

providers.

• We formulate the problem as a Stackelberg game, and

propose a novel approximation-restricted strategy that

guarantees a bounded Price of Anarchy (PoA) of the

mechanism via a novel approximation algorithm.

• We devise an approximation algorithm for the problem

with non-selfish users. We devise a novel Stackelberg

congestion game for the service caching problem in an

MEC network with finite resource capacities, and analyze

the Price of Anarchy (PoA) of the game.

• We evaluate the performance of our mechanism not only

in simulated environments but also in a real test-bed.

The remainder of the paper is arranged as follows. Section II

introduces the system model, notations and problem formula-

tion. The proposed Stackelberg congestion game for the service

caching problem is described in Section III. Section IV will

provide some experimental results on the performance of the

proposed algorithm in both simulated environments and a real

test-bed. Section V will summarize the state-of-the-arts on the

service caching in MEC networks. The paper is concluded in

Section VI.

II. PRELIMINARY

In this section, we first introduce the system model and

notations. We then formally define the service caching problem.

A. System model

We consider a two-tiered mobile edge-cloud (MEC) network

G = (CL ∪ DC, E) consisting of a set CL of cloudlets that

are deployed in locations within the proximity of users and

a set DC of remote data centers. Let CLi be a cloudlet in

CL. A number of virtualized servers can be instantiated in

each cloudlet CLi to implement mobile services and their

related databases/libraries. The computing resource in each

CLi is managed by an infrastructure provider via Virtual

Machines (VMs) provisioning. In addition, the cloudlets have

a limited capacity of transferring data traffic from/to itself due

to the capacity of its incident links. Denote by C(CLi) and

B(CLi) the computing and bandwidth resource capacities of

each cloudlet CLi, respectively. Here, we do not consider the

capacity constraint of each data center in DC, since they usually

have abundant resources. E is a set of links that interconnect

the cloudlets and data centers in CL ∪ DC.

As illustrated in Fig. 1, the two-tiered MEC network G
is operated by an infrastructure provider and the resources

are leased to a few selfish network service providers. This

is a common business in the telecommunication market. For

example, large-scale telco providers usually own infrastructure

and want to lease their resource to small- and medium-scale

network service providers. Since each network service provider

is selfish, it competes the resources in the MEC network with

other network service providers.

B. Service caching from remote clouds to cloudlets in an MEC
network

We consider the provisioning of delay-sensitive network

services, e.g., VR/AR, video processing, and online gaming

services, which are frequently required by mobile users. To

reduce the latency experienced by mobile users, network

service providers hope to move the services that are originally

deployed in remote data centers to cloudlets in an MEC network.

Such service moving from remote data centers to cloudlets

is referred to as service caching. In contrast to traditional

service placement in MEC networks, service caching focuses

on caching existing services in data centers to cloudlets in

MEC networks. Due to the resource capacity constraints of

cloudlets, services are only cached for temporary and their

original services are still kept in remote data centers for later

use when the cached service is destroyed from cloudlets.

We refer an implementation of service SVl in a VM of a data

center as its original instance. If an instance of SVl is cached
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Fig. 1. An example of the two-tiered cloud network.

to a cloudlet in G, all of its user requests will be directed to the

cached instance of SVl for processing. Otherwise, the original
instance of SVl in its data center will continue serving its

user requests, as shown in Fig. 1. Denote by rl the number of

requests that should be served by service SVl. Assuming that

each request of SVl having a uniform workload, the amount of

resource demanded by each service SVl is al · rl. In addition,

transmitting data from and to the cached instance of SVl

consume bandwidth resource. Therefore, each network service

provider assigns some amount of bandwidth resource to each

of its user requests to guarantee its performance. Denote by bl
the bandwidth resource assigned to each of the user requests of

SVl, the bandwidth consumption of service SVl thus is bl · rl.
Let spl be a network service provider offering services in

the MEC network G, and each service provider is selfish and

want to maximize its own revenue. Denote by N a set of such

network service providers. Each spl ∈ N requests to cache a

service SVl in a cloudlet in G. Such service SVl may also be

removed from the cloudlet, considering the capacity constraint

of the cloudlet. Such service caching is usually offered as

value-added features of existing cloud services. Therefore, the

original service instance of SVl in its remote data center will

not be removed even if it is cached in the MEC network.

C. Cost model of service caching

Since the network service providers in N lease resources

from the network infrastructure provider that owns the MEC

network G, they usually need to pay for resource usages.

Following the resource setting and pricing policies of most

infrastructure providers [1], [8], the costs of using VMs are

due to the usage of both computing and bandwidth resources of

VMs in a cloudlet. The cost of caching a service in a cloudlet

thus consists of a service instantiation cost in a cloudlet due to

the instantiation of a VM, processing cost due to the processing

of data traffic, and the update cost from the cached service to

its original service in a remote cloud. These costs are categories

into service caching cost and bandwidth consumption cost.
Service caching cost: Since each service is cached into a

VM, the service instantiation cost thus is the cost due to VM

instantiation and software setup for the cached service instance.

Let cinsl be the cost of instantiating an instance of service

SVl of network service provider spl. If service SVl is cached

into a cloudlet of G, the data of its user requests are directly

forwarded to the cloudlet for processing. This incurs costs since

data processing is computing-intensive and requires resource

usage of computing resource. Since the cached services in

cloudlet CLi are sharing its computing resource, the cost

of caching a service in CLi depends on the workload (i.e.,

congestion) of CLi. Intuitively, the cost due to congestion is

non-decreasing with the congestion levels. For simplicity, we

adopt a proportional congestion model, following many exiting

studies [4], [12], [21]. Let σi be the set of service providers

that have service instances cached in cloudlet CLi. The service

caching cost is calculated by

αi|σi|+ cinsl , (1)

where αi is a given constant that captures the influence of

congestion of computing resource on the cost. It must be

mentioned that the derivation technique in the later section does

not relay on the assumption of proportional cost model. Instead,

it relies only on the non-decreasing of cost with congestion

levels. Therefore, the proportional congestion cost model can be

easily extended to consider other complicated non-decreasing

cost models.

Bandwidth consumption cost: Recall that service SVl is

temporarily cached into a cloudlet, and we need to maintain

the original instance of SVl in the remote cloud. However, to

make sure the seamless service transition between of the cached

and original service, the processed data of the cached instance

needs to be updated/synchronized to its original instance in

the remote cloud. Clearly, the cost incurred by such updates is

due to the bandwidth resource consumption of cloudlet CLi.

Recall that each network service provider is assigned with an

amount bl · rl of bandwidth resource. Hence, there is a fixed

bandwidth consumption cost, referred to as cbdwi , for each

network service provider in each cloudlet CLi. In addition, it

is clear that the bandwidth consumption cost is affected by

other network service providers using the bandwidth resource

of CLi, i.e., the congestion of cloudlet CLi. We calculate the

update cost by

βi|σi|+ cbdwi , (2)

where βi is a given constant that captures the influence of

congestion of bandwidth resource of CLi on the cost. Notice

that we focus on the provisioning of network resources for such

updating/synchronization, the specific synchronization methods

depends on specific services. We thus consider that the design

of synchronization methods is out the scope of this paper.

The cost cl,i of caching an instance of service SVl in CLi

is

cl,i = αi|σi|+ cinsl + βi|σi|+ cbdwi . (3)
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D. Hierarchy service markets

There is an emerging 5G service market which allows

multiple network service providers to provide different services,

such as VR services to mobile users. To promote network

latency experienced by users, these network service providers

typically lease VMs from an infrastructure provider that

operates the multi-tier MEC network. Specifically, we consider

a hierarchy service market with an infrastructure provider

offering various resources to a number of selfish network

service providers, as shown in Fig. 1. As a leader, the

infrastructure provider has bulk-lease contracts with several

large-scale network service providers; it thus can coordinates

them as long as requirements in the bulk-lease contracts are met.

Specifically, such a coordinated network service provider has

huge demands of resources and large quantity of user requests.

Therefore, they have significant influence in the service market,

and their behavior may affect many medium and small-scale

network service providers. In addition, medium and small-scale

network service providers lease resources on a pay-as-you-go

basis. They are interested in their own revenue. We refer to such

network service providers as selfish network service providers.

Denote by N the set of all network service providers and S
the set of coordinated network service providers. N \ S then

denotes the number of selfish network service providers.

E. Stackelberg congestion game and price of anarchy

In the above-mentioned service market for an MEC, we

consider a Stackelberg congestion game where the leader (i.e.,

infrastructure provider) coordinates a few network service

providers while allows the rest network service providers

behave selfishly. Without loss of generality, we consider a sym-

metric Stackelberg where the strategy space of each network

service provider is the same. The Stackelberg game is denoted

by Γ(N, CL, (σl)spl∈N , (ci)CLi∈CL), where σl ∈ 2|CL| \ {∅}
is the strategy space of each network service provider, and ci
is a non-negative and non-decreasing cost function associated

with caching network service in each cloudlet CLi. Then,

ci =
∑

spl∈σi

cl,i. (4)

Denote by cl(σl) the cost of network service provider spl with

strategy space σl, which can be calculated by

cl(σl) =
∑

CLi∈σl

xl,i · ci, (5)

where xl,i is a binary indicator variable that indicates whether

network service provider spl chooses cloudlet CLi to cache

an instance of its service SVl. A Stackelberg strategy is

an algorithm that chooses a subset of players and assigns

them a prescribed strategy with the purpose of mitigating the

detrimental effect of the selfish behavior of the remaining

uncoordinated players.

Note that the network service providers operate in their

own interest, which often leads to great inefficiencies and

instabilities in the MEC network. They however are not

expecting such inefficiency. Therefore, we need to measure

the inefficiency caused by the selfishness of network service

providers. The most popular metric for the evaluation of such

selfishness is called the Price of Anarchy (PoA). It is defined as

the proportion between the worst possible social utility from a

Nash equilibrium and the optimal social utility in which players

are not selfish, not necessarily from a Nash equilibrium.

F. Problem definition

Given an MEC network G = (CL ∪ DC, E) managed

by an infrastructure provider and its resources shared by

both coordinated and selfish network service providers. There

is also a set of network service providers that have bulk-

purchase contracts with the infrastructure provider and they are

coordinated by the infrastructure provider. In addition, medium

and small scale network service providers hoping to cache their

services with the aim of maximizing their own revenue.

The service caching problem in an MEC network of a service
market is to cache the services of the N network service

providers, by selecting and coordinating a subset of network

service providers from N , and allowing the rest to perform

selfishly, such that the social cost of the mobile service market

is minimized while no players have incentives to deviate from

their current strategies, i.e., the Nash equilibrium of the mobile

service market exists, where the social cost of the mobile

service market in a mobile edge-cloud is defined as the total

cost of all players in N , i.e.,

c =
∑

spl∈N
cl(σl), (6)

subject to the computing and bandwidth resource capacity

constraints of the mobile edge cloud.

III. AN EFFICIENT AND NEAR-OPTIMAL MECHANISM FOR

THE SERVICE CACHING PROBLEM

We now devise an efficient and near-optimal mechanism for

a novel Stackelberg game for the service caching problem. We

first propose a novel strategy called approximation strategy
in the mechanism design, such that the performance of the

proposed mechanism is not far from the game when all players

are not selfish. We then devise an approximation algorithm for

problem with non-selfish players. Based on the approximation

strategy and the approximation algorithm, we finally elaborate

on the proposed Stackelberg strategy for the service caching

problem.

A. Design rationale of the mechanism

We aim to design a mechanism with a guaranteed per-

formance gap with the social optimum. Clearly, the selfish

behavior of the selfish network service providers degrades the

system performance, as they only care about their own revenue.

We thus design a Stackelberg strategy for the infrastructure

provider, such that it can find a subset of the players and

coordinate them to avoid significant performance deviation

caused by the rest selfish network service providers.

The basic idea of our algorithm is to focus on the optimal-
restricted Stackelberg strategies, and a Stackelberg strategy is

optimal-restricted if for a social optimum solution OPT , the

strategy assigned to the coordinated players coincides with the
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one they adopt in OPT . However, the social optimum solution

cannot be obtained in polynomial time, due to the NP-Hardness

of the problem. We thus find an approximate solution for the

problem when all players are coordinated to approach the social

optimum OPT . We then use the obtained approximate solution

OPT ′ to guide the strategies of the coordinated players. We

refer this method as approximation-restricted strategy.

Our idea is to design an approximation algorithm with a

probable approximation ratio for the service caching problem

in an MEC network with non-selfish network service providers.

In the following, we reduce the problem to a Generalized

Assignment Problem (GAP). We describe the approximation-

restricted Stackelberg strategy, and analyze the approximation

ratio of the approximate solution and performance of the

approximation-restricted Stackelberg strategy, in the rest of

this section.

For the sake of clarity, we first describe the GAP prob-

lem [34]. Given n items and m knapsacks, with each item

itmj can be assigned to a knapsack bini at a cost of cij . The

weight of the item is wij if it is assigned to knapsack bini.

The accumulative weight of the items that are assigned to bini

cannot exceed its capacity CAPi. The objective of the GAP

problem is to assign the items to the given knapsacks such

that the total assignment cost is minimized.

B. An approximation algorithm for the problem with non-selfish
players

We now reduce the problem of service caching in an MEC

network with non-selfish players into the GAP problem. It

must be mentioned that the difference between the service

caching problem and the GAP problem is the cost model. The

cost of caching an instance of service in a cloudlet is related

to the ‘congestion’ of the cloudlet, i.e., the number of cached

service instances. However, in the GAP problem the cost of

assigning an item to a knapsack only depends on the item

itself. Reducing the service caching problem thus is to how to

map the congestion-aware cost model to the flat cost model in

the GAP problem.

Our basic idea is to split each cloudlet into a set of virtual
cloudlets, with each virtual cloudlet being restricted to be

able to only cache a single service instance. The rationale

is to ignore the ‘congestion’ aspect in the cost model first,

and consider it later. Specifically, let amax and bmax be the

maximum demands of computing and bandwidth resources of

a service SVl, i.e., amax = argmaxspl∈N (al) and bmax =
argmaxspl∈N (bl). Similarly, amin = argminspl∈N (al) and

bmin = argmaxspl∈N (bl).
amax

amin
and amax

amin
usually are given

fixed constants. Please note that such ratios largely depends

on the number of service types offered by the network service

providers, which can be obtained from historical information

of services. We then split each cloudlet CLi into

ni = min
{⌊C(CLi)

amax

⌋
,
⌊B(CLi)

bmax

⌋}
(7)

virtual cloudlets with each virtual cloudlet being able to cache

a single service SVl. Let {CL′1,i, · · · , CL′k,i, · · · , CL′ni,i
} be

the set of virtual cloudlets for cloudlet CLi. Each virtual

cloudlet CL′k has a capacity max{amax, bmax} such that any

service in N can be cached in it.

We now reduce the problem into the GAP problem, by

considering each virtual cloudlet as a knapsack, with its capacity

being set to max{amax, bmax}. Clearly, each virtual cloudlet

maximally can cache

n′max = max
{max{amax, bmax}

amin
,
max{amax, bmax}

bmin

}
.

(8)

services in N . The cost of caching a service in virtual cloudlet

CL′k,i is set to

αi + βi + cinsl + cbdwi , (9)

which means that the contribution of other services in CL′k,i
is not considered. That is, the cost of using resource by SVl

in virtual cloudlet CL′k,i is solely depending on the service

itself and the location.

Now the problem is reduced into the GAP problem, we

then solve the GAP problem by adopting the approximation

algorithm in [34]. The obtained solution assigns each service

to a virtual cloudlet. This however is not a feasible solution to

the original service caching problem. To make it feasible, we

assign all the services that are assigned in the virtual cloudlets

in {CL′1,i, · · · , CL′k,i, · · · , CL′ni,i
} to cloudlet CLi.

The detailed steps of the proposed algorithm are described

in algorithm 1.

Algorithm 1 Appro
Input: An MEC network G and a number of network service providers

wishing to cache their services in G.
Output: A cloudlet to cache each service SVl of each network service

provider.
1: Split each cloudlet into a set of ni virtual cloudlets, with each virtual

cloudlet having the ability of caching only a limited number of services;
2: Consider each virtual cloudlet as a knapsack in the GAP problem [34],

and use the cost function that does not incorporate the ‘congestion’, i.e.,
αi + βi + cins

l + cbdwi ;
3: Invoke the approximation algorithm for the GAP problem in [34];
4: Move all the network service providers that are assigned to virtual cloudlets

in {CL′
1,i, · · · , CL′

k,i, · · · , CL′
ni,i

} to cloudlet CLi;

C. The Stackelberg strategy of the proposed mechanism

We now describe the Stackelberg strategy given the approx-

imate solution to the service caching problem with non-selfish

network service providers. Some network service providers in

the mobile service market are selfish. To avoid performance

degradation due to selfish behavior, we coordinate a subset of

players in N by assigning strategies in the approximate solution

to them, that is we restrict our attention to an approximation-

restricted Stackelberg strategy. This means that the coordinated

players will make decisions according to the approximate

solution, while the rest uncoordinated players will selfishly

select cloudlets that would minimize their own cost.

Let ξ be the percentage of the network service providers

that are coordinated by the leader in the mobile service market

(i.e., the infrastructure provider), where the 0 < ξ < 1. The

proposed Stackelberg strategy consists of two steps. In the

first step, a number of �ξ|N |� network service providers are
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selected to be coordinated by the infrastructure provider. Since

the services of network service providers have different resource

demands, they thus have different impacts on the social cost.

Therefore, to enlarge the influence of coordinated network

service providers, we select �ξ|N |� network service providers

that incur the highest cost of caching their services. We refer

this strategy as Largest Cost First (LCF). The second step of

the Stackelberg game is to allow the rest (1− ξ)|N | network

service providers selfishly select cloudlets that incur the lowest

cost for them. The proposed Stackelberg strategy is shown in

algorithm 2.

Algorithm 2 LCF
Input: An MEC network G and a number of network service providers

wishing to cache their services in the cloudlets of the cloud
Output: A cloudlet to cache each service SVl of each network service

provider.
1: Find an approximate solution of the service caching problem in an MEC

network with non-selfish players according to algorithm Appro;
2: Find a number of ξ|N | network service providers with the maximum cost

of caching their services in a cloudlet of the MEC network;
3: Let Ns be the set of such coordinated network service providers;
4: for each network service provider spl ∈ Ns do
5: Use the location in the approximate solution to cache its service;
6: for each network service provider spl ∈ N \Ns do
7: Use the location that could incur a minimum cost for itself to cache

its service SVl;

D. Analysis

We now analyze the performance of the proposed algorithms

Appro and LCF in the following.

Lemma 1: The solution obtained by algorithm Appro is

feasible for the service caching problem in an MEC network

with non-selfish network service providers, assuming that the

resource capacities are far greater than the maximum resource

demands of the services of service providers in N .

Proof Showing the feasibility of algorithm Appro is to show

that each service SVl of network service provider is cached

into a cloudlet, and the computing and bandwidth capacities

of each cloudlet C(CLi) and B(CLi) are met.

In algorithm Appro, we divide each cloudlet CLi into a

list of virtual cloudlets, i.e., {CL′1,i, · · · , CL′k,i, · · · , CL′ni,i
}.

The services of network service providers N then are assigned

to those virtual cloudlets using the approximate solution to

the GAP problem. We then adjust the obtained solution, by

assigning all the services that are assigned to virtual cloudlets in

{CL′1,i, · · · , CL′k,i, · · · , CL′ni,i
} to cloudlet CLi. Therefore,

each service is cached only to a single cloudlet.

Let us now show that both computing and bandwidth

capacities of cloudlets are met. For the computing capacity

constraint C(CLi) of each cloudlet CLi, it is clear that each

cloudlet is divided into a number of virtual cloudlets according

to the maximum demand (either computing or bandwidth) of

a service, this guarantees that any virtual cloudlet has enough

resource to cache a service. Considering that each knapsack

in the GAP problem has a capacity that is not violated by its

solution, the capacity of each virtual cloudlet is not violated

as well. After obtaining the solution due to algorithm in [34],

we move the services cached into virtual cloudlet CL′k,i to

cloudlet CLi. Since the computing capacity of CL′k,i is not

violated, the computing capacity of each cloudlet CLi is not

violated. Similar derivation can be performed for the bandwidth

capacity of each cloudlet CLi. Therefore, the solution due to

algorithm Appro is feasible.

Lemma 2: The approximation ratio of the solution due to

algorithm Appro is 2·δ·κ, where δ = C(CLi)
amax

and κ = B(CLi)
bmax

.

Proof We have showed the approximation ratio of the proposed

algorithm Appro. Denote by C ′ the obtained social cost for the

problem with non-selfish network service providers under cost

function αi+ βi+ cinsl + cbdwi . Let OPT ′ be the optimal cost.

Similarly, let C be the social cost due to algorithm Appro and

let OPT be the optimal cost for the service caching problem

in a two-tiered MEC network. We know that the approximation

ratio due to algorithm in [34] for the GAP problem is 2. This

means that we have

C ′/OPT ′ = 2. (10)

We then find the relation between the social cost C ′ under

cost function αi+βi+cinsl +cbdwi and the social cost under the

cost function in the original problem. It must be mentioned that

social cost C ′ does not consider the cost due to ‘congestion’

of a cloudlet. After invoking the approximation algorithm due

to [34], there are at most n′max services that are assigned to

each virtual cloudlet CL′k,i, since the capacity of each virtual

cloudlet is set to max{amax, bmax}. Recall that there are at

most ni virtual cloudlets for each cloudlet CLi. All the services

assigned to these ni will be moved to a single cloudlet CLi.

The cost due to such movement increases as it increases the

congestion of cloudlet CLi. Clearly, there can be at most

ni · n′max services that are involved in the movement, which

means that

C ≤
∑

CLi∈CL
(ni · n′max · (αi + βi) + cinsl + cbdwi )

= ni · n′max ·
∑

CLi∈CL
(αi + βi +

cinsl + cbdwi

ni · n′max

)

Clearly we know that ni > 1 and n′max > 1. We then have

C < nin
′
max

∑
CLi∈CL

(αi + βi + cinsl + cbdwi )

= ni · n′max · C ′. (11)

Assuming that
C(CLi)
amax

and
B(CLi)
bmax

are small constants, let
C(CLi)
amax

= δ and
B(CLi)
bmax

= κ. We get

C < δ · κ · C ′ = 2 · δ · κ ·OPT ′, (12)

due to Eq. (10). Since OPT considers the congestion of each

cloudlet, we have OPT ′ < OPT , which means that

C < 2 · δ · κ ·OPT. (13)

The approximation ratio of the proposed algorithm Appro
thus is 2 · δ · κ.

We now analyze the performance of the proposed Stackelberg
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strategy LCF in the following lemmas and theorem.

Lemma 3: There exists at least one NE of the proposed

Stackelberg game.

Proof The proposed Stackelberg game deals with a set of

coordinated service providers and another set of selfish ser-

vice providers. Recall that the coordinated service providers

follow the decisions produced by algorithm Appro, and

their decisions will not be affected by the selfish network

service providers. We only need to show that a NE could

be achieved for the selfish network service providers. Recall

that the cost of caching a service in cloudlet is calculated by

αi + βi + cinsl + cbdwi , which is an affline function. Following

existing results in [33], affline congestion games admits at least

one NE. This concludes the proof.

We now establish the PoA of the proposed Stackelberg game

under the LCF strategy in the following theorem.

Theorem 1: Denote by ζ the obtained approximation solution

due to algorithm Appro, let s be any approximation-restricted

Stackelberg caching of services of an MEC network, and let ω
be the service caching that leads to the worst cost due to selfish

behavior of the rest (1− ξ)|N | network service providers. We

then have the PoA of the proposed strategy is 2δκ
1−v (

1
4v +1− ξ)

with v ∈ (0, 1).

Proof Denote by Ns be the set of coordinated network service

providers determining the approximation-restricted Stackelberg

strategy. Let φ be the worst pure NE induced by s. We then

know that ω = s+ φ.

Recall that φ is a NE with respect to the cost function

αi|σi|+βi|σi|+cinsl +cbdwi for each of the (1−ξ)|N | network

service providers. We have

(αφ(l) + βω(l))|σω(l)|+ cinsl + cbdwω(l)

< αζ(l)|σζ(l) + 1|+ βζ(l)|σζ(l) + 1|+ cinsl + cbdwζ(l) , (14)

where φ(l) and ζ(l) are the cloudlets that are used to cache

service SVl of network service provider spl of the NE and the

approximate solution due to algorithm Appro.

If we sum up the inequalities (14) for all uncoordinated

network service providers in N \Ns, we get
∑

spl∈N\Ns

(αω(l) + βω(l))|σω(l)|+ cinsl + cbdwω(l)

<
∑

spl∈N\Ns

(αζ(l) + βζ(l))|σζ(l) + 1|+ cinsl + cbdwζ(l) . (15)

With a little abuse of using symbols, we use σi,ω to denote

the number of service providers that are assigned to cloudlet

CLi. We have
∑

CLi∈CL
σi,φ ·

(
(αi + βi)|σi,ω|+ cinsl + cbdwi

)

<
∑

CLi∈CL
(σi,ζ − σi,s) ·

(
(αi + βi)|σi,ω + 1|+ cinsl + cbdwi

)
.

(16)

Adding the cost σi,s

(
(αi+βi)σi,ω+cinsl +cbdwi

)
of coordinated

players to both sides of the above inequality, we obtain

C(ω) =
∑

CLi∈CL
(σi,φ + σi,s) ·

(
(αi + βi)σi,ω + cinsl + cbdwi

)

<
∑

CLi∈CL

(
(αi + βi)σi,ωσi,ζ + cinsl σi,ζ + cbdwi σi,ζ

+ (σi,ζ − σi,s)(αi + βi)
)
. (17)

Given the inequality xy ≤ vx2 + 1
4vy

2 that is valid for all

x, y ∈ R and v ∈ (0, 1), we then derive the following inequality
∑

CLi∈CL
(
(αi + βi)σi,ωσi,ζ + cinsl σi,ζ + cbdwi σi,ζ

)

< v
∑

CLi∈CL
(αi + βi)(σi,ω)

2 +
1

4v

∑
CLi∈CL

(αi + βi)(σi,ζ)
2

+
∑

CLi∈CL
(cinsl + cbdwi )σi,ζ

= vC(ω)− v
∑

CLi∈CL
(cinsl + cbdwi )(σi,ω)+

1

4v

∑
CLi∈CL

(αi + βi)(σi,ζ)
2 +

∑
CLi∈CL

(cinsl + cbdwi )σi,ζ

= vC(ω) +
1

4v
vC(ζ) +

∑
CLi∈CL

(cinsl + cbdwi )σi,ζ

− (
v +

1

4v

) ∑
CLi∈CL

(cinsl + cbdwi )σi,s

− 1

4v

∑
CLi∈CL

(cinsl + cbdwi )(σi,ζ − σi,s), since σi,ω ≥ σi,s

≤ vC(ω) +
1

4v
C(ζ)+

(1− 1

4v
)

∑
CLi∈CL

(cinsl + cbdwi )(σi,ζ − σi,s),

since v +
1

4v
≥ 1.

Combining inequalities (17) and (18), we have

(1− v)C(ω)

≤ 1

4v
C(ζ) + (1− 1

4v
)

∑
CLi∈CL

(cinsl + cbdwi )(σi,ζ − σi,s)

+
∑

CLi∈CL
(σi,ζ − σi,s)(αi + βi).

≤ 1

4v
C(ζ) +

∑
CLi∈CL

(cinsl + cbdwi )(σi,ζ − σi,s)

+
∑

CLi∈CL
(αi + βi)(σi,ζ − σi,s)

≤ 1

4v
C(ζ) +

∑
CLi∈CL

(
(αi + βi)(σi,ζ − σi,s)

2

+ (cinsl + cbdwi )(σi,ζ − σi,s)
)
,

since (σi,ζ − σi,s) ≤ (σi,ζ − σi,s)
2 for non-negative integers

≤ 1

4v
C(ζ) +

∑
CLi∈CL

(
(αi + βi)σi,ζ + (cinsl + cbdwi )

)

(σi,ζ − σi,s), since (σi,ζ − σi,s)
2 ≤ σi,ζ(σi,ζ − σi,s)
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≤ 1

4v
C(ζ) + (1− ξ)C(ζ) ≤ 2δκ(

1

4v
+ 1− ξ)OPT. (18)

The PoA of the proposed approximation-restricted Stackelberg

strategy thus is 2δκ
1−v (

1
4v + 1− ξ).

IV. EXPERIMENTS

In this section, we evaluate the performance of the proposed

algorithms.

A. Parameter settings

We consider a two-tiered cloud network with its size varying

from 50 to 400 switch nodes and 5 remote data centers, where

each network topology is generated using GT-ITM [9]. The

number of cloudlets in the mobile edge network is set to 10% of

the network size, which are randomly distributed in the network

edge. We also use a real network topologies AS1755 from [29].

The number of VMs provided by each cloudlet/data center is

randomly generated from [15, 30]. The bandwidth capacity

of each VM is drawn from the range of [10Mpbs, 100Mbps].

The costs of transmitting and processing 1 GB of data are

set within [$0.05, $0.12] and [$0.15, $0.22], respectively. The

traffic volume of each request is randomly drawn from [10, 200]
Megabytes. The data volume of each service caching request is

varied from 1 Gigabyte (GB) to 5 GB. The values for αi and

βi of each cloudlet CLi are randomly drawn in the range of

[0, 1]. The data volume of consistency updating from a cached

instance to the original instance of a service is set to 10% of

the service’s data volume. The running time of each algorithm

is obtained based on a machine with a 3.70GHz Intel i7 Hexa-

core CPU and 16 GiB RAM. Unless otherwise specified, these

parameters will be adopted in the default setting.

We compare the proposed mechanism with the following

algorithms: (1) the first benchmark is the algorithm in [23],

which provides efficient solution to the problem of joint

service caching and task offloading in MEC networks. One

difference of this study with ours is that we consider a two-tier

MEC network that jointly considers task offloading, service

caching, and data updating. The data updating however is not

considered in [23]. In addition, since the algorithm in [23]

does not consider the mobile service market with multiple

network service providers, we consider that each network

service provider runs the algorithm in [23], without communi-

cating with each other. For simplicity, we refer such joint

offloading and caching algorithms as JoOffloadCache;

(2) the second benchmark is a greedy algorithm, in which

each network service provider considers offloading and service

placement/cache separately [20]. Specifically, the algorithm

simply selects the cloudlets for each request that could achieve

an optimal offloading cost. Based on the assignment, services

are instantiated in the cloudlets (or close cloudlets) with their

requests. This algorithm is referred to as OffloadCache.

B. Simulations

We first evaluate the performance of mechanism LCF with

algorithms JoOffloadCache and OffloadCache, by

varying the network size from 50 to 400 with a number of 100
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Fig. 2. Algorithm performance in GT-ITM generated networks with sizes
varied from 50 to 400.

network service providers and fixing (1−ξ) to 0.3. Fig. 2 shows

the results in terms of the social cost, the cost of coordinated

network service providers, the cost of selfish network service

providers, and the running time. From Fig. 2 (a), we can

see that LCF consistently delivers the minimum social cost

among the three algorithms, while algorithm OffloadCache
has the highest social cost. The reason is that algorithm LCF
coordinates a number of coordinated network service providers

to avoid significant performance degradation while algorithms

JoOffloadCache and OffloadCache allows each net-

work service provider makes decisions selfishly. In addition,

LCF optimizes the data uploading cost while the rest two

algorithms do not consider such costs. The running times of

algorithms LCF, JoOffloadCache, and OffloadCache
are shown in Fig. 2 (d).

We then study the impact of the ratio of the number of selfish

network service providers and the total number, i.e., 1− ξ, by

fixing the network size to 250 and varying the value of (1− ξ)
from 0 to 1. Results are shown in Fig. 3. From Fig. 3 (a), we

can see that the social cost of all network service providers

by algorithm LCF increases with the growth of (1− ξ). The

reason is that with more and more selfish players, less network

service providers can be coordinated, making the obtained

cost deviating further from the social optimum. This can also

be evidenced by Figures 3 (a) and (b). We can also see from

Fig. 3 (a) that the total cost by LCF is significantly smaller than

algorithms JoOffloadCache and OffloadCache until

(1 − ξ) is increased to 0.8. It must be mentioned this is a

relative high percentage of selfish network service providers.

Also, algorithms JoOffloadCache and OffloadCache
do not consider selfishness of network service providers at all.

C. Implementations in a test-bed

Testbed settings: We build a test-bed consisting of both an

underlay with hardware switches and an overlay with virtual

428

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 29,2021 at 08:16:14 UTC from IEEE Xplore.  Restrictions apply. 



0 0.2 0.4 0.6 0.8 1
21500

22000

22500

23000

23500

24000

24500

25000

25500

C
o

st
 (

$
)

The percentage of selfish network service providers

 LCF

 JoOffloadCache

(a) The total cost of all net-
work service providers

0 0.2 0.4 0.6 0.8 1
0

5000

10000

15000

20000

25000

C
o

st
 (

$
)

The percentage of selfish network service providers

 LCF

 JoOffloadCache

(b) The cost of the selfish
network service providers

0 0.2 0.4 0.6 0.8 1
0

5000

10000

15000

20000

25000

30000

C
o

st
 (

$
)

The percentage of selfish network service providers

 LCF

 JoOffloadCache

(c) The cost of the co-
ordinated network service
providers

0 0.2 0.4 0.6 0.8 1

3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5

R
u

n
n

in
g

 T
im

e 
(s

)

The percentage of selfish network service providers

 LCF

 JoOffloadCache

(d) The running times

Fig. 3. The impact of (1 − ξ) on the algorithm performance in a GT-ITM
generated network with size 250.
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Fig. 4. A test-bed with both hardware switches and virtual resources.

switches, as shown in Fig. 4. The physical underlay consists of

five switches, i.e., Huawei S5720-32C-HI-24S-AC, H3C S5560-

30S-EI, Ruijie RG-5750C-28Gt4XS-H, CISCO 3750X-24T,

and Centec aSW1100-48T4X. Each switch is connected to at

least two other switches that can guarantee the network data can

still be transmitted if one switch is down. It also has five servers

with i7-8700 CPU and 16G RAM. Netconf and SNMP protocols

are used to manage the switches and the links that interconnect

them. Using VXLAN, we virtualize an overlay network with

a number of Open vSwitch (OVS) [15] nodes and VMs. The

underlay can be seen as a resource pool with computing

and bandwidth resources which can be used to build overlay

networks. In the overlay, we create VMs and connect them

with the OVS. The overlay network is built following the real

topology AS1755. Its OVS nodes and VMs are controlled by a

Ryu [17] controller. The proposed algorithms are implemented

as Ryu applications. All the rest settings are the same as the

simulations in the previous subsection.

Performance results: We investigate the performance of the

algorithms in the test-bed, by fixing (1− ξ) to 0.3. The results

are shown in Fig. 5, from which we can see that algorithm
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Fig. 5. Performance in the testbed with both physical underlay and virtual
overlay.

LCF has a much lower social cost than that of algorithms

JoOffloadCache and OffloadCache.

We then study the impact of various parameters on the

performance of algorithms LCF, JoOffloadCache and

OffloadCache in the test-bed. Fig. 6 (a) shows the impact

of 1 − ξ, from which we can see that the social cost of

algorithm LCF increases with the growth of (1 − ξ). This

is because the higher percentage of selfish network service

providers has a higher impact of worsening the social optimum,

considering that each network service provider only cares about

its own cost instead of the social cost. Fig. 6 (c) illustrates

the impact of the number of service caching requests on

the performance of the algorithms. From the figure, we can

see that a higher number of requests means a higher total

cost. In addition, we can see that the total cost decreases

first when the network size is increased from 50 to 200,

and then increases afterwards. The rationale behind is that

with the growth of network sizes more services have higher

opportunities to be cached into cloudlets with lower costs.

When the network size keeps growing, services will also have

a higher probability being assigned to cloudlets further to

remote clouds, thereby increasing the cost due to bandwidth

resource consumption. Fig. 6 (d) depicts the impact of the

amount of update data between cloudlets and remote clouds

on the algorithm performance. It can be seen that a larger

amount of to-be-updated data incurs a higher total cost due to

the higher bandwidth consumption.

We finally investigate the impact of maximum de-

mands of computing and bandwidth resource demands, i.e.,

amax and bmax, on the performance of algorithms LCF,

JoOffloadCache and OffloadCache in the test-bed.

Fig. 7 (a) shows the impact of amax, from which we can see that

the obtained cost is increasing with the growth of amax. The

rationale behind is that in the Stackelberg game each cloudlet is

partitioned into ni (= {�C(CLi)
amax

�, �B(CLi)
bmax

�}) virtual cloudlets,

and the number of virtual cloudlets is decreasing if amax grows.

This means that the algorithm has a higher probability to reject

some requests in the adjustment procedure. Also, this verifies

the correctness of Lemma 2. Similar trends can be found for

bmax as shown in Fig. 7 (b).

V. RELATED WORK

With the emerging of mobile edge computing, various service

providers are adopting the notion of caching their services

(originally in remote data centers) to locations of a mobile
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Fig. 7. Results of the impact of maximum demands of computing and
bandwidth resource demand in the test-bed.

edge-cloud within the proximity of users. This approach has an

equal importance with the task offloading from mobile devices

to edge-clouds. The related studies on service caching can be

either about computation offloading or on service placement.

For the studies on computation offloading, most studies

focus on the user side by deciding which tasks should be

offloaded to which cloudlet [7], [32], [27], [39], [40], such

that the user computing capacity is saved or the offloading

cost is minimized. These works either do not consider service

placement/caching or ignore the impact of congestion of

cloudlets during task offloading. For example, Jia et al. [13]

considered a task offloading problem in augmented reality

games with an aim to minimize the delay suffered by end

users. Yu et al. [27] considered an application provisioning and

data routing problem, with bandwidth and delay guarantees for

data sources, i.e., each data source should receive bandwidth

that meets its data generation rate, and the transmission delay

of each channel should be within the delay tolerance of the

application. Misra et al. [32] recently studied the task offloading

problem in a software-defined network, where Internet-of-

Things (IoT) devices are connected to fog computing nodes

by multi-hop IoT access-points (APs). Both exact and efficient

heuristics are proposed. Zhou et al. [40] studied the joint task

offloading and scheduling optimization problem, by considering

wireless network connections and mobile device mobility.

Existing studies on service placement focus on placing a

given set services to cloudlets of an MEC network with limited

resources [6], [10], [28], [13], [30], [18], [22], [23], [27]. Most

of these studies however do not consider a service market

with both infrastructure providers and service providers. In

addition, they do not consider a two-tiered cloud network

with both data centers and cloudlets. For example, Ascigil

et al. [2] proposed a centralized algorithm for the service

placement problem in mobile edge-clouds, by adopting multiple

criteria, such as least recently used, strictest deadline first, etc.

Xu et al. [37] investigated the interactions among content

service providers under a novel ‘sponsored content’ scheme,

by proposing a Stackelberg game. The delay and cost issues

however are not considered, and their method cannot be

directly applied to the service caching problem. Farris et
al. [6] devised methods for service replication and migration

for mobile users with an objective to minimize the degradation

of the quality of experience (QoE) degradation and the cost of

service replication. Hou et al. [10] investigated the problem

of content caching in mobile networks and devised efficient

algorithms to predict content popularity. Similarly, Jiang et

al. [28] considered a content caching and delivery problem by

placing popular contents in base stations and user equipments,

such that the access latency of users is minimized, subject

to the capacity constraints of base stations. Xu et al. [23]

investigated a problem of service placement in MEC-enabled

cellular networks, and proposed algorithms based on Lyapunov

optimization and Gibbs sampling, to reduce computation

latency for end users. Wang et al. [22] presented a problem

of provisioning a social virtual reality application in MEC

networks to serve a number of users to minimize the total

cost for placing services in cloudlets and provisioning placed

services to users. Zhang et al. [38] presented a dynamic

service placement problem in a distributed cloud, they aim

to minimize the cost for server allocation and reconfiguration,

subject to the constraints of delay and resource demands. Li et
al. [30] considered a cell caching for mobile networks, each

cell (base station) can cache popular contents for minimizing

delay experienced of users. However, they did not consider

cache cost [10], [28], or neglected hierarchical framework of

the network [28], or did not cover updating activities between

local edge servers and remote datacenters [30].

VI. CONCLUSION

In this paper, we investigated the service caching problem

in a two-tiered MEC network of a mobile service market. The

market consists of an infrastructure provider and multiple net-

work service providers. We developed a novel approximation-

restricted optimization framework that could guarantee the

stable and near-optional operation of the mobile market. Within

the framework, we first designed an approximation algorithm

with an approximation ratio for the problem with non-selfish

players. We also devised an efficient, stable Stackelberg
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congestion game with a provable Price of Anarchy (PoA) as the

second part of the framework. We evaluated the performance

of our mechanism by simulations. We also performed a set of

real experiments in a real test-bed.
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